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ABSTRACT 

In this research, we have conducted a cost-effectiveness analysis to examine the relative importance of 
vaccination and self-isolation, with respect to the current H1N1 outbreak. We have developed a conti-
nuous-time simulation model for the spread of H1N1 which allows for three types of interventions: anti-
viral prophylaxis and treatment, vaccination, and self-isolation and mandatory quarantine. The optimiza-
tion model consists of two decision variables: vaccination fraction and self-isolation fraction among 
infectives. By considering the relative marginal costs associated with each of these decision variables, we 
have a linear objective function representing the total relative cost for each control policy. We have also 
considered upper bound constraints for maximum number of individuals under treatment (which is related 
to surge capacity) and percentage of infected individuals (which determines the attack rate). We have 
used grid search to obtain insight into the model, find the feasible region, and conduct the cost-
effectiveness analysis. 

1 INTRODUCTION 

1.1 Research Question and Methodology 

Epidemiologists warn that the next pandemic influenza could infect 33% of the population and kill mil-
lions (Gibbs and Soares 2005). According to the Centers for Disease Control and Prevention (CDC), there 
will be up to $71.3-165.5 billion economic impact on the United States Economy and the World Health 
Organization (WHO) estimates that 2-7.4 million people might die (Ekici, Keskinocak, and Swann 2008). 
Hence, preparing for a potential influenza pandemic should receive high priority from governments at all 
levels (local, state, federal), non-governmental organizations (NGOs), and companies. Also it is essential 
that considerable research be devoted to study different aspects of influenza pandemics scientifically. 
 According to the Department of Health and Human Services (HHS), development of efficient and ef-
fective pandemic mitigation strategies is a complicated systems issue that requires immediate attention 
(HHS pandemic influenza plan. 2007). As a matter of fact, there are always limitations on the implemen-
tation of the counter measures. For example, even after a new virus subtype is identified, it may take up to 
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six months to produce a potent vaccine in sufficient quantity (Fedson and Hant 2003). If the emerging vi-
rus belongs to a known subtype, available vaccine doses may not be adequate for the entire population; 
nor may be antiviral drugs. In addition, the government budget is always an inevitable limitation. Thus, 
the government dollars should be spent on the most effective interventions. These issues bring another 
important decision factor into the picture: “cost” of different interventions. Regarding the modeling ap-
proach to examine different interventions in case of influenza, the Institute Of Medicine (IOM) recom-
mends that “future modeling efforts incorporate broader outcome measures, beyond influenza-related out-
comes, to include the costs and benefits of intervention strategies” (Committee on Modeling Community 
Containment for Pandemic Influenza 2006). Considering both “effectiveness” and “cost” of an interven-
tion leads us to “cost-effectiveness” analysis; which is currently widely used to compare different mitiga-
tion policies and find the “best” one. 
 Two of the most common ways to control an outbreak are vaccination and isolation. There is a cost 
associated with each of these interventions. The question is “which one is more effective and less costly?” 
Therefore the research question is: “which one is more cost-effective?” We have used a modeling ap-
proach to answer this question. 
 In this research, we have developed a compartmental continuous-time simulation model for the 
spread of H1N1 to conduct a cost-effectiveness analysis to examine the relative importance of vaccination 
and self-isolation, two common measures for controlling the spread of infectious diseases. The simulation 
model allows for three types of interventions: antiviral prophylaxis and treatment, vaccination, and self-
isolation and mandatory quarantine. 
 To have a realistic estimation of the model parameters and validate the model, we need a target popu-
lation, since the model parameters (such as contact rate) vary from a region and a population to another. 
We have considered the North Carolina State University (NCSU) undergraduate students as our target 
population. In this research, we have taken advantage of the cooperation of the NCSU Student Health 
Services Medical Director, who verified the merit of the model and suggested very helpful modifications 
to the structure of our model. Thus our model is now validated from this expert’s view. 
 The cost associated with each control policy is reflected in the objective function. By considering the 
relative marginal costs associated with each of the decision variables (i.e. vaccination fraction and self-
isolation fraction) we have a linear objective function representing the total relative cost for each control 
policy. 
 It is not acceptable if a large portion of the population become infective, since the surge capacity is 
limited. In addition, if an outbreak is so widespread and the attack rate is so high, the people would panic 
which may result in a real public catastrophe. Also, a large outbreak would have severe negative impacts 
on the economy. Therefore, the outbreak should be in some way “controlled”. We may define the control 
of an epidemic as keeping the total number of infectives below a fixed value and keeping the number of 
infectives at any one time below another fixed value (Hethcote and Waltman 1973).  As a result, we have 
considered two upper bound constraints for the maximum number of individuals under treatment (which 
is related to surge capacity), and percentage of total infective individuals (which determines the attack 
rate). 
 Our model, which is actually a system of differential equations, was too complicated to be solved 
analytically; therefore, we decided to use computer simulation to find the solution. We have used Arena 
as the simulation software. We have used a grid search to obtain some insight into the model and also to 
find a “good” feasible solution. Furthermore, we have used the grid search results to conduct a cost-
effectiveness analysis on different control policies and to find the most cost-effective one. 
 We hope that the results of this research help the health care officials in their decision making process 
about implementing several interventions and taking appropriate and on-time counter measures. 

1.2 Literature Review 

Some of the efforts in modeling the pandemic outbreak have focused on developing statistical models to 
examine the statistical aspects of the outbreak (Cauchemez et al. 2004; Longini and Koopman 1982). On 
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the other hand, some other researchers have focused on the virus spread dynamics and transitions between 
disease phases. These efforts resulted in several mathematical models which are usually represented in a 
system of differential equations (Arino et al. 2006; Cahill et al. 2005). 
 In addition to statistical and mathematical models, simulation-based models (both agent-based models 
(which track each individual) and event-based models (which are driven by infection events)) have been 
developed to model the disease spread and also examine the impacts of different interventions, including 
antiviral prophylaxis and treatment, vaccination and isolation (Das and Savachkin 2008; Ferguson et al. 
2006; Glass, Beyeler, and Min 2006). Some of these models integrate different types of interventions 
seeking synergetic strategies. A good example of such models is the network model of MIDAS (Models 
of Infectious Diseases Agent Study) which used three independent simulation models to examine differ-
ent interventions in 2006-07 (Halloran et al. 2008). These models were used to simulate large-scale pan-
demic influenza spread for rural areas of Asia (Longini et al. 2005), U.S. and U.K. (Germann et al. 2006), 
and the city of Chicago (Eubank et al. 2004). 
 One popular way to model the progression of an infectious disease through a population is via de-
tailed simulation modeling building on transportation planning models and social networks (Christley et 
al. 2005; Ferguson et al. 2005). Longini et al. (Longini et al. 2005) use a simulation model with social 
networks to address the possible spread of influenza in Southeast Asia. Wu et al. (Wu et al. 2006), build-
ing from the Hong Kong SARS experience, use simulation modeling to demonstrate the effectiveness of 
even partial voluntary “household-based” social controls such as self-isolation and quarantine. Ekici et al. 
(Ekici, Keskinocak, and Swann 2008) use a simulation based spread model with heterogeneous mixing to 
study the logistics side of the problem, specifically, food distribution logistics during the pandemic in-
fluenza. Finally, Yarmand et al. (Yarmand, Ivy, and Roberts 2010) have used a compartmental simulation 
model to analyze different interventions in case of an H1N1 outbreak. 
 Since the beginning of the recent H1N1 outbreak, several researchers and health institutions have 
turned their attention to this novel influenza. In some research, the disease transmission dynamics have 
been analyzed (Fraser et al. 2009; Madhav 2009). Also there have been some efforts to estimate the dis-
ease parameters and characteristics, especially the basic reproduction number and the horizontal incidence 
(Nishiura, Wilson, and Baker 2009). 
 Some of the guidelines and research have focused on specific interventions. Those models seeking 
synergetic strategies by integrating different interventions deal with a type of resource allocation problem 
and do not directly compare the effectiveness of two specific interventions. Furthermore, “cost” is a fairly 
recently considered factor in assessing different interventions. Also, social distancing, which may be very 
effective in mitigating the diseases spread, has sometimes been ignored in the disease spread models. We 
have incorporated both cost and social distancing measures in our model, in addition to vaccination and 
antiviral prophylaxis and treatment, which altogether create a comprehensive framework for the disease 
spread. 
 To the best of our knowledge, our work is the first one which focuses on comparing two specific in-
terventions and examines not only the relative effectiveness of vaccination and self isolation (by grid 
search) but also the relative cost-effectiveness of these two interventions by incorporating relative mar-
ginal costs in a fairly uncomplicated way and by using the grid search results to calculate the Average 
Cost-Effectiveness Ratio (ACEV). Furthermore, the methodology introduced in our research can be used 
for comparing any two particular interventions (for example, vaccination and antiviral prophylaxis). 

2 MODELING 

2.1 Simulation Model 

In a compartmental model, the disease is assumed to have several progress stages. Individuals move be-
tween these stages with specific rates (i.e. each individual can only be in one compartment at a time). It is 
assumed that all individuals in each of the compartments have similar characteristics in that all are in the 
same stage of the disease progress, and as soon as an individual enters a compartment, there is no differ-
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ence between him/her and other individuals in that compartment; this assumption is referred to as the 
“homogeneity assumption”. 
 Most of the rates in a compartmental model have a similar form. They are a function of the current 
compartment population and the mean waiting time of an individual in that compartment before moving 
to the next compartment, which we denote by  and  for the original compartment  and the destina-

tion compartment , respectively. Also denote by  the transfer from compartment  to  (i.e. number 

of individuals transferred from compartment  to ). Then the general form of the transfer rate from com-

partment  to  (denoted by ) would be 

 
 The disease characteristics in the context of infectiousness are reflected in the “horizontal incidence”, 
which is one of the rates. This rate determines the number of individuals who get infected per unit of 
time. Denote by  and  the infectious and susceptible fractions at time , respectively. Also de-

note by  the total population size at time . If  is the average number of adequate contacts (i.e., con-

tacts sufficient for transmission) of a person per unit time, then  is the average number of contacts with 

infectives per unit time of one susceptible, and  is the number of new cases per unit time due to the 

 susceptibles. As a result, if we denote the horizontal incidence at time  by , then we have 

 
This form of the horizontal incidence is called the standard incidence, because it is formulated from the 
basic principles above (Hethcote 2000).  

The model we have developed in this research is an extension of the SEIR model for H1N1 with three 
types of interventions (vaccination, antiviral prophylaxis and antiviral treatment, and self-isolation and 
mandatory quarantine). The transfer diagram for this model is presented in Figure 1. Our time horizon is 5 
months. Note that due to the relatively short time horizon, zero birth and death rates have been considered 
in our model. 
  

 
 

Figure 1: Transfer diagram for the spread model of H1N1. 
 
 Each red arrow refers to exposure or infection while each green arrow refers to returning to the 
healthy condition through recovery. Also each blue arrow refers to one of the interventions.  We can di-
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vide the transfer diagram into four levels as indicated in Figure 1. The first level, which appears at the 
bottom, includes the disease progress stages (compartments S for Susceptible, E for Exposed, I for Infec-
tive and R for Recovered). The susceptible compartment contains those individuals who do not have any 
type of immunity to H1N1 and can become infected. When there is an adequate contact of a susceptible 
with an infective so that transmission occurs, then the susceptible enters the exposed compartment of 
those in the latent period, who are infected but not yet infectious. After the latent period ends, the individ-
ual enters the infective compartment of infectives, who are infectious in the sense that they are capable of 
transmitting the infection. When the infectious period ends, the individual enters the recovered compart-
ment consisting of those with permanent infection-acquired immunity. 

The second level includes vaccination related compartments. If a susceptible receives vaccine, then 
he/she is transferred from the susceptible compartment to the vaccine compartment (V). After receiving 
the vaccine, it takes a while until the vaccine becomes effective. This period is called “vaccine effective-
ness period”. It is possible that an exposed individual gets the vaccine, since the exposed individual has 
not developed any symptoms yet and therefore cannot be distinguished from a susceptible. 
 The third level includes antiviral related compartments (antiviral prophylaxis and treatment, and also 
mandatory quarantine). Although quite rare, both susceptible and exposed individuals may take antiviral 
prophylaxis for a certain period called “prophylaxis period” to prevent becoming infective and developing 
symptoms. For example, a susceptible individual may take antiviral prophylaxis to prevent transmission 
from an infective roommate.  Antiviral prophylaxis is effective in preventing exposure (becoming in-
fected) with a certain probability called Antiviral Effectiveness for Susceptibles (AVEs). Therefore some 
susceptible individuals who take the antiviral prophylaxis might still become infected.  Antiviral drugs 
may also be used for treatment and recovery of those infective individuals with H1N1-related complica-
tions. 
 The fourth level, which is on the top of the transfer diagram, consists of self-isolation compartments. 
Individuals may decide to go to the self-isolation after receiving the vaccine. These individuals would be 
transferred to the recovered compartment after the end of the self-isolation period. 

The model is basically a first-order system of 16 differential equations which altogether describe the 
dynamics of the disease spread and is numerically integrated by Arena. 

2.2 Model Parameters 

Disease-related data may vary from region to region and also from age to age. As a result, it is required 
that we define a target population and then gather data for that particular target population in a specific 
area. As indicated previously, our target population in this research is the NCSU undergraduate students. 
Therefore, the data we gather should sufficiently match the specifications of this target population.  
 Due to lack of accurate data, we decided to use expert opinion as a validation for our model. There-
fore we asked the NCSU Student Health Services Medical Director to examine our model structure and 
make suggestions. Those suggestions were incorporated into the final structure. 
 The model is deterministic and we used the values in the literature for the parameters. We have a 
number of parameters in this model. The parameters fall in four different groups: 

• Parameters associated with the disease. 

• Parameters associated with the interventions (including the two decision variables). 

• Parameters associated with the target population demography. 

• Parameters associated with the simulation runs. 

2.3 Optimization Model 

We have considered two control measures: vaccination and self-isolation for infective individuals. Any 
control policy will result in a different set of outcomes. Of importance to us are three particular outcomes: 
cost, maximum number of individuals under treatment, and percentage of total infective individuals. The 
optimization model has two decision variables: vaccination fraction and self-isolation fraction among in-
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fectives denoted by  and , respectively. The objective function is the linear summation of the relative 
costs of vaccination and self-isolation by considering the relative marginal costs, associated with each of 
the decision variables (the costs of a 1% increase in the vaccination and self-isolation fraction) denoted by 

 and , respectively. Clearly as long as  is constant, the optimal solution does not 

change. Since we will compare the minimum relative total cost for different cost ratios, we have norma-
lized the relative marginal costs by considering the additional condition . 
 The constraints consist of two upper bound constraints for maximum number of individuals under 
treatment (which is related to surge capacity), and percentage of total infective individuals (attack rate) 
with upper bounds  and , respectively. Therefore, the optimization model would be 

 

 

 

 

 

 

where  are determined by the modeler so that: 
 

 

 

 

3 RESULTS AND ANALYSIS 

We have used grid search to obtain insight into the model and find “near optimal” feasible solutions. Also 
we have used the grid search results to conduct the cost-effectiveness analysis. 
 The optimization model has several parameters which should be determined by the modeler. The val-
ues for the optimization model parameters we have considered in this research are presented in Table 1. 

 
Table 1: Optimization model parameters and their values. 

 

Parameter 
Value for Grid Search and 

Cost-Effectiveness Analysis 
Parameter 

Value for Grid Search and Cost-
Effectiveness Analysis 

 

 
1  200 

 0.5  0.05 

 0.5 Total Population 23087 

3.1 Grid Search 

Our results show that in the region in which , the performance measures are very sensitive to 

changes in the value of  and . It makes sense, since the effectiveness of interventions is reasonably 

higher in lower levels. Therefore, we have conducted the grid search in the region  with time 

steps equal to 0.05. The associated numerical results have been presented in Tables 2-4. 
 

2204



Yarmand, Ivy, Roberts, Bengtson and Bengtson 

 
Table 2: Relative cost for different control policies (p1, p2) ∈ [0, 0.5]. 

 

Relative Cost 
Vaccination Fraction (p1) 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

S
e

lf
-i

so
la

ti
o

n
 F

ra
ct

io
n

 (
p

2
) 0.00 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 

0.05 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 

0.10 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 

0.15 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 

0.20 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350 

0.25 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375 

0.30 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400 

0.35 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 

0.40 0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 

0.45 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 

0.50 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500 

 
Table 3: Percent of total infective individuals for different control policies (p1, p2) ∈ [0, 0.5]. 

 
Percent of 

Infectives 

Vaccination Fraction (p1) 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

S
e

lf
-i

so
la

ti
o

n
 F

ra
ct

io
n

 (
p

2
) 0.00 88.84 58.26 42.66 34.04 28.86 25.51 23.21 21.55 20.30 19.33 18.56 

0.05 85.70 51.61 35.80 27.75 23.17 20.30 18.37 17.00 15.97 15.19 14.56 

0.10 82.18 44.25 28.93 21.88 18.09 15.78 14.26 13.18 12.38 11.77 11.29 

0.15 78.22 36.51 22.57 16.83 13.88 12.12 10.97 10.16 9.56 9.11 8.75 

0.20 73.78 28.88 17.15 12.77 10.58 9.30 8.45 7.86 7.42 7.09 6.82 

0.25 68.86 21.97 12.85 9.67 8.10 7.18 6.57 6.14 5.83 5.58 5.39 

0.30 63.43 16.23 9.61 7.38 6.27 5.61 5.18 4.87 4.64 4.46 4.31 

0.35 57.51 11.83 7.25 5.70 4.93 4.46 4.14 3.92 3.75 3.61 3.51 

0.40 51.09 8.63 5.55 4.48 3.93 3.59 3.37 3.20 3.07 2.98 2.90 

0.45 44.15 6.39 4.32 3.58 3.19 2.95 2.78 2.65 2.56 2.49 2.43 

0.50 36.63 4.82 3.44 2.91 2.63 2.45 2.33 2.23 2.16 2.11 2.06 

 
Table 4: Maximum number of individuals under treatment for different control policies (p1, p2) ∈ [0, 0.5]. 

 

Maximum Treatment 
Vaccination Fraction (p1) - Total population: 23087 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

S
e

lf
-i

so
la

ti
o

n
 F

ra
ct

io
n

 (
p

2
) 0.00 2047 1473 1141 941 814 727 666 621 586 559 537 

0.05 1615 1071 793 641 548 488 446 415 391 373 359 

0.10 1273 762 541 431 368 327 300 279 264 252 243 

0.15 998 529 364 289 248 222 204 191 181 174 168 

0.20 776 358 243 195 169 153 142 133 127 122 118 

0.25 595 237 163 133 118 107 101 95 91 88 86 

0.30 449 156 111 93 84 78 73 70 67 65 64 

0.35 330 103 77 67 61 57 55 53 51 50 49 

0.40 236 69 55 49 46 43 42 40 39 39 38 

0.45 161 48 40 37 35 34 33 32 31 31 30 

0.50 105 34 30 29 27 27 26 26 25 25 24 

  
 The results show that the best solution is  with the associated relative cost of 
0.275. Note that in Table 2, there are four feasible solutions with the same minimum cost of 0.275. We 
have picked  by comparing the associated percent of infectives, which seems to be 
more important than the maximum number of individuals under treatment, since the former is the binding 
constraint. If we compare the columns and rows of Tables 3 and 4, it is observed that in low levels of vac-
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cination and self-isolation, vaccination is more effective in improving both performance measures. For in-
stance, when the self-isolation fraction is equal to zero (i.e. ), the maximum number of individuals 

under treatment and percent of infectives are decreased from 2047 to 1473 and from 88.84 to 58.26, re-
spectively as the vaccination fraction is increased from zero to 0.05 (i.e. ). Compared with the 

case that vaccination fraction is equal to zero (i.e. ) and self-isolation fraction is increased from ze-

ro to 0.05 (i.e. ), these results show that in low levels of interventions, vaccination is more ef-

fective than self-isolation in improving both performance measures. By a similar comparison in high le-
vels of interventions, and in particular in the feasible region, we observe that in high levels of 
interventions, self-isolation is more effective than vaccination in improving both performance measures. 
This conclusion becomes more evident by noting the contours of the percent of infective individuals in 
Figure 2. 

 

 
 

Figure 2: Percent of infective individuals for different control policies (p1, p2) ∈ [0, 0.5]. 
 
 Figure 2 clearly demonstrates that in low (high) levels of interventions, the percent of infectives is 
more sensitive to changes in the vaccination (self-isolation) fraction than self-isolation (vaccination) frac-
tion. 

3.2 Cost-Effectiveness Analysis 

We conducted a cost-effectiveness analysis using the grid search results. We have used the Average Cost 
Effectiveness Ratio (ACER), which is widely used in the field of health services, to compare different 
control policies. We have already defined the cost as the linear summation of the relative marginal costs 
of vaccination and self-isolation. In other words, we have 

 
 For the effect of the policy , we consider the “percent of protected population”, which we de-

fine as the percent of population who has never become infective (has never become sick and developed 
symptoms). The percent of protected population is related to the percent of total infectives as follows 

 
It is reasonable to base the effect on the percent of total infectives, since this is the binding constraint 

(note that the feasible region in Table 3 is a subset of the feasible region in Table 4) and also logically 
seems to be more important than the other performance measure, maximum number of individuals under 
treatment. 
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The cost-effectiveness ratio for different control policies  is calculated and pre-

sented in Table 5. 
 

Table 5: Cost-effectiveness ratio for different control policies (p1, p2) ∈ [0, 0.5]. 
 

Cost-Eff. 

Ratio 

( ) 

Vaccination Fraction (p1) 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

S
e

lf
-i

so
la

ti
o

n
 F

ra
ct

io
n

 (
p

2
) 

0.00 0.0000 0.0599 0.0872 0.1137 0.1406 0.1678 0.1953 0.2231 0.2509 0.2789 0.3070 

0.05 0.1748 0.1033 0.1168 0.1384 0.1627 0.1882 0.2144 0.2410 0.2678 0.2948 0.3219 

0.10 0.2806 0.1345 0.1407 0.1600 0.1831 0.2078 0.2333 0.2592 0.2853 0.3117 0.3382 

0.15 0.3444 0.1575 0.1614 0.1804 0.2032 0.2276 0.2527 0.2783 0.3041 0.3301 0.3562 

0.20 0.3814 0.1758 0.1811 0.2006 0.2237 0.2481 0.2731 0.2985 0.3240 0.3498 0.3756 

0.25 0.4014 0.1922 0.2008 0.2214 0.2448 0.2693 0.2943 0.3196 0.3451 0.3707 0.3964 

0.30 0.4102 0.2089 0.2213 0.2429 0.2667 0.2913 0.3164 0.3416 0.3670 0.3925 0.4180 

0.35 0.4119 0.2268 0.2426 0.2651 0.2893 0.3140 0.3390 0.3643 0.3896 0.4150 0.4405 

0.40 0.4089 0.2463 0.2647 0.2879 0.3123 0.3371 0.3622 0.3874 0.4127 0.4381 0.4634 

0.45 0.4029 0.2671 0.2874 0.3111 0.3357 0.3606 0.3857 0.4109 0.4362 0.4615 0.4868 

0.50 0.3945 0.2889 0.3107 0.3347 0.3595 0.3844 0.4095 0.4347 0.4599 0.4852 0.5105 

 
Note that the most cost-effective control policy is the same as the best policy we found by grid search, 

which is . 
One interesting result is that by comparing the symmetric policies in the feasible region (i.e. by com-

paring policies  and ), we observe that the policy in which the self-isolation fraction is higher 
than the vaccination fraction is incrementally more cost-effective. For instance, consider the policy 

. Now, if the vaccination fraction is increased by 0.05, then the resulting policy, 

, has the cost-effectiveness ratio equal to 0.3896. But if the self-isolation fraction is 

increased by 0.05, then the resulting policy, , has the cost-effectiveness ratio equal 

to 0.3874. Therefore, if we are to make a decision about increasing one of the vaccination or self-isolation 
fractions, our model suggests that we increase the self-isolation fraction, since it is incrementally more 
cost-effective. An important point is that this conclusion is only valid in the feasible region, since by a 
similar analysis we observe that vaccination is incrementally more cost-effective in the infeasible low le-
vels of interventions. 

4 CONCLUSION AND FUTURE DIRECTIONS 

In this research, we developed a simulation model for the spread of H1N1. Also we developed an optimi-
zation model which seeks the least expensive feasible control policy regarding vaccination and self-
isolation fractions. We conducted grid search to find a "near optimal" policy. The grid search results re-
vealed that while in low levels of interventions, vaccination is more effective than self-isolation in improv-

ing the performance measures, self-isolation is more effective in relatively high levels of interventions. 
Then we used grid search results to conduct a cost-effectiveness analysis to conclude that while the most 
cost-effective policy is a combination of both vaccination and self-isolation, self-isolation is incremental-
ly more cost-effective than vaccination in the feasible region. 

Therefore, the public health officials should concentrate on vaccination at the beginning of an out-
break, and after a while, if the outbreak was not contained and the disease continued to spread, they 
should promote self-isolation as a more effective intervention. 
 Although our model is fairly comprehensive regarding different types of interventions we have incor-
porated into the model (vaccination, antiviral prophylaxis and treatment, and isolation and mandatory qu-
arantine), it still can be improved to reflect the reality more accurately. For instance, although we really 
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dealt with a “nearly” homogeneous population (undergraduate students of the NC State University, all in 
a similar age group and with similar social behavior), the model can be more general by incorporating 
non-homogeneity into the model. Another future direction may be introducing a methodology to estimate 
the key model parameters (e.g. contact rate and infectious period) with or without data. Also the analysis 
would be more comprehensive if we use different values for cost ratio for the grid search and cost-
effectiveness analysis. We can define the "effect" in a different way as well. For instance, instead of the 
percent of the protected population, we can define it as the gap between the attack rate and its maximum 
acceptable level (which is currently 5%). Furthermore, a more rigorous model would be obtained by con-
sidering other costs, such as prophylaxis and treatment costs, which may affect the results of our analysis. 

As a final point, note the model we have developed can be used for comparing any two interventions. 
For instance, with the same methodology, one can compare the effectiveness or cost-effectiveness of vac-
cination versus antiviral prophylaxis. Also one can examine different isolation policies. For example, the 
effectiveness and also cost-effectiveness of self-isolation of infectives through promoting self-isolation 
versus general isolation strategies, such as school closure and limiting social gatherings may be examined 
and compared. 
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