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ABSTRACT 

We use a stochastic simulation model of pandemic influenza to investigate realistic intervention strategies 
that can be used in reaction to developing outbreaks. The model is constructed to represent a typical mid-
sized North American city.  Our model predicts average illness attack rates and economic costs for vari-
ous intervention scenarios, e.g., in the case when low-coverage reactive vaccination and limited antiviral 
use are combined with minimally disruptive social distancing strategies, including short-term closure of 
individual schools.  We find that such combination strategies can be substantially more effective than 
vaccination alone from epidemiological and economic standpoints. 

1 INTRODUCTION 

With modern advances in science and technology, simulation has been widely used in many research 
fields. Epidemic simulation models provide useful tools to increase our understanding of the dynamics 
and patterns of disease propagation, and to study and evaluate the potential impacts of various govern-
ment policies and intervention strategies for pandemic diseases, including prophylactic use of antivirals 
and social distancing strategies such as school closure, quarantine, and isolation.  These tools are especial-
ly timely in light of the recent H1N1 swine flu pandemic. 

Similar to other simulation studies, epidemic simulations consist of three parts: identification of rele-
vant inputs, model building, and output data analysis. The inputs typically include basic population data, 
the contact behavior of the individuals in the population, and disease transmission parameters. In the U.S., 
the population and their behavior are generated based on census bureau and demographic research, re-
spectively, and the transmission parameters are based on epidemiologic research.  Regarding model logic, 
the most-popular approaches are individual-based epidemiological compartment models, for example, 
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SIR (Susceptible-Infectious-Recovered) models. The simulation outputs are usually analyzed based on 
epidemiological and economic considerations. The epidemiological analysis often includes illness attack 
rates on various subsets of the populations, as well as the basic reproductive number (R0).  The quantity 
R0 is defined as the expected number of secondary cases produced by a typical infected individual during 
its entire period of infectiousness in a completely susceptible population (Diekmann, Heesterbeek, and 
Metz 1990), and it plays a central role in mathematical estimation of disease spread (but is difficult to es-
timate via simulation).  If one is also interested in an economic analysis, then all applicable social ex-
penses, both direct and indirect, ought to be included in the mix. 

We built a simulation model of pandemic influenza to investigate realistic strategies that can be used 
in reaction to developing outbreaks.  The simulator, which is similar to models developed by Longini et 
al. (2004, 2005) and Aleman, Wibisono, and Schwartz (2009), is programmed in C++ and runs on desk-
top platforms.  Our model is calibrated to documented illness attack rates and basic reproductive number 
estimates of 2009 H1N1 (Swine flu), and is constructed to represent a typical mid-sized North American 
city.  We consider both medical and non-medical disease mitigation strategies in the model.  Our model 
predicts average illness attack rates and economic costs under various intervention scenarios.  We find 
that certain �combination� strategies can be substantially more effective than vaccination alone from epi-
demiological and economic standpoints.  

The remainder of the paper is organized as follows. In Section 2, we present the model structure.  
Section 3 �������	
���

�����	 input parameters, including some remarks on the issue of calibration.  In 
Section 4, we study a number of reasonable intervention strategies.  Section 5 deals with output analysis, 
both epidemiological and economic, and Section 6 offers some conclusions.  Parts of this paper are taken 
from Andradóttir et al. (2010). 

2 MODEL STRUCTURE 

This section describes the general model structure underlying the simulation.  First of all, we discuss the 
transmission route of the disease.  We use a well-known methodology for modeling airborne infectious 
disease in a small area, namely, the SIR ��	�	���������infectious���
�������
��
��rtmental model. The 
structure of the SIR model is depicted in Figure 1.  Every individual in the population has four possible 
states: susceptible, infected but not infectious, infectious, and removed (either dead, or recovered with 
immunity).   
 

 
 

Figure 1: Flowchart of the epidemiological SIR model 
 
An outbreak is initialized by randomly generating infected individuals at the beginning of day 1, with 

all other individuals considered susceptible.  Susceptible people have the opportunity, each day, to be-
come infected in their contact groups.  ����
���	���	
�������
�����	
���
	�
���
 ���
	��
��
�����	
����

whom the person may interact during a particular day.  The contact groups we considered include house-
hold, neighborhood, community, school (daycare, playground, elementary, middle, and high), and work-
group.  In our model, everyone has contacts with people in their household, neighborhood, and commu-
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nity.  Children of ages 0�4 may also visit a daycare center or a playground (50% go to daycare and 50% 
go to a playground in our model).  Children of ages 5�18 attend schools in the same community and, of 
course, contact other students in the same school.  In addition, some children aged 16�18 may be em-
ployed, and thus they stay in a workgroup instead of school.  Workers contact all of the persons in their 
workgroups.  Employment rates are based on available employment statistics as well as census statistics 
on the geographical distribution of workers; details are given in Andradóttir et al. (2010).  

We set up our community structure based on the framework given in Longini et al. (2004).  Each 
community consists of approximately 2000 people who live in the same census tract; population age and 
household type distributions are based on Year 2000 Census information.  Each community is broken 
down into 4 neighborhoods, with a total of 2 elementary schools, 1 middle school, and 1 high school. We 
formed workgroups of size 20 to represent the typical number of people with whom a person has close 
contact during the day. 
 The simulator tracks the infection status of each person in the population during each time period 
(day), and the infection and illness status of each person are recorded, as are the illness attack rates overall 
and in various age groups.  The system state gets updated at fixed time intervals (at the end of each day).  
The daily probability of infection for each susceptible person is determined by the number of infectious 
contacts in his contact groups, and on the per-contact probability of transmission for each type of contact.  
For example, the probability of infection on a particular day for a susceptible child who attends daycare is  

 
1 � [Pr(child is not infected in the household) 

          × Pr(child is not infected in the neighborhood) 
      × Pr(child is not infected in the community) 

             × Pr(child is not infected at the daycare center)]. 
 
Within each contact group, the probability of infection of a susceptible individual depends on the number 
of infectious individuals in the group.  For example, suppose that X children and Y adults in a household 
are infectious on a particular day.  Then the probability of a susceptible household member being infected 
in that household on that day is (assuming independence among infected household members): 
 

1 � [Pr(not infected by a child in the household)X × Pr(not infected by an adult in the household)Y].   
 

The number of infectious people in the contact groups (X and Y) are random variables that are updated at 
the beginning of each day. 
 If the susceptible person is not infected, he continues with his routine contacts until the next check 
time. People infected with disease first pass through a latent period (the period between being infected 
and becoming infectious).  Due to the lack of historical epidemiological data, most researchers assume 
that the latent period is the same as the incubation period (the period between being infected and the ap-
pearance of symptoms).  After the latent period, an infected person undergoes an infectious period. Dur-
ing the infectious period, the infected person may or may not develop influenza symptoms.  Based on the 
work of Weycker et al. (2005) and the references therein, we set the probability that an infected person 
will exhibit symptoms to a value of 0.67; the determination of such probabilities is an ongoing research 
problem in the field.  After the infectious period, people enter the removed state, where they are either re-
covered (with immunity for this particular strain of influenza), hospitalized, or dead. 

3 INPUT CONSIDERATIONS 

From our model description in Section 2, we recall that the inputs to the simulation include various popu-
lation characteristics (e.g., population age distribution and contact behaviors), transmission probabilities, 
and durations of the latent and infectious periods.  Our population is generated using a combination of 
census bureau data and resident commuting data.  The p����������	
�������
structure is similar to that dis-
cussed in Longini et al. (2004).  The transmission probabilities are based on two sources.  First, for 
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transmissions within households, we again use results from Longini et al. (2004).  For schools, workplac-
es, neighborhoods, and communities, we calibrated transmission probabilities (simulation inputs) so that 
the realized illness attack rates and R0 values (simulation outputs) matched those from Tuite et al. (2010) 
for the 2009 H1N1 pandemic; specifically, R0 = 1.4.  Concerning the durations of the latent and infectious 
periods, we simply used the empirical cumulative distributions from Longini et al. (2004, 2005); see Ta-
ble 1, where the lengths of the latent and infectious periods are assumed to follow empirical probability 
distributions with means of 1.9 and 4.1 days, respectively.  

 
Table 1: Empirical distributions of latent and infectious periods for flu (Longini et al. 2004, 2005) 
 

Latent period Infectious period 
Duration (days) Cumulative probability Duration (days) Cumulative probability 

1 0.3 3 0.3 
2 0.8 4 0.7 
3 1.0 5 0.9 
  6 1.0 

 
The process of calibrating transmission probabilities to realized illness attack rates and R0 turns out to be 
a tedious iterative manual exercise, illustrated in Figure 2.  The idea is to input reasonable transmission 
probabilities for various age groups; see if the output matches the observed R0 and age-specific attack 
rates (in this case, from Tuite et al. 2010); and then iteratively tweak the inputs to obtain a better match. 
The difficulty of calibration is that the number of inputs (each transmission rate for each age/contact 
group) is daunting, and the inputs tend to be highly correlated.  The problem of conducting efficient cali-
bration is one of ongoing research. 
 
 
 
 
 
 
 
 

Figure 2: The calibration process 
 
In our model, the calibrated attack rates were 29.5% for children ages 0�4, 55.9% for children ages 5�13, 
40.8% for adults ages 19�52, 14.3% for adults ages 53�59, and 11.0% for seniors over 60 (which reflects 
greater immunity of older individuals to H1N1). The calibrated attack rates and R0 value are very close to 
the observed quantities.  The resulting transmission probabilities � the ones actually used in our simula-
tion � are shown in Table 2.   

4 INTERVENTIONS 

Our simulation models the baseline (no intervention) case along with various intervention combinations. 
The interventions include vaccination, antiviral treatment and household prophylaxis, and school closure 
and general social distancing, which are discussed in Sections 4.1, 4.2, and 4.3, respectively.  Interven-
tions are triggered when the overall illness attack rate reaches 0.01%.   

4.1 Vaccination  
We model a single-dose vaccine scenario based on the finding of Greenberg et al. (2009) that a single 
dose elicited a robust immune response in a large percentage of adults.  We model both pre-vaccination as 
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well as reactive strategies, with reactive vaccination programs beginning immediately, 30 days, or 60 
days after the outbreak starts.  The delays model disruptions in the vaccine production and distribution 
supply chain.  Our model also implements two possible vaccine stockpile levels (covering 35% and 70% 
of the population) and two sets of vaccine efficacies.  Under the low-efficacy scenario considered here, 
the vaccine efficacy against susceptibility to infection (VES) is 0.3 (i.e., the probability that a person re-
ceiving the vaccine will become immune is 0.3), and similarly the vaccine efficacy against infectiousness 
(VEI) is 0.2.  We also consider the high-efficacy case, with VES = 0.4 and VEI = 0.5.  These values are 
consistent with estimates of influenza vaccine efficacy used by Basta et al. (2009) in their analysis of the 
impact of vaccinating schoolchildren against pandemic and seasonal influenza.  Each day, we randomly 
select unvaccinated and non-ill people to receive vaccine based on the availability of doses.  Vaccine pro-
tection �����	
����
��
�!
����
����
��
���
��������	
��������
�����"��
����
�����������!
���
����
�����ction 
after two weeks. 
 

Table 2: Per-contact influenza infection transmission probabilities within contact groups

Contact Group Transmission 
Probability 

Household  
     Child to Child 0.8 
     Child to Adult 0.3 
     Adult to Child 0.3 
     Adult to Adult 0.4 
Community1  
     Pre-schooler 0.000005 
     School child 0.000005 
     Adult (ages 19�52) 0.000075 
     Adult (ages 53+)  0.000055 
Daycares/Playgroups1

     Daycares 0.028 
     Playgroups 0.018 
Schools1  

     Elementary schools 0.012 
     Middle schools 0.011 
     High schools 0.010 
Workgroups 0.010 

1Probability that a susceptible person in the group is infected through contact with an infectious person in the 
group.  

4.2 Antiviral Treatment and Household Prophylaxis  

In our simulation, we modeled two types of antiviral use: one for purposes of treatment, and one for 
household prophylaxis (prevention of additional household infections).  Antivirals are assumed to be 
stockpiled before the outbreak.  We also assumed that antiviral courses are available for 10% of the popu-
lation and that they are distributed to infected individuals and their household members until the supply is 
exhausted.  Further, antivirals are given in five-day courses (which is common practice), and 1% of those 
people taking antivirals do not complete their entire courses due to side effects, inconvenience, etc.  In 
addition, we used an antiviral efficacy against susceptibility (AVES) of 0.3 and an efficacy against infec-
tiousness (AVEI) of 0.7.   
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4.3 School Closure and Social Distancing  

Our model combines school closure (closing schools for several days) and social distancing (people au-
tomatically reduce contacts in the workplace, neighborhood, and community after becoming aware of the 
outbreak) in the belief that school closure will immediately trigger social distancing, so that the two inter-
ventions will happen simultaneously.  We assume a school closure duration of five days to be consistent 
with our goal of modeling limited and practical social distancing; and since the average length of the in-
fectious period in our model is 4.1 days, a shorter closure period would probably not make sense.  School 
closure is triggered by five children appearing with symptoms on any given day; the choice of a trigger 
point of five was arbitrary, but deemed reasonable.  When school closure occurs, we also model a reduc-
tion in workplace and general community contacts of 20%. 

5 OUTPUT ANALYSIS 

The outputs from our epidemic simulation are used to analyze the effectiveness of various interventions. 
We provide both epidemiological and economic output analysis.  The epidemiological analysis includes 
illness attack rates.  The economic analysis includes all of the costs incurred during the outbreak, includ-
ing both direct and indirect expenses. 
 We first discuss the epidemiological analysis.  Our calibrated simulation shows that with no interven-
tions, the average overall illness attack rate is 34.1%, which is close to the observed data (thus helping to 
validate the simulation).  The strategy of pre-vaccination (V) of 35% of the population with a low-
efficacy vaccine reduces the average overall illness attack rate to 26.1%.  Pre-vaccination of 35% of the 
population combined with antiviral treatment and household antiviral prophylaxis (V+A) reduces the av-
erage overall illness attack rate to 19.3%.  If school closure and social distancing is also added to the mix 
of interventions (V+A+S), then the average overall illness attack rate can be reduced to 1.0%.  Pre-
vaccination of 70% with a low-efficacy vaccine reduces the overall illness attack rate to 0.2% if combined 
with household antiviral prophylaxis and school closure and social distancing.  Figure 3 depicts the aver-
age overall attack rates from our simulations under the various intervention strategies outlined above.  
The simulations also take into account various supply chain delays in delivering vaccination (pre-
vaccination, reactive delay of 0 days, 30-day delay, and 60-day delay); we see that attack rates increase as 
delays increase, sometimes substantially.  The results in Figure 3(a) incorporate vaccine dosages for 35% 
population coverage, and (b) for 70% population coverage.  Obviously, the attack rates significantly im-
prove as vaccine coverage goes from 35% to 70%.  The analogous results for high-efficacy vaccine (not 
described here) are similar; we note that the high-efficacy vaccine can reduce most of the attack rates and 
economic costs. 
 

 
    (a) 35% vaccine coverage                                         (b) 70% vaccine coverage 

 
Figure 3. Average overall illness attack rates under different intervention strategies 
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 Now we discuss the economic analysis, where we use methods described by Meltzer, Cox, and Fuku-
da (1999) to quantify most medical and work loss costs (see also Medlock and Galvani 2009).  The eco-
nomic analysis is based on three tables, all of which are described in full detail in Andradóttir et al. 
(2010): (i) the proportions of cases at high risk for complications (by age group); (ii) the rates of outpa-
tient visits, hospitalizations, and death for people having complications; and (iii) frequency and costs as-
sociated with outpatient visits, hospitalizations, and deaths, e.g., the average number of visits per case, 
average copayment per outpatient visit, average copayment per prescription, average value of total days 
of work lost, etc.  In the latter table, all the costs have been adjusted for inflation using 2008 consumer 
price and medical price indexes.  #�
���
�����	�	!
��
���	�
���
�����
����
�	��
���	
���	�����
��
$���"��, 
Cox, and Fukuda (1999), which we believe to be most consistent with the relatively low R0 (1.4) for our 
model.   
 Our simulation shows that with no intervention, the total cost during the outbreak will be $81.1 mil-
lion.  Pre-vaccination (V) of 35% of the population with a low-efficacy vaccine reduces the cost to $71.1 
million.  Pre-vaccination of 35% of the population combined with antiviral treatment and household anti-
viral prophylaxis (A) reduces the cost to $56.4 million.  If school closure and social distancing (S) are al-
so added, the cost can be reduced to $15.9 million.  Pre-vaccination of 70% with a low-efficacy vaccine, 
which will increase the vaccine cost, can reduce economic cost to $21.3 million if combined with house-
hold antiviral prophylaxis and school closure and social distancing.  See Figure 4, where the y-axis is in 
units of US million dollars. 

 

 
               (a) 35% vaccine coverage                                        (b) 70% vaccine coverage 
 

Figure 4.  Economic analysis under different policies 
 

Finally, we examine the epidemiological and economic analyses together.  Figure 3 shows that adding 
intervention options, as in the sequence V, V+A, V+S, V+A+S, decreases the attack rates.  However, 
from Figure 4(a), we see that for the case of 35% vaccine coverage, the economic costs for certain inter-
vention strategies may end up being higher than the baseline (no intervention) strategy.  For example, for 
the V+S intervention strategy, the savings associated with the decreased attack rates are not enough to 
balance the costs of vaccine and work loss.  Similar examples can be observed for the 70% vaccine cov-
erage case. 

6 CONCLUSIONS 

In this paper, we use a stochastic simulation model of pandemic influenza to investigate realistic interven-
tion strategies that can be used in reaction to developing outbreaks.  Our simulation model can represent a 
typical mid-sized North American city and predicts average illness attack rates and economic costs under 
various intervention scenarios; specifically, low-coverage reactive vaccination and limited antiviral use 
are combined with minimally disruptive social distancing strategies, including short-term closure of indi-
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vidual schools. We find that all the interventions can decrease attack rates. Of course, from an economic 
perspective, the strategies may result in higher or lower costs than doing nothing (baseline). 
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