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ABSTRACT 

We address the integration of computational laboratories, spatial agent-based simulation, and real time 
situation updates to provide pandemic risk assessments and optimal intervention and prevention strate-
gies.  Our goal is to support decisions that save lives by helping to integrate real-time feedback and coor-
dinate effective responses.   Computational laboratories using super computing resources allow us to ex-
plore and optimize deployments of scarce resources and disruptive interventions for controlling pandemic 
influenza.  We have developed an agent based model for simulating the diffusion of pandemic influenza 
via carefully calibrated inter-city airline travel.  This and related simulation models at community scales 
can be used to learn vital lessons based on CPU-intensive virtual experience from millions of simulated 
pandemics.  Real-time situation updates can greatly enhance the strategic usefulness of simulation models 
by providing accurate interim conditions for adapting effective deployments of interventions as a pan-
demic unfolds. 

1 INTRODUCTION 
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The power and complexity of our technical infrastructure is exploding, and our control systems 
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tires, suspension and steering as well.  Interpreting this data instead of ignoring it is our main 
chance of beefing up the brakes and the steering.  Without adequate control systems, we face real 
�
���������������*++2, page 112) 

 
Tightly coupled global systems of twentieth-century transportation and communication technologies en-
sure that cascading effects of economic, public health, and environmental disasters propagate rapidly with 
potentially dire consequences for citizens of many countries.  Winter Simulation Conference and related 
venues provide opportunities to explore and evaluate state-of-the-art computational systems for sensing, 
simulating, and guiding such system-of-systems cascading dynamics toward beneficial or at least less 
harmful directions. 

2 SIMULATION MODELING FOR RISK ANALYSIS AND PREPARATION 

While it does not yet spread easily among humans, mutation among flu strains is likely to generate a hu-
man-adapted variant capable of causing a worldwide influenza pandemic, worse than the pandemic of 
1918-1919. Recent projects have developed fine-grain computational models with each individual mod-
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eled separately, interacting with peers according to local contact processes (NIH 2007).  Germann et al.
(2006) and Ferguson et al. (2006), both presented models of the entire United States calibrated to com-
munity level demographics and behavior, providing a previously impossible level of detail.  However, 
their computational requirements are immense and their complexity makes it difficult to study the sensi-
tivity of the model to its assumptions and input parameters. 

The Institute of Medicine of The National Academies of Science evaluated the usefulness of de-
tailed community-level simulation models for effective community containment of pandemic influenza
(Institute of Medicine 2006).  The report emphasized the importance of complementary simulations with 
simpler models rich enough to incorporate surveillance information, yet fast enough to provide policy-
relevant updates and risk evaluations during a pandemic (Institute of Medicine 2006, page 13). Integration 
of computational laboratories, spatial agent-based simulation, and real time situation is needed to provide 
pandemic risk assessments and optimal intervention and prevention strategies (Figure 1). 

 
 

 

Figure 1:  Integration of Spatial Agent-Based Simulation Models, Computational Laboratory Spatial Evo-
lutionary Optimization, and Real-Time Situation Updates for effective allocation of disaster interventions. 

  Here we present a model that complements the high-resolution models used to evaluate community 
level containment measures.  We use calibrated airline networks and travel patterns to simulate the spread 
of pandemic influenza among major cities in the continental US, focusing on the rapid, hierarchical diffu-
sion of pathogens. The simplicity of our model supports many thousands of replications for full sensitivi-
ty analyses, clearly distinguishing relative pandemic risks among US cities.  These patterns are remarka-
bly stable with respect to the geographic location of initial pandemic cases, and understanding these 
patterns will help direct the allocation of scarce resources, thus facilitating appropriate community prepa-
ration. 
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2.1 Inter-City Model of Pandemic Influenza 
We developed a compact, efficient agent-based model of the geographic spread of influenza within the 
United States and placed it in a computational laboratory to evaluate the impact of the uncertainty result-
ing from epidemiological characteristics, stochastic travel and transmission behavior.    

There exists a rich history of work on the spread of disease, including considerable recent work 
with agent-based simulation models. The widely used SEIR model provides differential equations which 
approximate disease spread (Anderson and May 1991). The SEIR model predicts the mean quantity of 
four categories of individuals--Susceptible, Exposed, Immune, and Recovered--who interact over time 
within a single perfectly mixed population. Keeling and Grenfell (2000) examined the role of discretiza-
tion in SEIR models, finding that discretization more accurately approximates disease spread. Lloyd and 
May (1996) examined the impact of spatial heterogeneity and stochasticity on the spread of the disease, 
similarly verifying the importance of these extensions. 

The epidemiological component consists of a discretized, spatialized, agent-based SEIR simulation 
model in which agents track carefully calibrated travel behavior, each having a set of internal clocks 
which govern the progression of disease phases from susceptible through exposed, infectious, and recov-
ered or removed. These agents are proportionally allocated to the fifty most populous metropolitan areas 
of the United States. Agent travel among these areas is calibrated according to a representative sample of 
US air travel behavior. Within each metropolitan area, the agents interact randomly with one another.  
The model thus builds on previous work on stochastic, discrete, spatial SEIR models, but adds the capaci-
ty for agent heterogeneity and customized travel behavior.   

The fifty metropolitan areas included in the model represent roughly half of the US population, or 
150 million agents. By testing the sensitivi�'��	����"���������������������"(���	�
����%���	�������
��
a population as small as 100,000 agents provided unbiased results. 

For each simulation we introduce 1 flu case per city, then model flu diffusion within and between 
cities via airline travel of infected individuals not yet too sick to travel. Diffusion within cities is agent-
based and calibrated to other MIDAS community level papers and mathematical SEIR models.  

For each of the fifty cities, 5,000 pandemic flu simulations (with 100 random number seeds to si-
mulate quirks of human behavior) is an initial starting point for the pandemic in the continental US.  
Slightly less than half (2,335) of the simulations resulted in epidemics with an incidence greater than 1% 
(> 1,000 cases).  

2.2 Relative Pandemic Risks of US Cities 
We analyzed pandemic risks for simulations, resulting in pandemic influenza affecting more than 1,000 
agents and spreading to at least two other cities. We defined pandemic risk for each city according to the 
average number of infected individuals arriving at that city during each pandemic, averaged across all si-
mulated pandemics, producing 51 rankings of the 50 cities. One ranking is for overall pandemic risk, av-
eraged across all the epidemics, regardless of where the initial case was introduced. This establishes over-
all pandemic risk when the location of initial case(s) is yet unknown. Each of the other 50 rankings shows 
the relative risks for each city depending on the location of the initial case, ranking the relative risks for 
each of the US cities where the first outbreak occurs. 

Significantly, regardless where the pandemic begins, the relative risks across cities remain stable. 
This is clear in Figure 2, where minor changes exist in the rank order, but where the membership of the 
top 15 high-risk cities is consistent, with only one city in the bottom of the origin-specific rankings. The 
Spearman Rank Correlation Coefficient (SRCC) across city rankings was ~98% (see Figures 3 and 4).    

We also performed sensitivity analyses on the density of links in the network (for minimum 10K, 
1K, and 10 passengers per year for each airline route included in the network), the numbers of random 
number (Monte Carlo) repetitions for each scenario, travel probabilities, incubation period, and the stan-
dard reproductive number R0 (i.e. the expected number of secondary cases from the first case in a fully-
mixed susceptible population). 
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Figure 2:  Relative pandemic risks of US Cities, according to the city where the initial case appears.  City 
risks are defined as the number of active pandemic cases arriving via airline travel during the course of 
the pandemic.   City risks are remarkably insensitive to the geographic location of the index case, with 
important and beneficial implications for benefits of a priori mitigation efforts for high-risk cities. 

 
Figure 3:  Spearman Rank Correlation Coefficient (SRCC) for Node Risk Rankings for simulations with 
population ranging from 500 to 50,000,000. Sensitivity analyses determined that with 100,000 agents, the 
simulation produces virtually the same pattern of node risks as with 50 million agents (SRCC = 0.984).   
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Figure 4:  Spearman Rank Correlation Coefficient (SRCC) for Node Risk Rankings for simulations with 
population ranging from 500 to 50,000,000. Sensitivity analyses determined that with 100,000 agents, the 
simulation produces virtually the same pattern of node risks as with 50 million agents (SRCC = 0.984).   

2.3 Discussion 

This work complements the community-level pandemic models of MIDAS and other Nature, Science, 
and PNAS papers referenced in this paper by providing a lighter, faster model through which regional and 
global patterns of pandemic diffusion and risks can be evaluated. 

The spatial structure of inter-city transportation networks is emphasized at the expense of spatial 
structure within cities and complements the highly detailed community level models devised by Longini 
et al. (2005), Ferguson et al. (2006), and Lee et al. (2008).  This is also a proof-of-concept for the useful-
ness of inter-city analyses based on rapid diffusion of pandemic influenza via airline travel.  This ap-
proach does not yet include analysis of diffusion via slower, localized land travel such as interstate high-
ways and rail systems, and presumes travel behavior would continue as normal during a pandemic. 
However, because behavior during an actual pandemic would likely be limited voluntarily (even if not 
mandated by the CDC or other restrictions), thereby reducing the risk to most cities, it would be important 
to explore the possibility of increased local diffusion due to panic travel or other local/ground travel to 
nearby cities.  

3 EFFECTIVE ALLOCATION OF INTERVENTIONS 

We gauge the effectiveness of the treatments relative to the no-intervention control case in terms of the 
���������������������	��������$ntion, i.e., the decrease in morbidity among members of the population 
who were not directly targeted by the intervention.   The subsequent sections provide more detail on GA 
optimization, the intervention strategies, and the post-optimization evaluation of interventions 

3.1 Effective Allocation of Limited Resources or of Highly Disruptive Interventions 
Genetic Algorithms use evolutionary methods to solve otherwise intractable optimization problems. An 
optimization problem is represented as a population of strings of parameters; initializing the first genera-
tion of strings with valid but otherwise random values; evaluating the fitness of each string according to 
an objective function; creating child strings by selecting parent strings according to their relative fitness, 
applying crossover and (rare) mutations to parent strings to create child string(s); and repeating the 
process for subsequent generations (see Figure 5).  Fitness is determined by running sufficient numbers of 
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simulations to distinguish statistically significant differences.  Here, we evolve and analyze the most ef-
fective geographic deployment of intervention resources to critical cities, to compare against inaction (no 
intervention) or pro rata allocation.  Specifically, strings specify interventions and geographic deploy-
ments for pandemic control. The fitness function maximizes indirect protection; intuitively, the number of 
people protected indirectly by each direct vaccination.   

Figure 5: A supervisory Genetic Algorithm evolves populations of strings of simulation parameters by 
evaluating combinations of simulation parameters according to the results of one or more simulation runs 
based on those parameters. 

 The GA employed in this study includes a number of features specific to this task.   The GA first 
pro����� ��� ��"��
����� "������ �������
�
"���%� 
��� @����� ��� ��-intervention control case using 
those specific parameters for each of thirty stochastic seeds   Roughly 25% of the seeds used in the con-
trol case stochastically fail to spark a pandemic, and are discarded (see Dibble, Wendel, and Carle 
(2007)).   The GA then generates a random population of fifty candidate interventions.   For each candi-
date intervention string, the GA executes fifteen sets of simulations with the disease originating in each of 
the (fifteen) highest risk cities from Dibble, Wendel, and Carle (2007).  For each intervention candidate 
and origin city, the GA executes the simulation across the remaining stochastic seeds (~23).  Since the in-
tervention process changes the stream of random numbers used in the simulation, roughly 25% of the 
seeds used for intervention simulations fail to spark a pandemic because of stochastic variation and are 
discarded.   The fitness value of the string is the average indirect protection across the twice-filtered seeds 
and origin cities.  The GA then generates each new generation of interventions using a tournament selec-
tion process; the GA completes when the fitness of the best intervention has been constant for fifty gener-
ations.  

3.2 Intervention Strategies 

Our first set of interventions deploys vaccines to a targeted subset of metropolitan areas selected by the 
Genetic Algorithm.  We test subsets of 6 cities.  For each level of deployment, we consider two forms of 
distribution:  uniform distribution across the selected metropolitan areas and distribution proportional to 
the population of the selected metropolitan areas.   
 Interventions occur at the start of the simulation, and provide permanent immunity to the disease as 
though through allocation of effective vaccinations.  As in the risk model presented in Section 1, the 
agents are perfectly mixed within each metropolitan area; vaccines are allocated randomly among agents 
in a given metropolitan area.    If the number of vaccines in a given metropolitan area exceeds the popula-
tion there, the vaccines are considered wasted and do not contribute to halting the pandemic.
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3.3 Evolving Effective Allocations of Pandemic Interventions 
The GA evaluates optimal strategies in terms of the indirect protection generated by the intervention, i.e., 
in terms of its fitness function.  This process raises three issues that are important in the ex-post evalua-
tion of optimal strategies.   First, since the GA is optimizing over a static set of stochastic seeds, it is feas-
ible that it optimizes interventions that are effective for those particular seeds and not others.   With a suf-
ficiently large set of stochastic seeds, and an underlying process which converges at the limit, this 
possibility is vanishingly small.  We investigated various numbers of stochastic seeds, and determined 
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��(
�������������������-optimized) seeds. 

  

 
Figure 6: Collective effects of interventions on all US Cities, including 6 cities receiving pandemic in-
terventions and 44 cities that did not receive any interventions. 
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Figure 7: Protective effects of interventions on the 44 US Cities that did not receive any interventions. 
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