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ABSTRACT

In this paper, we describe simulation-based stochastic approximation algorithms to find good bid price policies for
booking control over an airline network. Our general approach visualizes the total expected profit as a function of
the bid prices and searches for a good set of bid prices by using sample path derivatives of the total expected profit
function. We demonstrate that the iterates of our stochastic approximation algorithms converge to a stationary point
of the total expected profit function with probability one. Our computational experiments indicate that the bid prices
computed by our approach perform quite well.

1 INTRODUCTION

Through the process of booking control, airlines decide which itinerary requests coming from their customers should
be accepted and which itinerary requests should be rejected. What makes this process interesting is that the booking
control decisions for an airline network interact with each other in a variety of ways. For example, an accepted
itinerary request consumes capacities on a number of flight legs and there can be many other itineraries that consume
capacities on these flight legs, indicating that there are interactions between the booking control decisions for different
itineraries. Furthermore, the itinerary requests that we accept here and now have an influence on the itinerary requests
that we can accept in the future, which implies that the booking control decisions at different time periods interact with
each other as well. Thus, we need to have a view of the whole airline network and the whole selling horizon when
making the booking control decisions. Furthermore, practical problem instances are often quite large, involving airline
networks with tens of locations and selling horizons up to a year. Due these difficulties, it is often the case that airlines
focus on a class of booking control policies parameterized by a number of parameters and look for a good booking
control policy within this class. For example, protection level policies put upper bounds on how many seats should be
reserved for different itineraries. These upper bounds are called protection levels. On the other hand, bid price policies
associate an opportunity cost with a seat on each flight leg. These opportunity costs are called bid prices. An itinerary
request is accepted only if the revenue from the itinerary request justifies the total opportunity cost of the seats that the
itinerary request would consume. If we focus our attention to a protection level or a bid price policy, then the problem
simply becomes that of searching for a good set of protection levels or bid prices.

In this paper, we develop stochastic approximation algorithms to search for a good set of bid prices. As mentioned
above, a bid price policy associates a bid price with each flight leg in the airline network, capturing the opportunity
cost of a seat. An itinerary request is accepted only if the revenue from the itinerary request exceeds the total
opportunity cost of the seats that are consumed. Bid price policies have seen considerable attention from airlines
as they are intuitive and easy to implement. There are a number of methods in the literature to compute good bid
prices. Simpson (1989) and Williamson (1992) approximate the booking control problem by using a deterministic linear
program that is formulated under the assumption that the demands for different itineraries take on their expected values.
The authors use the shadow prices associated with the seat availability constraints in the linear program to compute bid
prices. Talluri and van Ryzin (1998) provide some theoretical support for this linear program by showing that the bid
prices obtained by the linear program are optimal in an asymptotic regime as the capacities on the flight legs and the
length of the selling horizon increases linearly. Talluri and van Ryzin (1999) note that the linear program proposed by
Simpson (1989) and Williamson (1992) ignores all uncertainty by assuming that the demands take on their expected
values. They propose a randomized version of the linear program that works with sampled demand realizations rather
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than expected values. Bertsimas and Popescu (2003) extend the linear program to handle the case where overbooking is
possible. Adelman (2007) formulates the booking control problem as a dynamic program with a high dimensional state
variable. To deal with the problematic state variable, the author approximates the value functions with linear functions
and finds good linear value function approximations. He shows that this approach can ultimately be used to compute
bid prices. Similar to ours, there are a number of papers that find good booking control policies by using stochastic
approximation algorithms. In particular, van Ryzin and Vulcano (2008a) and van Ryzin and Vulcano (2008b) focus
on computing good protection limits by using stochastic approximation algorithms, whereas Topaloglu (2008) and
Chaneton and Vulcano (2009) use stochastic approximation algorithms to compute good bid prices. Our work in this
paper builds on Topaloglu (2008) and extends it in numerous directions. We give a unifying framework that can handle
problems with overbooking, whereas Topaloglu (2008) exclusively considers the case where overbooking is not possible
and all reservations show up at the departure time. Furthermore, Topaloglu (2008) focuses on convergence results for
the proposed stochastic approximation algorithms, but we focus on an important implementation issue related to step
size selection. We refer the reader to the book by Talluri and van Ryzin (2005) for detailed descriptions of other models
and algorithms that can be used to find good bid prices for booking control.

The rest of the paper is organized as follows. In Section 2, we develop a stochastic approximation algorithm to
find a good set of bid prices when overbooking is not possible. We begin by describing our notation and problem
setup. We carefully explain how a bid price policy works. We develop a recursive expression that can be used to
compute the total revenue obtained by a bid price policy for a single sample path of itinerary requests. We use this
recursive expression to compute the sample path derivatives of the total revenue with respect to the bid prices. Finally,
we use these sample path derivatives in a stochastic approximation algorithm to search for a good set of bid prices. In
Section 3, we extend the development in Section 2 to the case where not all reservations show up at the departure time
and overbooking is necessary. In Section 4, we provide computational experiments. In Section 5, we conclude.

2 NETWORK REVENUE MANGEMENT WITHOUT OVERBOOKING

We have a set of flight legs that can be used to serve the itinerary requests that arrive randomly over time. Whenever
an itinerary request arrives into the system, we need to decide whether to accept or reject this itinerary request. An
accepted itinerary request generates a revenue and consumes capacities on one or more flight legs. A rejected itinerary
request simply leaves the system. Our objective is to find a policy to accept or reject the itinerary requests so as to
maximize the total expected revenue.

2.1 Notation and Problem Formulation

The set of flight legs in the airline network is L and the set of itineraries is J . If we accept a request for itinerary
j, then we generate a revenue of f̃ j. To capture which itineraries use which flight legs, we let ãi j take value one if
itinerary j uses flight leg i, and take value zero otherwise. In this case, the vector ã j = {ãi j : i ∈ L } captures which
flight legs are used by itinerary j. An itinerary is characterized by its revenue and the set of flight legs that it uses. In
certain settings, an itinerary is referred to as an origin-destination-fare class combination. We prefer to use the itinerary
terminology since the origin-destination-fare class terminology does not emphasize the fact that an itinerary is not only
characterized by its origin and destination locations, but also by its through locations. We index the itinerary requests
by t = 1, . . . ,τ , where τ is a finite upper bound on the total number of itinerary requests that we may observe. We let xit

be the remaining capacity on flight leg i just before making the decision for itinerary request t and use xt = {xit : i ∈L }
to denote the vector of remaining capacities on the flight legs.

We capture the itinerary requests by the stochastic process ω̃ = {J̃t : t = 1, . . . ,τ} with the interpretation that itinerary
request t is for itinerary Jt . The stochastic process ω̃ is quite natural to work with, but we use an alternative stochastic
process to ease our notational burden. The only information that we need about an itinerary request is its revenue and the
set of flight legs used by this itinerary request. In this case, if we let ft = f̃Jt and ait = ãi,Jt , then ft and at = {ait : i ∈L }
completely characterize all of the information that we need to know about itinerary request t. Therefore, we can use
the stochastic process ω = {( ft ,at) : t = 1, . . . ,τ} to characterize the arrival of the itinerary requests. For our purposes,
the stochastic processes ω̃ and ω are equivalent, but we work with the stochastic process ω throughout the paper. We
note that a realization of the stochastic process ω completely characterizes { ft : t = 1, . . . ,τ} and {at : t = 1, . . . ,τ},
which are respectively the revenues that are associated with the itinerary requests and the |L |-dimensional vectors
that describe the flight legs used by the itinerary requests. To allow for the possibility that we do not have exactly τ
itinerary requests in every sample path, we allow having ft = 0 for all t = τ0 +1, . . . ,τ for some random variable τ0.
In this case, it is not desirable to accept the last τ − τ0 itinerary requests, which is equivalent to having τ0 itinerary
requests in a sample path.
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2.2 Bid Price Policies

A bid price policy associates a bid price with each flight leg that characterizes the value of a seat on the flight leg. In
this case, an itinerary request is accepted only if there is enough capacity on all of the relevant flight legs and the
revenue from the itinerary request exceeds the sum of the bid prices associated with the flight legs that are in the
requested itinerary. In particular, letting λ = {λi : i ∈ L } be the bid prices associated with the flight legs, the decision
function for the policy characterized by bid prices λ can be written as

ũt(xt ,λ ,ω) = 1(xt ≥ at , ft ≥ ∑i∈L ait λi), (1)

where 1(·, ·) is the indicator function. This is to say that ũt(xt ,λ ,ω) takes value one if the policy characterized by
bid prices λ accepts itinerary request t, and takes value zero otherwise. In the expression above, we take advantage
of the fact that ω completely characterizes { ft : t = 1, . . . ,τ} and {at : t = 1, . . . ,τ} so that ω in the argument of the
decision function on the left provides at in the argument of the indicator function on the right. The first argument
of the indicator function ensures that there is enough capacity on all of the flight legs, whereas the second argument
ensures that the revenue from the itinerary request exceeds the sum of the bid prices associated with the flight legs that
are in the requested itinerary.

We can compute the total revenue obtained from itinerary requests t, . . . ,τ by using the revenue function recursively
defined by

R̃t(xt ,λ ,ω) = ft ũt(xt ,λ ,ω)+ R̃t+1(xt −at ũt(xt ,λ ,ω),λ ,ω), (2)

where the first expression on the right side corresponds to the revenue from itinerary request t, whereas the second
expression corresponds to the total revenue from itinerary requests t +1, . . . ,τ . If the initial capacities on the flight legs
are given by x1, then the random variable R̃1(x1,λ , .ω) captures the total revenue obtained from all of the itinerary
requests. Since our objective is to find a set of bid prices to maximize the total expected revenue from all of the
itinerary requests, we can solve the problem

max
λ

E{R̃1(x1,λ ,ω)}. (3)

Unfortunately, due to the indicator function in (1), the decision function is not differentiable with respect to the bid
prices. This implies that the revenue function in (2) is not differentiable with respect to the bid prices either. This
observation precludes us from solving problem (3) by using sample path derivatives of the revenue function. In the
next section, we resolve this difficulty by formulating an appropriately smoothed version of problem (3).

2.3 Smoothed Revenue Function

In this section, we formulate an appropriately smoothed version of problem (3) that we can solve by using sample
path derivatives of its objective function. We consider a bid price policy that accepts a fraction of an itinerary request
depending on how much the revenue from the itinerary request exceeds the sum of the bid prices associated with the
flight legs that are in the requested itinerary. To this end, we let θ(·) be a differentiable and increasing function satisfying
limp→−∞ θ(p) = 0 and limp→∞ θ(p) = 1. We assume that θ(·) and its derivative θ̇(·) are Lipschitz continuous. In the
smoothed version of problem (3), we can try using the decision function

ût(xt ,λ ,ω) = min
{

min{xit : i ∈ L +
t },θ( ft −∑i∈L ait λi)

}

,

where we let L +
t = {i ∈ L : ait = 1}. The decision function above can still be problematic as it is nondifferentiable

when the arguments of the min operators are equal to each other. To overcome difficulty, we perturb the remaining
capacities by small random amounts. In particular, letting α = {αit : i ∈ L , t = 1, . . . ,τ} be random variables that are
uniformly distributed over the small interval [0,ε], we modify the last decision function as

ut(xt ,λ ,ω) = min
{

min{xit +αit : i ∈ L +
t },θ( ft −∑i∈L ait λi)

}

, (4)

where we redefine the stochastic process as ω = {( ft ,at ,αt) : t = 1, . . . ,τ} with αt = {αit : i ∈ L } to include the
random capacity perturbations. Assuming that the capacity perturbations {αit : i ∈ L , t = 1, . . . ,τ} are independent,
the arguments of the min operators in (4) are distinct with probability one (w.p.1), which implies that the decision
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function in (4) is differentiable w.p.1. Using the decision function in (4), the revenue function becomes

Rt(xt ,λ ,ω) = ft ut(xt ,λ ,ω)+Rt+1(xt +αt −at ut(xt ,λ ,ω),λ ,ω). (5)

Therefore, we can find a good set of bid prices by solving the problem

max
λ

E{R1(x1,λ ,ω)}. (6)

Noting the fact that the decision function in (4) is differentiable w.p.1 and using backward induction over the itinerary
requests, one can show that R1(x1,λ ,ω) is differentiable with respect to the bid prices w.p.1. This observation ultimately
allows us to solve problem (6) by using sample path derivatives of the revenue function. In the next section, we show
how to compute sample path derivatives of the revenue function.

2.4 Sample Path Derivatives of Smoothed Revenue Function

We begin this section by defining some notation. We use ∂ Λ
i Rt(xt ,λ ,ω) to denote the derivative of Rt(·, ·,ω) with respect

to the bid price associated with flight leg i evaluated at bid prices λ and remaining leg capacities xt . Similarly, we use
∂ X

i Rt(xt ,λ ,ω) to denote the derivative of Rt(·, ·,ω) with respect to the remaining capacity on flight leg i evaluated at
bid prices λ and remaining leg capacities xt . That is, we have

∂ Λ
i Rt(xt ,λ ,ω) =

∂Rt(zt ,γ,ω)

∂γi

∣

∣

∣

∣

(zt ,γ)=(xt ,λ )

and ∂ X
i Rt(xt ,λ ,ω) =

∂Rt(zt ,γ,ω)

∂ zit

∣

∣

∣

∣

(zt ,γ)=(xt ,λ )

.

We use the notation ∂ Λ
i ut(xt ,λ ,ω) and ∂ X

i ut(xt ,λ ,ω) with similar interpretation.
To compute the sample path derivative of the objective function of problem (6) with respect to the bid price of

flight leg i, we differentiate (5) with respect to the bid price of flight leg i and use the chain rule to obtain

∂ Λ
i Rt(xt ,λ ,ω) = ft ∂ Λ

i ut(xt ,λ ,ω)+∂ Λ
i Rt+1(xt +αt −at ut(xt ,λ ,ω),λ ,ω)

− ∑
k∈L +

t

∂ X
k Rt+1(xt +αt −at ut(xt ,λ ,ω),λ ,ω) ∂ Λ

i ut(xt ,λ ,ω), (7)

where we use the fact that ait = 1 if i ∈ L +
t and ait = 0 if i 6∈ L +

t . To compute the terms on the right side above,
differentiating (5) with respect to the remaining capacity on flight leg i and using the chain rule yield

∂ X
i Rt(xt ,λ ,ω) = ft ∂ X

i ut(xt ,λ ,ω)+∂ X
i Rt+1(xt +αt −at ut(xt ,λ ,ω),λ ,ω)

− ∑
k∈L +

t

∂ X
k Rt+1(xt +αt −at ut(xt ,λ ,ω),λ ,ω) ∂ X

i ut(xt ,λ ,ω). (8)

Differentiating (4) with respect to the bid price of flight leg i, we have

∂ Λ
i ut(xt ,λ ,ω) =

{

−ait θ̇( ft −∑i∈L ait λi) if θ( ft −∑i∈L ait λi) ≤ min{xit +αit : i ∈ L +
t }

0 otherwise.
(9)

We emphasize that the expression above is correct only in w.p.1 sense. In particular, the decision function in (4) is not
differentiable when the arguments of the min operators are equal to each other, but this event occurs with probability
zero. Finally, we differentiate (4) with respect to the remaining capacity on flight leg i to obtain

∂ X
i ut(xt ,λ ,ω) =

{

1 if i ∈ L +
t and xit +αit ≤ min

{

min{xkt +αkt : k ∈ L +
t \{i}},θ( ft −∑i∈L ait λi)

}

0 otherwise.
(10)

Similar to (9), the expression above is correct only in w.p.1 sense.
We can use (7)-(10) to compute the sample path derivative of the objective function of problem (6). In particular, we

can simulate the evolution of the system with bid prices λ under sample path ω . In this case, the remaining capacities
on the flight legs after each itinerary request are recursively given by Xt+1(λ ,ω) = Xt(λ ,ω)+αt −at ut(Xt(λ ,ω),λ ,ω)
with the initial condition that X1(λ ,ω) = x1. We can use (9) and (10) to respectively compute ∂ Λ

i ut(Xt(λ ,ω),λ ,ω) and
∂ X

i ut(Xt(λ ,ω),λ ,ω) for all t = 1, . . . ,τ . Following this computation, we can use (8) and move backwards over the itinerary
requests to compute ∂ X

i Rt(Xt(λ ,ω),λ ,ω) for all t = 1, . . . ,τ . Finally, we can use (7) and move backwards over the itinerary
requests to compute ∂ Λ

i Rt(Xt(λ ,ω),λ ,ω) for all t = 1, . . . ,τ . In this case, ∂ Λ
i R1(X1(λ ,ω),λ ,ω) = ∂ Λ

i R1(x1,λ ,ω) gives
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the sample path derivative of the objective function of problem (6) with respect to the bid price of flight leg i. In the
next section, we give an algorithm that uses this sample path derivative to solve problem (6).

2.5 Stochastic Approximation Algorithm

The following algorithm can be used to solve problem (6) by using sample path derivatives of the objective function
of this problem.

1. Choose the initial bid prices λ 1 = {λ 1
i : i ∈ L } arbitrarily. Initialize the iteration counter n to 1.

2. Generate a sample path ωn at iteration n. Compute ∂ Λ
i R1(x1,λ n,ωn) for all i ∈ L by using (7)-(10).

3. Letting σn be the step size at iteration n, update the bid prices as λ n+1
i = λ n

i + σn ∂ Λ
i R1(x1,λ n,ωn) for all

i ∈ L .
4. Increase n by one and go to Step 2.

The algorithm above is a standard stochastic approximation algorithm driven by the sample path derivatives
{∂ Λ

i R1(x1,λ n,ωn) : i ∈ L } at iteration n. We let F n = (λ 1,ω1, . . . ,ωn−1) be the history of the algorithm up to
iteration n. We assume that the distribution of ωn conditional on F n is the same as the distribution of ω . We have
the following convergence result for the algorithm above.

Proposition 1. Assume that the sequence of bid prices {λ n}n are generated by the algorithm above and the sequence
of step sizes satisfy σn ≥ 0 for all n = 1,2, . . ., ∑∞

n=1 σn = ∞ and ∑∞
n=1[σn]2 < ∞. In this case, every limit point λ ∗ of

the sequence {λ n}n is a stationary point of the objective function of problem (6) satisfying E{∂ Λ
i R1(x1,λ ∗,ω)} = 0

for all i ∈ L .

The convergence result in Proposition 1 provides theoretical support for the algorithm above. We emphasize that
the objective function of problem (6) is not necessarily concave and the stationary point mentioned in Proposition 1
can be a local maximum, a local minimum or an inflection point. Nevertheless, our computational results indicate that
the bid prices obtained by the algorithm above perform remarkably well.

3 NETWORK REVENUE MANGEMENT WITH OVERBOOKING

The ideas in Section 2 can be extended to the case where overbooking is possible. Similar to Section 2, we consider
a setting where the itinerary requests arrive randomly over time and we need to decide whether to accept or reject
each itinerary request. However, only a portion of the accepted itinerary requests show up at the departure time. If we
cannot accommodate all of the accepted itinerary requests that show up at the departure time, then we incur a penalty
cost for denied boarding. Our objective is to find a policy to accept or reject the itinerary requests on the flight legs
so as to maximize the total expected profit. In this setting, the total expected profit is the difference between the total
expected revenue from the accepted itinerary requests and the total expected cost of denied boarding.

We describe the main points in which our notation deviates from the one in Section 2.1. We work with the stochastic
process ω = {Jt : t = 1, . . . ,τ} with the interpretation that itinerary request t is for itinerary Jt . The policy characterized
by bid prices λ accepts a request for itinerary j only if the revenue from the itinerary request exceeds the sum of
the bid prices associated with the flight legs that are in the requested itinerary. Since only a portion of the accepted
itinerary requests show up at the departure time, if overbooking is allowed, then the accepted itinerary requests can
exceed the capacities on the flight legs . Thus, we do not need to adhere to the capacity limitations when accepting or
rejecting the itinerary requests. In this case, the decision function for the policy characterized by bid prices λ becomes
ũt(λ ,ω) = 1( f̃Jt ≥ ∑i∈L ãi,Jt λi). Similar to the decision function in (1), the indicator function in the last expression is
not convenient to work with as it introduces a source of nondifferentiability. Therefore, we assume that we can accept
a fraction of an itinerary request depending on how much the revenue from the itinerary request exceeds the sum of the
bid prices associated with the flight legs that are in the requested itinerary. This reasoning yields the decision function

ut(λ ,ω) = θ( f̃Jt −∑i∈L ãi,Jt λi),

where θ(·) satisfies the same conditions stated in Section 2.3. To capture the state of the system, we let z jt be
the total number of accepted requests for itinerary j just before making the decision for itinerary request t and use
zt = {z jt : j ∈ J } to denote the vector of accepted itinerary requests. In this case we can accumulate the total profit
obtained from the itinerary requests t, . . . ,τ by using the revenue function recursively defined by

Rt(zt ,λ ,ω) = f̃Jt ut(λ ,ω)+Rt+1(zt + eJt ut(λ ,ω),λ ,ω),

where e j is the |J |-dimensional unit vector with a one in the element corresponding to j ∈J . The boundary condition
of the recursive expression above is Rτ+1(zτ+1,λ ,ω) = −F(zτ+1), where F(zτ+1) is the total expected penalty cost
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incurred at the departure time given that we arrive at the departure time with zτ+1 accepted itinerary requests. We leave
the form of F(·) unspecified since different airlines decide how to deny boarding in different ways, but it is worthwhile
to emphasize that F(·) depends on the capacities on the flight legs, the compensation amounts paid to denied boardings
and the probability that an accepted itinerary request shows up at the departure time. We only assume that F(zτ+1)
and each component of its gradient are Lipschitz continuous. Depending on the exact expression for F(·), satisfying
the Lipschitz continuity assumption may require adding random perturbations to zτ+1 similar to the ones in Section
2.3. Kunnumkal and Topaloglu (2009) give some reasonable expressions for F(·). By using an approach that closely
follows the one in Section 2.4, it is possible to derive recursive expressions to compute sample path derivatives of
R1(x1,λ ,ω). This allows us to construct a stochastic approximation algorithm similar to the one in Section 2.5 that
finds a good set of bid prices. One can establish a convergence result similar to the one in Proposition 1 for this
stochastic approximation algorithm.

4 COMPUTATIONAL EXPERIMENTS

In this section, we provide computational experiments that test the quality of the bid prices obtained by the algorithm
in Section 2.5.

4.1 Computational Setup

In our computational experiments, we focus on an airline network composed of one hub location serving six spoke
locations. There is a flight from the hub location to each spoke location and a flight from each spoke location to the
hub location. Therefore, there are 12 flight legs in the airline network. There is a high fare and a low fare itinerary
associated with each origin destination pair in the airline network. Since there are seven locations, we have 7×6×2 = 84
itineraries. We denote the fare difference between high fare and low fare itineraries by κ . In other words, high fare
itineraries are κ times more expensive than low fare itineraries. We use γ to denote the ratio between the total expected
number of seats consumed by all itinerary requests and the total number of seats available on the flight legs. Therefore,
the parameter γ is an indicator of how tightly constrained the capacities on the flight legs are when compared with the
total expected demand.

We use the deterministic linear program that we mention in Section 1 as a benchmark strategy in our computational
experiments. This benchmark strategy assumes that the requests for all itineraries take on their expected values and
formulates the booking control problem as a deterministic linear program. Noting the definition of Jt in Section 2.1,
the total expected demand for itinerary j is given by ∑τ

t=1 E{1( j = Jt)}. Using the decision variable w j to denote the
number of requests for itinerary j that we plan to accept, we can solve the linear program

max ∑
j∈J

f̃ j w j

subject to ∑
j∈J

ãi j w j ≤ xi1 i ∈ L

0 ≤ w j ≤
τ

∑
t=1

E{1( j = Jt)} j ∈ J

to estimate the total expected revenue. The first set of constraints ensure that the itinerary requests that we plan to
accept do not violate the leg capacities, whereas the second set of constraints ensure that the itinerary requests that
we plan to accept do not exceed the expected numbers of itinerary requests. In this case, letting {µi : i ∈ L } be the
optimal values of the dual variables associated with the first set of constraints, µi captures the opportunity cost of a seat
on flight leg i. Therefore, we can use µi as the bid price associated with flight leg i. Throughout this section, we refer
to this benchmark strategy as DLP, standing for deterministic linear program. We refer to the stochastic approximation
algorithm in Section 2.5 as SA. Unless otherwise stated, we terminate this algorithm after 10,000 iterations and use
the step size σn = 20/(40+n) at iteration n.

4.2 Computational Results

In Table 1, we compare the performances of SA and DLP. The columns of this table correspond to different test
problems indexed by (κ,γ), where κ and γ are as described in Section 4.1. The second and third rows respectively
show the total expected revenues obtained by SA and DLP. We estimate these total expected revenues by simulating the
decision trajectories for SA and DLP for multiple sample paths. We use common random numbers when simulating
the decision trajectories for the two benchmark strategies. The fourth row shows the percent gap between the total
expected revenues obtained by SA and DLP. Overall, the results indicate that SA can improve on the performance of
DLP with significant margins.
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Table 1: Performances of SA and DLP.

Benchmark Test problem (κ,γ)
Strategy (1.2,4) (1.2,8) (1.6,4) (1.6,8)

SA 22,773 36,758 19,746 33,579
DLP 21,208 33,269 17,771 28,628

Perc. Gap 6.87% 9.49% 10.00% 14.74%

One of the concerns in using stochastic approximation algorithms is that their performance can be dependent
on the choice of the step size. Our experience has been that while some tuning of the step size is necessary,
once we get in a close neighborhood of a reasonable step size rule, fluctuations around this step size rule do not
create a big problem. In all of our computational experiments, we use a step size of the form σn = a/(b + n) at
iteration n. We obtain the computational results in Table 1 by using a = 20 and b = 40. In Table 2, we show
the performance of SA with different choices for (a,b). The columns of this table correspond to different test
problems indexed in the same fashion as in Table 1. Each row shows the total expected revenues obtained by SA
by using a particular choice of (a,b). Noting that 20/(40 + 1) ≈ 200/(400 + 1) ≈ 2000/(4000 + 1) ≈ 0.5, the step
sizes at the first iteration when (a,b) ∈ {(20,40),(200,400),(2000,4000)} are roughly the same. However, we have
100× [20/(40+10000)]≈ 10× [200/(400+10000)]≈ 2000/(4000+10000) and the step sizes at the final iteration differ
roughly by a factor of ten. Similar observations apply to the case where (a,b) ∈ {(80,40),(800,400),(8000,4000)}.
Overall, the results in Table 2 indicate that the performance of SA remains relatively stable for different values of (a,b).
Furthermore, a step size rule that appears to perform reasonably well for one test problem continues to perform well
for other test problems as well.

Table 2: Performance of SA with different step sizes.

Test problem (κ,γ)
(a,b) (1.2,4) (1.2,8) (1.6,4) (1.6,8)

(20,40) 22,773 36,758 19,746 33,579
(200,400) 22,715 37,043 19,680 33,874

(2000,4000) 22,576 37,115 19,663 34,404
(80,40) 22,792 36,571 19,753 33,225

(800,400) 22,719 37,141 19,728 33,710
(8000,4000) 22,689 36,712 19,726 33,711

5 CONCLUSIONS

In this paper, we developed a stochastic approximation algorithm to make booking control decisions over an airline
network. Our computational results indicated that our stochastic approximation algorithm can provide significant
improvements over a benchmark strategy that ignores the randomness in demand altogether. The demand model that we
use in this paper assumes that each customer arrives into the system with the intention of purchasing a fixed itinerary.
The only decision is to whether accept or reject this itinerary request. An important avenue for further investigation is
to see whether it is possible to develop stochastic approximation algorithms for the case where the customers do not
arrive into the system with the intention of purchasing a fixed itinerary, but they observe the set of itineraries available
for purchase and make a choice among them. Models and algorithms that capture the customer choice process are
crucial to improve the practical applicability of network revenue management tools.
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