
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

LIBROS-II: RAILWAY MODELING WITH DEVS

Yilin Huang
Mamadou D. Seck

Alexander Verbraeck

Systems Engineering Group
Delft University of Technology

PO Box 5015, NL-2600GA Delft, The Netherlands

ABSTRACT

The increasing complexity of railway systems and the high costs incurred by design and operational
errors make modeling and simulation a popular methodology in the domain of railway transportation.
To successfully support detailed design and operation, a microscopic rail network model is often
deemed not only suitable but also mandatory. However, the simulation of large-scale microscopic
models is computationally intensive, making it unsuitable for real-time applications. In this paper, a
railway simulation library, LIBROS-II, is introduced which offers high performance rail simulation
at the microscopic level. The library is specified with the DEVS formalism. Its major components
and their specifications are presented. Its performance is assessed through a simple example and
contrasted with a typical model using a continuous modeling abstraction of train movement. The
result shows that with comparable model detail and accuracy the LIBROS-II model yields a higher
performance than the model using differential equations.

1 INTRODUCTION

The complex dynamics in railway systems pose many challenges in railway modeling and simulation.
The model must have enough detail and accuracy to represent the sophisticated phenomena, and still be
computationally efficient. Apart from these criteria, considering the reusability of the model, modu-
larity is a concept adopted from software engineering (Baldwin and Clark 2000, Sullivan et al. 2001)
that needs to be addressed during model design. In railway simulation, modeling train movement
is the base element to estimate the train running time (Hansen and Pachl 2008). The train model
calculates the speed-distance profile of a train traveling from one point to another (Li and Gao 2007).
Other model components formulate the boundary conditions to compute the movement. Many factors
influence the movement, e.g. curvatures, control signals, and speed restrictions. In the simulation of
electric city railways such as trams and light-rails, modeling the interactive movement of trains is
necessary as the trains do not always operate in block systems which provide automatic safe spacing
control (Rudolph 2000).

Different system specification paradigms can be applied to train movement modeling. Each of
them has advantages as well as disadvantages in terms of levels of model detail, accuracy, mod-
ularity, and computational efficiency. A continuous abstraction of train behavior is obtained by
assuming a continuous time base and defining the rate of change of the train’s state using dif-
ferential equations. A numerical integrator executes the model. Some examples are discussed in
Hansen and Pachl (2008). A discrete-time abstraction of train movement is obtained through the
definition of a time-invariant recurrence relation between the current state of the train (position,
speed, acceleration) and its future state after a predefined time interval has elapsed. Discrete-time
models of train behavior have been developed with difference equations, logistic maps, and cellular
automata. Some examples are Li, Gao, and Ning (2005), Li and Gao (2007), and Wainer (2007). A
discrete-event abstraction of train movement is obtained through the definition of events, which rep-
resent significant state changes of the train being modeled. The definition of events is based on the

2150978-1-4244-9864-2/10/$26.00 ©2010 IEEE

Huang, Seck and Verbraeck

Figure 1: The library dependency.

model’s purpose and/or the modelers’ interest. Some examples are Middelkoop and Bouwman (2001),
Lu, Dessouky, and Leachman (2004), and Li, Mao, and Gao (2009).

The choice of the time interval in both discrete-time and continuous modeling approaches is
basically a trade-off between computational efficiency and simulation accuracy. The smaller the time
step, the more accurate and the least computationally affordable. Owing to a longer tradition, the
continuous modeling style appears to be the most intuitive approach. Well known equations, e.g.
equations of motion, can be directly applied without further modeling effort. Although the discrete-
event approach is often the most efficient (Zeigler and Lee 1998, Giambiasi, Escude, and Ghosh 2000,
Kofman 2003) among the three, it requires a careful analysis and design of the model.

The open source java Library for Rail Operations Simulation (LIBROS) is discussed in the works
of Kanacilo and Verbraeck (2005), Kanacilo and Verbraeck (2006), Kanacilo and Verbraeck (2007),
and Kanacilo and Oort (2008). In LIBROS, train movement is represented by differential equations.
The other components, e.g. sensors and control signals, are modeled with discrete-event abstraction.
In this paper, we introduce LIBROS-II, in which the railway components are modeled using the
Discrete Event System Specification (DEVS) formalism (Zeigler, Praehofer, and Kim 2000). The
underlying simulator of LIBROS and LIBROS-II is DSOL, the Distributed Simulation Object Library
(Jacobs, Lang, and Verbraeck 2002, Jacobs 2005). DSOL is a java suite for continuous and discrete-
event simulation. It consists of components including an event-scheduler, a DEVS simulator (only the
event-scheduling part), DESS and DEVDESS simulators, probability distributions, etc. As a recent
development, the Event-Scheduling DEVS library (ESDEVS) (Seck and Verbraeck 2009) implements
the parallel DEVS formalism on top of the DSOL library. The ESDEVS is based on the event-
scheduling worldview, wherein executions of the internal transition function are scheduled according
to the specified time advance function and unscheduled at the reception of external events. The
confluent transition function handles the coincidence between internal and external events. Dynamic
structure DEVS is also implemented in the ESDEVS library so that components and coupling relations
can be added and removed dynamically during simulation runtime.

Figure 1 shows the dependency between LIBROS, LIBROS-II, ESDEVS and DSOL. Apart from
statistics and animation services, LIBROS relies on DSOL’s DEVDESS simulator while LIBROS-
II inherits ESDEVS. In both ways, the separation of concerns between models and simulators is
respected. The rest of the paper is organized as following. In the next Section, LIBROS is briefly
reviewed. Section 3 presents the major components and model specifications in LIBROS-II. A simple
example is given in Section 4. Test models are built with both LIBROS and LIBROS-II libraries.
Their performances are compared.

2 THE MODELS IN LIBROS

In LIBROS, each track segment is an ordered pair of nodes. The position of an infrastructure element,
e.g. a sensor, a control signal or a stop, is defined in association with a track; i.e. each element has a
relative position to the track segment where it is located. The train movement is modeled by differential
equations solved by the Runge-Kutta integrator in DSOL. In each integration time-step ∆ t, given the
instantaneous acceleration rate of a train at time tn, it computes the train’s speed and position/distance
at time tn+1 := tn +∆ t. The acceleration rate is determined by whether there are any objects ahead of
the train (within certain distance) that would cause the train’s speed change, e.g. a speed restriction,
a red traffic signal, or another train. If an object changes its state, e.g. a control signal turned from
green to red or a preceding train reduced its speed, the object notifies the approaching train using
the publish-subscribe (also called event notification) interaction scheme (Eugster et al. 2003). The
object-to-object communication in LIBROS (and DSOL) is based on this scheme, which defines a

2151

Huang, Seck and Verbraeck

non static one-to-many dependency between objects so that when one object changes state, all of its
dependents are notified and updated automatically (Gamma et al. 1994). For details, readers may refer
to Kanacilo and Verbraeck (2005), Kanacilo and Verbraeck (2006), Kanacilo and Verbraeck (2007),
Kanacilo and Oort (2008).

3 THE DEVS MODELS IN LIBROS-II

LIBROS-II is a rail simulation library in which the railway components are defined using the DEVS
formalism. In the library, three basic types of the DEVS atomic model are defined. These are train
(RailVehicle), track segment (TrackSegment), and control unit (ControlUnit). By “basic
type”, we mean that the atomic model may have specializations as subtypes. For example, depending
on the function of a control unit, it can be a block section control unit, or an intersection control unit. A
sensor (Sensor) or a control signal (LinesideSignal) is a specialized form of TrackSegment
with length zero. The infrastructure components, e.g. a station, a block section, or an intersection, are
coupled models. The LIBROS-II models have the following characteristics: (1) Each track segment
has one shape (straight or arc) and one speed limit. If the speed limit of a track segment is not defined
(i.e. ∞), it complies with the speed limit of its previous track segment. (2) A sensor, a control signal,
a control unit, or any of their specializations can only be a sub-component in a coupled infrastructure
component. (3) In a coupled infrastructure component, the speed limit of each track segment complies
with the speed limit (if defined) of its direct parent component. (4) At any simulation time, a train
is linked directly with a track segment. The train has a relative position counting from the starting
node of the track segment.

3.1 Message Propagation

The rail infrastructure model, at the lowest description level, is a directed non-planar graph of linked
track segments. Each track segment is capable of message propagation, which can be along the
traffic current or in the opposite direction. A train determines its movement based on the information
about the next infrastructure and/or the preceding train. Lacking such information, the train sends a
request-message forward. The track segment that gets the message propagates the message until the
next infrastructure and/or a preceding train is found. The found object sends a reply-message. The
message is propagated back until it reaches the original sender of the request-message.

A simplified example is illustrated in Fig. 2. It is composed of fourTrackSegments (T S0 ∼ T S3)
and two RailVehicles (V0, V1). Each TrackSegment has a length (L) and a speed limit (SL). A
RailVehicle has its vehicle length (V L), position (P) relative to the track segment it is linked to,
and its current speed limit (CSL). (The other attributes are not illustrated.) Supposing that V0 doesn’t
have information about its next infrastructure nor about the preceding vehicle, it sends a request-
message. Two message sequences will be generated upon this action: (1) M0,M1,M2,M3,M4,M5,
and (2) (M0,M1,M2,)M3′,M4′,M5′,M6,M7,M8,M9.

In sequence (1), it is assumed thatSL1 =CSL0∨SL1 = ∞∧SL2 6=CSL0∧SL2 6= ∞. ATrackSegment
replies to a request-message when the TrackSegment requires a speed (limit) change of the vehicle
approaching. A TrackSegment forwards a request-message to a vehicle closest to its start node,
if there is any vehicle linked to it. A message contains information of the sender, the contemplated
receiver (if necessary), and the distance between the sender and the receiver. The distance of M9 in

Figure 2: A message propagation example.

2152

Huang, Seck and Verbraeck

Figure 3: The atomic LIBROS-II models.

sequence (2), for example, is M9.D =−V L1 +P1 +L2 +L1 +L0−P0. It is accumulated (or deducted)
by TrackSegments during the message propagation. (The behavior of a TrackSegment is pre-
sented in Section 3.3.) Message propagation involving Sensors and LinesideSignals functions
according to the same principle. The only difference is that they always reply to request-messages.

3.2 Rail Vehicle

ARailVehicle’s main task is to correctly compute the vehicle’s movement based on the information
it has about the infrastructure and the preceding vehicle it is approaching. If either information is
missing before each movement, the vehicle sends a request-message forward. After the vehicle
obtains the reply-message(s), its movement is computed. If its acceleration changes as a result of the
computation, the vehicle sends a message backward to inform its succeeding vehicle. (The vehicle
sends a message backward every time when its acceleration changes.) A RailVehicle also replies
to a request-message from its succeeding vehicle. The atomic RailVehicle’s ports are designed
as shown in Fig. 3 (A). The model has one input port (I/T), and two outport ports, output forward
(O/F) and output backward (O/B). All three ports are linked to the track segment the vehicle is on.
The DEVS formalism with port specifications is RailVehicle= (X ,Y,S,δext ,δint ,λ , ta) where

X = {(p,m)|p ∈ {I/T},m ∈ Xp} is the set of input ports and messages;
Y = {(p,m)|p ∈ {O/F,O/B},m ∈ Yp} is the set of output ports and messages;
S = {START,FOLLOW,MOVE TO NEXT TRACK,WAIT,DWELL,STOP,IDLE}×Xp× IS×M×

I×V, IS = {v,a,vmax, p,vl, . . .} is the set of RailVehicle’s internal state (v,vmax, p ∈ R
+
0 , a ∈

R, vl ∈ R
+ are the speed, speed limit, position on the track, acceleration, and vehicle length),

M = {M0,M1, . . . ,Mn},n ∈ {N∪∅}, is the set of future movement-trajectory with a total order
(Mn = {tn,v f n,dn,an} is a movement within which the acceleration remains constant, tn,v f n,dn ∈R

+
0 ,

an ∈R are the time (duration), final speed, total distance, and acceleration of the movement, ai 6= ai+1,
i < n), I = {dI,vex, . . .} is the set of information of the next infrastructure (dI,vex ∈R

+
0 is the distance to

and speed limit of the next infrastructure), V = {dV ,vV ,aV} is the set of information of the preceding
vehicle (dV ∈ R

+, vV ∈ R
+
0 , aV ∈ R are the distance to the preceding vehicle, and its speed and

acceleration);
δext(phase,σ , IS,M′,e,(p,m)) :=

1. if M′ 6= ∅∧e 6= 0, update current movement and internal state: M′ = f(M′,e), IS = f(IS,M′,e),
2. σ = σ − e,
3. if m.receiver == this,

2153

Huang, Seck and Verbraeck

if m.type == request message, send message backward = true, σ = 0,
else,

(1) if m.sender == vehicle, update information of the preceding vehicle: V = m.in f o,
else, update information of the next infrastructure: I = m.in f o,

(2) if phase /∈ {WAIT,DWELL},
a. compute movement: (M, phase) = g(I,V, IS),
b. if M == ∅, M′ = ∅, σ = ∞,

else, σ = 0, if a 6= a0, a = a0, send message backward = true;
δint(M) :=

if M 6= ∅,
1. if a 6= a0 (a0 ∈ M0 ∈ M),

(1) a = a0, update internal state: IS = f(IS,M′,e),
(2) update information of the preceding vehicle and next infrastructure:
I = f(I,M′,e), V = f(V,M′,e),

2. send message backward = true, σ = t0 (t0 ∈ M0 ∈ M),
3. M′ = M0, remove M0 from M: if #M == 1, M = ∅, else, Mn−1 = Mn, Mn = ∅,

else,
if phase ∈ {START,MOVE TO NEXT TRACK,FOLLOW},

1. if phase == MOVE TO NEXT TRACK,
(1) link vehicle to next track: h(I), p = 0,
(2) if not I.entered stopping place, clear information of the next infrastructure: I = ∅,

2. if I == ∅, send message f oreward = true, σ = 0, phase = IDLE,
else,

a. compute movement: (M, phase) = g(I,V, IS),
b. if M == ∅, M′ = ∅, σ = ∞,

else, σ = 0, if a 6= a0, a = a0, send message backward = true;
else if phase == STOP,

if I.at stopping place, σ = tdwell(tdwell ∈ I), phase = DWELL,
clear information of the station: I = ∅,
else if I.scheduled waiting, σ = twait(twait ∈ I), phase = WAIT,
else, σ = ∞,

else if phase ∈ {DWELL,WAIT}, σ = 0, phase = START;
else σ = ∞;

λ (send message f orward, send message backward) :=
1. if send message f orward, send message forward: (p,m) = (O/F,m(d = −p)),
2. if send message backward, send message backward: (p,m) = (O/B,m(d = p− vl));

ta = σ .
In compute movement (M, phase) = g(I,V, IS), theRailVehicle’s future movement-trajectory

is computed based on the information of the next infrastructure and the preceding vehicle (if it exists).
A movement-trajectory may consist of several movements. Within each movement the acceleration
remains constant. As each track segment has only one speed limit, one movement-trajectory is rather
simple. Let’s first consider the situation without a preceding vehicle as shown in Fig. 4. A vehicle is
at track segment T Si, and there is a track segment T S j at distance d which requires a speed change.
The speed limit of T S j, is called maximum exit speed vex (Hansen and Pachl 2008). The current
speed limit is vmax. The general form of the movement-trajectory consists of three movements, i.e.

Figure 4: The general form of the movement-trajectory.

2154

Huang, Seck and Verbraeck

acceleration, cruising, and braking. If the current speed v of the vehicle equals to vmax, or vex is not
less than vmax, the part of d1 or d3 falls out. In other cases, if the sum of d1 and d2 is greater than
d, the vehicle is unable to accelerate until vmax. Thus the movement-trajectory may have only one
acceleration or braking curve, or nothing at all if the vehicle is unable to drive (e.g. vex is zero in
case of a red traffic signal). The next phase can be set to MOVE TO NEXT TRACK or STOP after the
computation. When the vehicle has an acceleration change, it sends a message backward to inform
the succeeding vehicle (if any). Before completing one movement-trajectory, if the vehicle receives a
message from the next infrastructure or a preceding vehicle (which indicates their state change), the
movement-trajectory will be recomputed.

With a preceding vehicle, both vehicles’ speed, acceleration, and their distance are needed to first
compute if the succeeding vehicle needs to brake (to avoid a collision with the preceding vehicle)
before it reaches the next infrastructure. If not, the preceding vehicle is momentarily irrelevant so
that the movement-trajectory is computed as described in the previous paragraph. Otherwise, if the
anticipated collision point is not farther than the next infrastructure, the distance to the collision
point that deducts a safety distance is used as d and the preceding vehicle’s final speed is used as
vex to compute the movement-trajectory. The next phase may be set to FOLLOW or STOP. If the
collision point is farther than the next infrastructure, the speed at which the preceding vehicle enters
the next infrastructure plus a safety distance is used as vex of the next infrastructure to compute the
movement-trajectory. In this case, the phase may be set to MOVE TO NEXT TRACK or STOP.

When a vehicle is at phase STOP, it can have a transition to phase DWELL or WAIT (a timed
waiting), or enter a passive mode waiting for the arrival of a backward message that indicates the
vehicle can drive again, e.g. the preceding vehicle starts to drive or the traffic signal turns green. At
the end of a movement-trajectory, if the vehicle reaches the next infrastructure, it links itself to the
next track h(I). The couplings to the current track will be disconnected, the atomic RailVehicle
model is removed from its parent model and added to the parent model of the next track, new couplings
to the next track are set up, and the position on the new track is set to zero. At this moment, vex
becomes vmax, and the vehicle sends a request-message (forward) in order to get new information,
i.e. among others, the new vex of a next track. Its phase is set to IDLE, which implies that it will get
a reply-message in zero (simulation) time.

3.3 Track Segment

The task of aTrackSegment is partly introduced in Section 3.1. A track replies to a request-message
when its speed limit is unequal to the current speed limit of the message sender; if there is any vehicle
linked to it, the track forwards the request-message to the vehicle closest to its start node. Otherwise
the message is propagated to the next track. The message propagation stops when a track and a vehicle
replied to the request-message, or when a track replied to the message and no vehicle is found within
a predefined extra range. For a backward message, if the sender is a vehicle, the message is forwarded
back to the vehicle closest to the sender; if the sender is a track, the message is forwarded back to the
vehicle which is the original sender of the request-message. The TrackSegment’s ports are shown
in Fig. 3 (B). The model has four ports dedicated for message propagation (shown with black headed
arrows), input forward and backward (I/F, I/B), output forward and backward (O/F, O/B) which are
linked to the previous and next track segments; and it has one extra output port (O/V) that sends
messages to the vehicles linked to it. A vehicle sends messages to the track through I/F or I/B. The
DEVS formalism with port specifications is TrackSegment= (X ,Y,S,δext ,δint ,λ , ta) where

X = {(p,m)|p ∈ {I/F, I/B},m ∈ Xp} is the set of input ports and messages;
Y = {(p,m)|p ∈ {O/F,O/B,O/V},m ∈ Yp} is the set of output ports and messages;
S = Xp×L (L = {V0,V1, . . . ,Vn},n ∈ {N∪∅}, is the set of vehicles on the track with a total order);
δext(L,(p,m)) :=

1. σ = 0,
2. if p == I/F ,

2155

Huang, Seck and Verbraeck

if m.sender ∈ L,
if ∃ predecessor of m.sender ∈ L,

(1) if m.sender’s preceding vehicle not found,
a. m(receiver = predecessor,d = m.d + predecessor.position− predecessor.length),
b. send message to vehicle = true,

(2) if m.sender’s next track not found, send message f orward = true,
else, send message f orward = true,

else,
(1) if m.sender’s next track not found,

if this.vmax 6= m.sender.vmax ∧ this.vmax 6= ∞,
(1) m(sender = this,contemplated receiver = m.sender,d = 0),
(2) send message backward = true,

else, send message f orward = true,
(2) if m.sender’s preceding vehicle not found,

if L 6= ∅,
(1) m(receiver = Vn,d = m.d +Vn.position−Vn.length),
(2) send message to vehicle = true,

else if m.sender’s next track found ∧
m.d −m.sender.dI > m.sender.dbraking +m.sender.dsa f ety,

//do nothing (stop message propagation),
else, send message f orward = true,

else if p == I/B,
if L == ∅, m(d = m.d + this.length), send message backward = true,
else,

if m.sender.type == vehicle,
if m.sender ∈ L,

if ∃ successor of m.sender ∈ L,
m(receiver = successor,d = m.d − successor.position),

send message to vehicle = true,
else, send message backward = true,

else, send message to V0 ∈ L,
else,

if m.contemplated receiver == ∅, send message to V0 ∈ L,
else if m.contemplated receiver ∈ L,

(1) m(receiver = m.contemplated receiver,d = m.d + this.length− receiver.length),
(2) send message to vehicle = true,

else, m(d = m.d + this.length), send message backward = true;
δint := σ = ∞;
λ (send message f orward, send message backward, send message to vehicle) :=

1. if send message f orward, send message forward: (p,m) = (O/F,m(d = m.d + this.length)),
2. if send message backward, send message backward: (p,m) = (O/B,m);
3. if send message to vehicle, send message to vehicle: (p,m) = (O/V,m);

ta = σ .

3.4 Sensor, Signal, Control Unit, and Coupled Models

A Sensor’s ports are shown as Fig. 3 (C). Compared to a TrackSegment, it has one extra output
port, the sensor output (O/S). A Sensor is a specialization of a TrackSegmentwith one additional
function: when a vehicle is linked to the sensor, it triggers the sensor, and a message is sent at the
output port O/S to inform, e.g. a control unit, about this activity. At the same time, an internal
transition of the sensor is scheduled, based on the vehicle’s speed, acceleration, and length (plus an
offset), when the vehicle will release the sensor. If meanwhile the vehicle changes its movement (i.e.
acceleration), the sensor will get the vehicle’s backward message and correspondingly reschedule the
internal transition of sensor release. At the occurrence of the internal transition, a notify message is
sent out at port O/S.

A signal (LinesideSignal) is a specializedSensorwith an extra input port from a control unit
(I/CU); see Fig. 3 (D). Through this port, the signal receives messages which inform the signal how to
change its state, e.g. from red to green or vice versa. Once its state is changed, theLinesideSignal
sends a message backward to inform the closest vehicle (approaching). A signal has the functions of
a sensor, since the information about a vehicle passing the signal is often needed. A ControlUnit

2156

Huang, Seck and Verbraeck

has its input port (I/S) coupled to one or more Sensors, and its output port (O/LS) coupled to one
or more LinesideSignals; see Fig. 3 (E). Based on the sensor information, the ControlUnit
computes the state changes of the signals. A control unit is typically placed in a block section or an
intersection.

Sensors, signals, and control units are sub-components of coupled infrastructure components such
as stops, stations, intersections, and block sections. An infrastructure component is constructed by
organizing the coupling relation of its sub-components, and defining the control logic in the control
unit. A block section, for example, is composed of one signal at the entrance of the section, and one
or more track segments that constitute the section area. Its control unit is defined differently if the
section applies one-block or multi-block signaling (Pachl 2002).

4 MODEL EXAMPLE AND PERFORMANCE ASSESSMENT

In this section, an example of The Hague city center tunnel in The Netherlands (Fig. 5) is chosen to
illustrate the use of LIBROS-II components and to compare the model performance with LIBROS.
Although simple, the example is sufficient to show the typical structure of a LIBROS-II model. Only
one direction of the traffic current is shown (from left to right). In the tunnel, there is a stop with two
stopping places (T S2 and T S3). The stop is guarded by a signal, which is red when either T S1 or the
second stopping place (T S2) is occupied by a tram. If the first stopping place (T S3) is occupied and
both the T S1 and T S2 are cleared, the signal is yellow. If the block section is completely cleared,
the signal turns green. The speed limit in this tunnel is 45 km/h, and it is reduced to 35 km/h if the
signal is yellow.

The model structure specified in LIBROS-II is illustrated in Fig. 6. The boxes with bold lines are
coupled models. The Top Level Model contains a Block Section, two Track Segments, and a Source
and a Sink which respectively generates and removes vehicles. The Block Section has a Signal, a
Control Unit, etc. Besides vehicle position detection, the Sensor in the Stop is used by the vehicles
to identify the position of the stopping places before the vehicles reach the Stop. An extra Sensor is
placed at the end of the block section to detect clearance.

The example is also modeled with the LIBROS library in order to compare their performance.
The model with LIBROS has one Track. The positions of the other components are relative to the
track using offsets. The block section is a component in the physical layer of the library, and its
control logic is defined in the control layer; see e.g. Kanacilo and Verbraeck (2005).

Figure 5: A model example - The Hague city center tunnel.

Figure 6: The tunnel model structure with LIBROS-II.

2157

Huang, Seck and Verbraeck

(a) Model execution time.

(b) Model execution time per category.

Figure 7: Performance comparison of the LIBROS and LIBROS-II model examples.

Experiments with different vehicle generation frequencies (15 to 60 vehicles/h) are run with both
models. These frequencies represent the lower and higher bounds of the traffic intensity of tram
operation in the city of The Hague. The simulation run length is 2 hours. The vehicles in the LIBROS
model are simulated with an integration step of 0.05 seconds to obtain a train positioning accuracy
of 0.625 meters in the worst case, considering the maximum speed of 45 km/h. The train positioning
in LIBROS-II is computed as described in Section 3.2 with floating point precision. As shown in
Fig. 7 (a), within the boundary of the experimentation, the execution times of both the LIBROS and
LIBROS-II models evolve linearly as a function of the vehicle generation frequency. However, the
latter is consistently lower compared to the former with a factor of 5.

The execution times (for the frequencies 15, 30, and 60 vehicles/h) are categorized by library
package as shown in Fig. 7 (b). (The three highest categories are shown.) The underlying simulation
mechanisms (namely the integrator and the event-scheduler), communication schemes, and the model
components in both models are compared. In the LIBROS model, the general discrete behavior is
handled by model components; specific vehicle movement computation depends on the integrator; and
the object-to-object communication is carried out by publish-subscribe. The latter two are contained
in DSOL. In the LIBROS-II model, the general behavior is handled by model components; object-to-
object communication is carried out by ESDEVS; and event-scheduling is performed by DSOL. In Fig.
7 (b), the LIBROS model components hold a higher percentage of the total execution time than those
of LIBROS-II. The communication in the LIBROS-II models (by message exchange through ports)
produces less overhead than using publish-subscribe. As expected, the integrator is computationally

2158

Huang, Seck and Verbraeck

more demanding than the event-scheduler. It is the primary component in the LIBROS model that
occupies the highest portion of the execution; so is the event-scheduler in LIBROS-II. Although both
components play a comparable role in each model, the design choice of a continuous model such
as in LIBROS has little influence on the efficiency of the numerical solution. On the contrary, the
efficiency of event-scheduling as that used in LIBROS-II is a result of the model design and the
event-triggering strategy. This opens up possibilities for further research to improve model design.
Although the execution time in the example counts in seconds, in large-scale railway simulation e.g.
of a city or a country, efficiency becomes important when the model is microscopic and high quality
data visualization of the simulation is required.

5 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we reviewed the LIBROS library, in which the train movement is represented by differential
equations and the other railway components are modeled with discrete-event abstraction. The LIBROS-
II library is introduced, where the DEVS formalism is used for the railway model specification. An
example is modeled with both libraries, and their performances are compared. We conclude that, with
comparable model detail and accuracy, the LIBROS-II models specified by the DEVS formalism yield
a higher performance than the LIBROS models. Modularity of the model component can be obtained
through a careful object-oriented analysis and design; however, by following the DEVS formalism,
modularity is guaranteed by allowing message based communication between components. Future
research will focus on assessing the scalability of the approach by implementing a large-scale railway
network. With its high performance, one can envision an integration of the simulation library within
advanced real-time applications such as traffic control systems and interactive training games.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of HTM Urban Public Transport, The Hague, the
Netherlands.

REFERENCES

Baldwin, C. Y., and K. B. Clark. 2000. The power of modularity, Volume 1 of Design Rules. MIT
Press.

Eugster, P. T., P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. 2003. The many faces of pub-
lish/subscribe. ACM Computing Surveys 35 (2): 114–131.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994. Design patterns: Elements of reusable
object-oriented software. Addison-Wesley.

Giambiasi, N., B. Escude, and S. Ghosh. 2000. Gdevs: A generalized discrete event specification for
accurate modeling of dynamic systems. Transactions of the Society for Computer Simulation 17
(3): 120–134.

Hansen, I. A., and J. Pachl. (Eds.) 2008. Railway timetable & traffic: Analysis-modelling-simulation.
Eurailpress.

Jacobs, P. H. M. 2005. The DSOL simulation suite - enabling multi-formalism simulation in a distributed
context. Ph. D. thesis, Delft University of Technology, the Netherlands.

Jacobs, P. H. M., N. A. Lang, and A. Verbraeck. 2002. D-SOL: A distributed java based discrete event
simulation architecture. In Proceedings of the 2002 Winter Simulation Conference, ed. J. L. S.
E. Yücesan, C.-H. Chen and J. M. Charnes, 793–800: IEEE.

Kanacilo, E. M., and N. v. Oort. 2008. Using a rail simulation library to assess impacts of transit
network planning on operational quality. In WIT Transactions on the Built Environment, Number
103, 35–43. WIT Press.

Kanacilo, E. M., and A. Verbraeck. 2005. A distributed multi-formalism simulation to support rail
infrastructure control design. In Proceedings of the 2005 Winter Simulation Conference, 2546–
2553: IEEE.

Kanacilo, E. M., and A. Verbraeck. 2006. Simulation services to support the control design of rail
infrastructures. In Proceedings of the 2006 Winter Simulation Conference, 1372–1379: IEEE.

Kanacilo, E. M., and A. Verbraeck. 2007. Assessing tram schedules using a library of simulation
components. In Proceedings of the 2007 Winter Simulation Conference, 1878–1886: IEEE.

Kofman, E. 2003. Quantization-based simulation of differential algebraic equation systems. Simula-
tion 79 (7): 363–376. Cited By (since 1996): 4.

2159

Huang, Seck and Verbraeck

Li, K.-P., and Z.-Y. Gao. 2007. An improved equation model for the train movement. Simulation
Modelling Practice and Theory 15 (9): 1156 –1162.

Li, K.-P., Z.-Y. Gao, and B. Ning. 2005. Cellular automaton model for railway traffic. Journal of
Computational Physics 209 (1): 179 –192.

Li, K.-P., B.-H. Mao, and Z.-Y. Gao. 2009. An improved walk model for train movement on railway
network. Communications in Theoretical Physics 51 (6): 979–984.

Lu, Q., M. Dessouky, and R. C. Leachman. 2004. Modeling train movements through complex rail
networks. ACM Transactions on Modeling and Computer Simulation 14 (1): 48–75.

Middelkoop, D., and M. Bouwman. 2001. Simone: Large scale train network simulations. In Pro-
ceedings of the 2001 Winter Simulation Conference, 1042–1047: IEEE.

Pachl, J. 2002. Railway operation and control. VTD Rail Publishing.
Rudolph, R. 2000. Operational simulation of light rail systems. In Proceedings of the European

Transport Conference, Number 167-178.
Seck, M. D., and A. Verbraeck. 2009. DEVS in DSOL: Adding DEVS operational semantics to a

generic event-scheduling simulation environment. In Proceedings of the 2009 Summer Computer
Simulation Conference.

Sullivan, K. J., W. G. Griswold, Y. Cai, and B. Hallen. 2001. The structure and value of modularity
in software design. ACM SIGSOFT Software Engineering Notes 26 (5): 99–108.

Wainer, G. 2007. Developing a software toolkit for urban traffic modeling. Software - Practice and
Experience 37 (13): 1377–1404.

Zeigler, B., and J. Lee. 1998. Theory of quantized systems: Formal basis for DEVS/HLA distributed
simulation environment. In Proceedings of SPIE - The International Society for Optical Engi-
neering, Volume 3369, 49–58.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of modeling and simulation: Integrating
discrete event and continuous complex dynamic systems. 2nd ed. Elsevier/Academic Press.

AUTHOR BIOGRAPHIES

YILIN HUANG is a Ph.D. Candidate in the Systems Engineering Group of the Faculty of Tech-
nology, Policy and Management of Delft University of Technology. Her research interests include
dynamic data-driven simulation, on-line data analysis, and transportation systems simulation. Her
email address is <y.huang@tudelft.nl>.

MAMADOU D. SECK is an Assistant Professor in the Systems Engineering Group of the Faculty
of Technology, Policy and Management of Delft University of Technology. He received his Ph.D.
from the Paul Cézanne University of Marseille, France. His research interests include modeling
and simulation formalisms, dynamic data-driven simulation, human behavior simulation, and agent
directed simulation. His email address is <m.seck@tudelft.nl>.

ALEXANDER VERBRAECK is a Full Professor in the Systems Engineering Group of the Faculty of
Technology, Policy and Management of Delft University of Technology, and a part-time Full Professor
in supply chain management at the R.H. Smith School of Business of the University of Maryland.
He is a specialist in discrete-event simulation for real-time control of complex transportation systems
and for modeling business systems. His current research focuses on development of object-oriented
simulation building blocks, participative modeling, serious gaming using virtual reality, and agent
technology in simulation. His email address is <a.verbraeck@tudelft.nl>.

2160

