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ABSTRACT 

We examine the problem of estimating clearing functions that relate the expected output of a production 

resource as a function of its expected workload, from empirical data. We use a simulation model of a 

scaled-down wafer fabrication facility to generate the data and evaluate the performance of the resulting 

clearing functions. We compare several different regression approaches and report computational results. 

1 INTRODUCTION 

The use of optimization models for production planning has a long history going back to the seminal 

work of Modigliani and Hohn(1956) and Holt et al(1960). A critical issue in these models is how to 

represent the relationship between the pattern of work releases into the system over time and the resulting 

output. Understanding this relationship lies at the heart of any production planning model, since we wish 

to manage the release of orders and raw material into the system in order to coordinate supply and de-

mand in an optimal manner. A critical component of this relationship is the cycle time, the time between 

work being released into the system and its emerging as finished product. 

 However, the modeling of this relationship has proved quite challenging. It is widely recognized that 

the behavior of most capacitated production resources is governed by queuing, as work arrives randomly 

over time at resources whose processing capabilities are subject to varying degrees of uncertainty. 

Queuing models (Hopp and Spearman 2001) have shown a nonlinear relationship between resource utili-

zation and cycle time. Resource utilization, in turn, is determined by the work release decisions made by 

the planning models. We are thus faced with a circularity, where a planning model needs to be aware of 

cycle times in order to plan effectively, but the cycle times are determined by the decisions made by the 

planning decisions itself. 

The majority of the production planning literature has taken one of two basic approaches to address-

ing this issue. By far the most common is to treat cycle times as an exogenous parameter that is unaf-

fected by resource utilization. This approach is taken in the widely used Material Requirements Planning 

(MRP) procedure (Vollmann, Berry et al. 2005) and most linear and integer programming models 

(Johnson and Montgomery 1974; Voss and Woodruff 2003). The alternative approach is the use of either 

detailed scheduling models (Dauzère-Péres and Lasserre 1994) or simulation models in an iterative 

framework with a mathematical programming model. The optimization model will begin with initial es-

timates of either cycle times or a related parameter relating the releases to the production system in a giv-

en period to future output. The schedule of work releases obtained from the optimization model is then 

simulated in order to estimate the cycle times or output patterns that would be realized from the given re-

lease schedule. The parameters used in the optimization model are then updated, and the process repeated 

until some form of convergence is obtained. Methods of this type have been proposed, with varying de-
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grees of success, by Byrne and Bakir(1999), Byrne and Hosain(2005), Hung and Leachman(1996), Hung 

and Cheng(2002) and Kim and Kim(2001), among others. Irdem et al.(forthcoming) present a computa-

tional comparison of two of these methods, those of Hung and Leachman(1996) and Kim and Kim(2001). 

An alternative approach that has shown considerable promise in recent years(Missbauer 2002; 

Asmundsson, Rardin et al. 2006; Pahl, Voss et al. 2007; Asmundsson, Rardin et al. 2009; Missbauer and 

Uzsoy forthcoming) is the use of nonlinear clearing functions that represent the relationship between the 

expected output of a production resource and some measure of the work in process inventory (WIP) at the 

resource during the planning period. The advantage of these models is that they can capture the nonlinear 

relationship between resource utilization and cycle times without requiring time-consuming simulation 

runs as part of the planning process. However, the use of this approach requires effective methods of es-

timating the clearing functions themselves. Previous work (Asmundsson, Rardin et al. 2009) has shown 

that the estimation of clearing functions from empirical data is a nontrivial exercise for which a firm theo-

retical foundation still remains to be established. In this paper we use a simulation model as a surrogate 

for a production system to generate data from which clearing functions can be estimated. We explore the 

use of several different linear regression models for estimating clearing functions and compare the per-

formance of the production plans obtained in order to obtain insight into the structure of the clearing func-

tions and the degree to which multiple regression can be used for this purpose. 

2 PREVIOUS RELATED WORK 

A comprehensive review of the literature on production planning in general, and clearing functions in par-

ticular is beyond the scope of this paper. An extensive discussion of the state of the art in this area is giv-

en by Missbauer and Uzsoy(forthcoming) and Pahl et al.(2005; 2007). 

 

 
Figure 1: Examples of Clearing Functions (Karmarkar 1989) 

 

 Several examples of clearing functions discussed in the literature are depicted in Figure 1. The “Fixed 

Capacity” function places a fixed upper bound on production, assuming instantaneous production regard-

less of WIP level.  Graves(1986) proposes a clearing function in the form of Xt = α Wt where output Xt is a 

linear function of WIP and Wt denotes some reasonable measure of WIP. This “constant proportion” func-

tion assumes the system can be operated to maintain a fixed lead time at all reasonable utilization levels, 

and may allows unlimited production. This function may yield infeasible levels of output at high WIP le-

vels unless limited by a fixed upper bound on output, as shown in the “combined” clearing function. 

Karmarkar(1989) proposes a nonlinear clearing function where output increases as a concave non-

decreasing function of Wt, reaching an asymptotic maximum. Srinivasan et al.(1988) propose another 

clearing function that is a concave, non-decreasing function of WIP. Figure 1 illustrates these latter func-

tions as the “effective” clearing function. 
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 Clearing functions can be derived analytically using steady-state or transient queuing models, or es-

timated empirically from empirical data. Different authors have implemented somewhat different ap-

proaches. Asmundsson et al.(2009) formulate the clearing function as a relationship between the expected 

throughput of a resource in a planning period as a function of the time-average WIP level at the resource 

during the period. Other authors, such as Karmarkar(1989)  and Missbauer(2002) assume the clearing 

function depends on the expected workload, which they define as the sum of the work in process available 

at the start of the period and the material released during the period. In addition, two different functional 

forms have been suggested to estimate clearing functions from empirical data. Karmarkar(1989) proposes 

the functional form 

f (Ŵ ) =  
K1Ŵ

K2 + Ŵ
 

 where Ŵ  denotes a measure of workload, while Srinivasan et al. (1988) suggest the form  

) 

In both forms, K1 represents the maximum possible output in a period and K2 is a user-specified parame-

ter controlling the curvature of the clearing function.  

While a number of authors have proposed the use of queuing models to determine clearing functions 

analytically (Srinivasan, Carey et al. 1988; Selçuk , Fransoo et al. 2007; Asmundsson, Rardin et al. 2009), 

we shall focus in this paper on empirical estimation from simulation data, which has been the most preva-

lent approach in the literature. In this approach, the production system under study is simulated and data 

collected from the simulation model in each planning period on the quantities of interest, which depend 

on the independent variables postulated for the clearing function. Once the data have been obtained, they 

are fit empirically using some form of regression analysis to a predefined functional form. 

The estimation of clearing functions in a multiproduct environment poses a number of challenges due 

to the fact that since the potential output of the resource in a planning period is determined by the WIP 

level of all products. Asmundsson et al.(2009) show that this can lead to anomalous behavior where WIP 

of one product is held in order to process another product rapidly. These authors suggest an allocated 

clearing function formulation to resolve this difficulty, under which an aggregate clearing function for the 

resource is constructed in units of time and the resulting output capacity is allocated to the different prod-

ucts. In this paper, we take a different approach where we estimate a clearing function for each individual 

product based on the release quantities and WIP levels of this product and other products in the current 

and immediately preceding periods. The values of all possible variables of interest are regressed against 

the output of each product. In this way we hope to obtain insight into which variables are important to in-

clude in the clearing functions and which can safely be omitted. 

 In the next section we give a brief description of the simulation model of the production facility used 

as a testbed in this research. 

3 SIMULATION MODEL 

Our simulation model of a re-entrant bottleneck system was built with attributes of a real-world semicon-

ductor wafer fabrication facility (fab) environment previously studied by our research group (Kayton, 

Teyner et al. 1997). The major characteristics of wafer fabrication, including re-entrant product routings, 

unreliable machines, batch processing machines and multiple products with varying process routings and 

number of operations are included in the model. There is a distinct re-entrant bottleneck station 

representing the photolithography process.  The processing times for all other stations were scaled so that 

no non-bottleneck station would have utilization approaching that of the bottleneck. The model has batch-

ing stations (Stations 1 and 2) early in the process, representing furnaces that perform diffusion and oxi-

dation processes.  These machines can process between two and four lots, which may be of different 

product types, simultaneously as a batch. The remaining stations process one lot at a time. 
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Figure 2:   Re-entrant Bottleneck Model Process Chart for Products 

 

There are 11 machines (stations) and 3 products in this model. The number of operations for product 1, 

product 2 and product 3 are 22, 14 and 14 respectively. Machine 4 is the bottleneck station shown in red 

in  

Figure 2, and has two servers. Products 1 and 2 visit the bottleneck station 6 and 4 times respectively. 

Product 3 does not use the bottleneck machine. This product visits Station 11 which is the only station 

that is allowed to exceed 80% utilization, but it is not allowed to exceed the bottleneck utilization. Ma-

chines 3 and 7, shown in black in Figure 2, are unreliable machines whose failures cause starvation at the 

bottleneck. The system is required to produce a product mix that is 3:1:1 of Products 1, 2, and 3 respec-

tively. Details are given in Irdem, Kacar et al.(2008), and are available from the authors upon request. 

All processing times follow a lognormal distribution. The processing times are in minutes. The standard 

deviations of process times are less than or equal to 10 percent of the mean. The processing times for all 

individual products in a machine are same. Also, the processing time of a machine for different operations 

of products is same. The mean time to failure (MTTF) and mean time to repair (MTTR) distributions fol-

low gamma distributions. Machines 3 and 7 are the unreliable machines can produce a product in a very 

short time but can starve the bottleneck due to poor availability. 

In the next section we will briefly describe the production planning model based on clearing functions 

that is used to examine the performance of the different methods of estimating clearing functions. 

4 OPTIMIZATION MODEL FOR PRODUCTION PLANNING 

For all the planning models presented in this paper, we shall define an operation l to be the processing of 

a product at a specific machine k. We define L(k) to be the set of all operations l taking place on a specific 

machine k. We also note that all operations for all products that take place on a specific machine require 

same processing time.  

We define the following notation: 

Indices: 

g :  product index. 

k :  machine index. 

l :  operation index. 

Decision Variables: 

Ygpl   : output quantity of product g from operation l in period p. 

Ygp(k) : output quantity of product g from machine k in period p; Ygp(k) =   

Xgpl   : release quantity of product g in period p at operation l. 

Xgp(k)  : release quantity of product g in period p at machine k; Xgp(k) =   

Ygp    : output quantity of product type g in period p. 
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Xgp   : quantity of product g released into the first station in the line in period p. 

Wgpl : WIP of product g at operation l at the end of period p. 

Wgp(k) : WIP of product g during period p at machine k; Wgp(k) = . 

   : Fraction of capacity at machine k allocated to product type g in period p.  

Igp   : units of product g in finished goods inventory at the end of period p. 

Bgp    : units of product g backlogged at the end of period p. 

Parameters: 

hgp   : Unit inventory holding cost for product g in period p. 

bgp   : Unit backlogging cost for product g in period p.  

ωgp   : Unit WIP cost for product g in period p. 

Dgp    : demand for product g during period p. 

M(k,g)  : set of indices denoting the variables included in the Regression Model at machine k. 

   : Intercept of the clearing function for product g at machine k. 

   : Coefficient of variable n in the clearing function for product g at machine k. 

   : Maximum capacity of  machine k in units of products. Since in our simulation model all opera-

tions of all products at the same machine require the same amount of time, this is a valid representation.    

The formulation can now be given as follows: 

Objective function: 

          (1) 

Subject to: 

WIP Balance: 

        (2) 

 

Inventory Balance: 

         (3) 

 

Capacity Constraints: 

 

                                         (4) 

 

  ,                    (5) 

 

Variable Nonnegativity: 

 

, , , ,  ≥ 0            (6) 

 

where  denotes the appropriate variables identified in the regression models discussed in the next 

section. In this formulation, we aim to minimize the sum of finished goods inventory holding, WIP hold-

ing and backordering costs across the planning horizon.  The first constraint sets (2) and (3) represent 

WIP and finished inventory balance for each product at each operation. The capacity constraints (4) 

represent the clearing functions estimated for each product using linear regression as described in the fol-

lowing section. Finally, the total output of all products at each machine is constrained not to exceed the 

overall capacity of the machine in the planning period given in (5). 
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5 DATA COLLECTION AND MULTIPLE LINEAR REGRESSION MODELS 

We simulate the performance of the system over a year with release schedules corresponding to 

bottleneck utilization of approximately 49%, 60%, 70%, 77%, 87%, 94% and 99% with fifteen 

replications, collecting the release, WIP and output values observed for each product in each period for 

individual products. Based on exploratory experiments, we focused on the three linear regression models 

below. For brevity we shall state the models for Product 1 only; those for other products are specified in 

an analogous manner. 
 

Model 1: Under this model the output of each product at machine k in period p is determined by the re-

leases of all products in that period and the WIP level of each product at the start of period p.  

Y1(k,p) = +  X1,p(k)+ W1,p-1(k)+  X2,p(k)+ W2,p-1(k)+  X3,p(k)+ W3,p-1(k)   

 

Model 2: This model considers the same set of variables as Model 1, with the addition of the releases of 

Product 1 in the immediately preceding period. 

Y1(k,p) = + X1,p(k)+ W1,p-1(k)+ X2,p(k)+ W2,p-1(k)+  X3,p(k)+ W3,p-1(k)+ X1,p-1(k)  

 

Model 3: This model considers the variables in Model 2 with the addition of the releases of all products in 

the immediately preceding period. 

Y1(k,p) = + X1,p(k)+ W1,p-1(k)+ X2,p(k)+ W2,p-1(k)+ Xg=3,p(k)+ W3,p-1(k) +  

X1,p-1(k) +  X2,p-1(k)  +  X3,p-1(k)    

 

The specific forms of these models are likely to be somewhat specific to our experimental environ-

ment. For example, we very seldom had cycle times of more than two periods at any station; if longer 

cycle times were incurred, additional release variables would be likely to enter the regression equations. 

For each of these models, we applied three different regression criteria: 

1) Adjusted R square Selection (ARSQ):  

The Adjusted R-Square method finds the subset of independent variables that best predict a dependent 

variable by linear regression in the given sample, selecting the subset of dependent variables yielding the 

highest adjusted R square value.  

 

2) Forward Selection (FORWARD):  

For each independent variable, this method calculates F-statistics that reflect the variable’s contribution 

to the model if it is included. The p-values for these F statistics are compared to a threshold significance 

level.  If no F-statistic has a significance level greater than threshold level, the procedure stops. Other-

wise, the method adds the variable with the largest  F-statistic to the model. The method then recalculates 

F-statistics for the variables not yet included, and the evaluation process is repeated. Thus variables are 

added to the model one by one until no as yet unincluded variable produces a significant F-statistic.  

 

3) Backward Elimination (BACKWARD) 

This selection technique begins by calculating F-statistics for a model, including all independent va-

riables. Variables are then deleted from the model one by one until all the variables remaining in the 

model produce F-statistics significant at the threshold significance level At each step, the variable show-

ing the smallest contribution to the model is deleted.  
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6 EXPERIMENTAL DESIGN 

Our experiments are designed to examine the effects of two different factors on the performance of the 

different production planning models: the bottleneck utilization at different demand patterns, and the se-

verity of the machine failures.  

 

1) Bottleneck Utilization with Different Demand Patterns: 

Queuing theory suggests that the nonlinear relationship between resource utilization and flow times be-

comes more severe at high utilization levels. Hence we experiment with two bottleneck utilization values 

of 0.7 and 0.9. The utilization level is achieved by varying the demand of all products while maintaining 

the 3:1:1 product mix.  We also consider two different demand patterns. Under the first demand stays 

constant throughout the planning horizon, representing what ought to be favorable conditions any plan-

ning model. Under the second case the demand changes from period to period. In this latter case the first 

and last three periods demands are set constant in order to minimize beginning and ending effects. Again 

we have two varying demand patterns that will give an average bottleneck utilization of 0.7 and 0.9 over 

the planning horizon as shown in Figure 10 below for the case of 90% utilization. 

 

 

Figure 3: Varying Demand Pattern corresponding 90% Utilization 

 

2) Severity of Machine Breakdowns at Unreliable Machines:  

We would expect the performance of planning models to deteriorate under higher machine failures, 

since these increase the variability in the system. For the Short Failure case, we use MTTF = 7200 mi-

nutes and MTTR = 1800 minutes. Our period length is 10080 minutes, meaning that on average the ma-

chines will fail once in every period. In the Long Failure case, we double both the MTTF and MTTR val-

ues, thus keeping the average availability constant while increasing its variability. Under the Long Failure 

case, we estimate new clearing functions, as the nature of the underlying production system is substantial-

ly altered by the change in machine failure distributions.  

We compare the different methods for estimating clearing functions as follows:  

Step 1: Solve the LP using the clearing functions estimated by the different regression models to obtain 

a planned release schedule. 

Step 2: Simulate the operation of the fab under this release plan for fifteen replications recording the 

realized output. 

Step 3: Compare the output planned in the LP model for each planning period to the average output in 

that period over the fifteen replications. 

 We will also compare the objective function values realized by the simulated execution of the plans 

suggested by the different models. To accomplish this we take the releases from LP models and give them 

as input to the simulation model to obtain the realized average inventory, backlog and output levels. This 
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allows us to calculate the realized profit by multiplying these values by their corresponding costs based on 

the average of 15 replications. We use values of 50 for backlog cost, 35 for WIP cost, 3 for material cost, 

15 for inventory cost and 60 for revenue. We assume that WIP cost is high due to restrictions of space in 

the factory layout and use the same cost values for all products.  

For brevity we use a triple to denote each scenario. In the first position, S stands for short failures and 

L for long failures. In the second position, the numbers 70 and 90 correspond to 70% and 90% bottleneck 

utilization, respectively. In the final position the letters C and V stand for constant and varying demand, 

respectively.  V1A stands for Model 1 with Adjusted R-square selection. F and B denote Forward and 

Backward selection, respectively, while V2 and V3 denote Models 2 and 3 respectively. 

7 EXPERIMENTAL RESULTS  

Our first comparison is based on the realized profit values shown in Figure 4. To further probe the rela-

tionship between the performance of the different models,  Tukey's Studentized Range (HSD) Test is used 

to statistically compare the mean of profit values of all algorithms. This test compares the mean of every 

treatment to the mean of every other treatment; that is, it applies simultaneously to the set of all pairwise 

comparisons and identifies where the difference between two means is greater than the standard error 

would be expected to allow. The confidence coefficient for the set, when all sample sizes are equal, is ex-

actly 1 – α.  In our analysis, we use α=0.05.  

 

 

Figure 4: Profit Comparison of Models 

 The results from this test are shown in Table 1. Identical letters in the Solution (S) column represent 

mean values that are not statistically different from each other at 95% confidence level. These results 

suggest that there is no single dominant model or selection method that consistently has higher profit val-

ues than the others. However, in general, the same models with different selection procedures tend not to 

be statistically different at a 95% confidence level. This is clearly observed for the S-70-C case where 

modes are sorted by the version numbers and only one of the selection procedures is statistically different. 

For all 70% utilization cases for any demand or length of failure,  Version 1 performs best with any selec-

tion procedure except in the S-70-V case where Model 2 takes the lead. This suggests that, under low uti-

lization, the models including only variables corresponding to that period (V1) perform better than mod-

els including variables addition related to the immediately preceding period (V3). This is intuitive; at low 
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utilization the production system is likely to be able to process all work released to it in the same period, 

without carrying large amounts of WIP into future periods and maintaining low cycle times. 

 At high utilization, there is no consistent selection procedure that is dominating for low utilization, 

such as in L-70-V, top three models  in profit  are version 1s, Adjusted and forward selection yielding no 

statistical difference, whereas in  L-70-C, the top three models are all Model 1 but all selection procedures 

are statistically different.    

 

Table 1: Tukey Multi Comparison Analysis 
S-70- C S-70-V S-90-C S-90-V 

S Mean Model S Mean Mod-

el 

S Mean Mod

el 

S Mean Model 

A 106954 V1B A 92133 V2A A 103225 V1B A 88653 V3B 

B 106258 V1F A 92132 V2F A 103203 V2B A 88132 V3F 

B 106257 V1A B 88514 V3B B 102563 V2F B 87621 V2B 

C 99030 V2A C 87360 V2B B 102563 V2A B 86022 V3A 

C 99029 V2F C 87222 V3A B 101411 V1A C 83300 V2A 

D 97361 V2B C 86650 V3F B 101347 V1F C 82933 V2F 

E 94939 V3B D 83609 V1F C 94977 V3B D 76536 V1B 

F 94238 V3A D 83608 V1A C 94336 V3A E 73283 V1F 

F 94232 V3F D 82818 V1B D 91327 V3F E 72600 V1A 

L-70- C L-70-V L-90-C L-90-V 

S Mean Model S Mean Mod-

el 

S Mean Mod

el 

S Mean Model 

A 96895 V1F A 72260 V1A A 60816 V2A A 55452 V3B 

B 95702 V1A A 72061 V1F A 60796 V2F A 54082 V3F 

C 95179 V1B B 70636 V1B A 59756 V2B A 54082 V3A 

D 90746 V2A C 57790 V2B B 56116 V3B B 51221 V2F 

D 90743 V2F C 57330 V2A C 53824 V3A B 50926 V2A 

D 90668 V2B C 57326 V2F C 53426 V3F C 48155 V2B 

E 83532 V3F D 56025 V3A D 40360 V1A D 21621 V1A 

E 83480 V3B D 55876 V3F E 37600 V1B D 21009 V1F 

E 83412 V3A E 53898 V3B E 37235 V1F D 20991 V1B 

 

In the 90% utilization cases, we start to see the emergence of Model 3 as the leading regression model 

especially in the varying demand cases. These models include the releases of all products in the imme-

diate prior period in the regression model. This can be expected since for high utilization, outputs of 

products are more like to be affected by the releases of preceding periods; cycle time is long, and all the 

product released in the prior period may not have exited the resource.  Hence output of  a given product in 

a period is significantly affected both by the releases of that product in the immediate prior period (Model 

2) and also feel the effects of other products (Model 3).   

For the constant demand cases at 90% utilization, Model 3 is outperformed by Model 2 for both long 

and short failure cases. In the L-90-C case Model 2s are the top three with no statistical difference be-

tween selection procedures. In the S-90-C case, Model 2 with backward selection (V2B) shares the lead 

with Model 1 and backward selection (V1B) with no statistical difference between them. This suggests 

that under constant demand, releases and WIP of the products are quite similar from period to period, and 

releases and WIP to be somewhat correlated over time, limiting the difference between Models 2 and 3. 

 It is interesting to examine the cost breakdowns shown in Figure 5 to see where the differences in 

profit between models arise. In the vast majority of cases, as would be expected, the total revenue gener-

ated by all models is almost equal; the differences arise from the different ways in which the models 

choose to incur costs to satisfy demand. Material costs are almost constant across all models, since the all 

generate approximately the same total output. In the long failure cases, the performance of all models de-

teriorates due to the higher level of variability created by the less frequent but longer machine failures. 

The cost structure of each model under different selection procedures are quite similar, consistent with the 

findings from the Tukey analysis. In most cases, WIP cost is almost as much as all other costs combined, 

and is higher for some. This reflects that the release schedule given by the LP models tend to hold excess 

WIP in the system, and the difference between regression models is determined by which one holds less 

WIP than the others. The backlog and inventory cost trade off against each other; when there is more in-
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ventory, it means less backlog cost and vice versa. Still the leading cost in the models is WIP cost except 

in the S-70-C case which is the most favorable case for the models.  

 

 

Figure 5: Cost Allocations of Models 

In order to further explore the differences between the models we calculated the R
2
 values for all 

models on all machines. While these results are not presented in detail for brevity, it was notable that in 

almost all cases very high R
2
 values were obtained, despite the quite substantial differences in profit 

yielded by the different models. Different selection procedures result in different numbers and choices of  

variables but we show that in the profit comparison, for most of the cases, for same version different se-

lection methods are not statistically different from each other.  

8 SUMMARY AND FUTURE DIRECTIONS 

Taken together, these experimental results suggest that the task of estimating clearing functions from si-

mulation data is far from being a straightforward exercise in linear regression. As suggested by Missbau-

er(2009), the output of a production resource is highly state dependent, with the variables impacting the 

clearing function changing based on system state. The clearing functions employed by most researchers to 

date represent an average relation over a wide range of operating states, but may be quite inaccurate for a 

given sample path of system evolution. It is also interesting that all models give very high R
2
 values de-

spite the significant differences in costs they induce when used in a production planning model. Thus the 

usual goodness of fit criteria are not sufficient to determine the quality of fit of a clearing function.  

The most important future direction emerging from this work is the need to construct a mathematical 

model from first principles upon which procedures for the estimation of clearing functions, or of other, 

more suitable constructs, can be placed on a firm foundation. A number of efforts (Selçuk , Fransoo et al. 

2007; Missbauer 2009) in this direction have tried to determine clearing functions based on transient sys-

tem states. The queueing models of Riano(2003) are also an important step in this regard, and suggest a 

direction forward.  
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