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ABSTRACT 

In this paper we simulate a queueing model useful in a service system with the help of ARENA simula-
tion software. The service calls (henceforth referred to as customers) arrive to a processing center accord-
ing to a Markovian arrival process (MAP). There is a buffer of finite size to hold the customers. Any cus-
tomer finding the buffer is considered lost. An arriving customer belongs to one of three types, and the 
admitted customer is served by one of many dedicated servers (exclusively set aside for each of the three 
types of customers) or by one of many flexible servers who are capable of servicing all types of custom-
ers. The flexible servers are used only when the respective dedicated servers are all busy. A priority 
scheme is used to select the type of customer from the buffer when a flexible server is called for servicing 
the waiting customers. The processing times are assumed to be of phase type. Simulated results are dis-
cussed. 
 
1. INTRODUCTION  
 
Service systems play an important role in day-to-day situations in practice. Companies selling products 
are realizing that a customer’s choice in a product is not only influenced by the value the product is offer-
ing but also the support provided by the company after the sale. The support crew of a company involves 
specialists (or dedicated) who have expertise in serving one type of customers and generalists (or flexible) 
who have expertise to serve more than one type of customers. While flexible servers provide much 
needed flexibility to the company, they also cost more to the company as the training needed for such 
servers is much more intensive as compared to dedicated servers.  
 Recently, Chakravarthy and Agnihothri (2005) studied a service system with two types of customers 
with their own dedicated servers as well as (common) flexible servers. Assuming Poisson arrivals and ex-
ponential service times whose parameters may depend on the type of customers, they developed guide-
lines for managers to decide when to have total flexibility, total specialization, and a combination of these 
two using matrix-analytic methods. We refer the reader to Chakravarthy and Agnihothri (2005) for a lite-
rature survey on strategic use of flexibility in manufacturing as well as in service industries. 
 In this paper we consider a service system in which three types of customers arrive according to a 
Markovian arrival process (MAP), a versatile point process useful in modeling practical systems. A brief 
description of this process is given in the next section. There are four types of servers: three groups of 
dedicated servers and one group of flexible servers, who offer services to admitted customers. The service 
times are assumed to be of phase type (PH-type) that may possibly depend on the type of services as well 
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as on the type of servers (dedicated or flexible). A brief introduction to PH distributions is given in the 
next section. 
 The model presented here is motivated by an example in electronics stores such as Best buy. Best buy 
offers electronic sales, repairs, and returns for customers throughout the world.  There are four groups of 
associates to address the three services offered by Best Buy. The first group, sales associates, has respon-
sibilities that relate to selling products and services to new and existing customers who arrive to the store. 
They are not qualified to perform repairs or handle returns. They are usually not highly trained on elec-
tronics, but only to explain the features of the products. This is the reason why the median pay for retail 

sales associates is relatively low at $9.49/hr according to payscale.com (<http:// 

www.payscale.com/research/US/Employer=Best_Buy/Hourly_Rate> as of 9/7/2009). 
  The second group of servers corresponds to repair associates. These associates have the responsibili-
ty over handling of repairs and maintenance of electronics brought into the store. It is because of their ex-
perience and pay that they are dedicated to doing repair and maintenance work on electronics that come 
into the store. Repair associates are usually trained more than other associates because they need to know 
how electronics work along with the features of the products. This is the reason why the median pay for 
repair associates is generally much higher than sales associates. In some cases their pay is even higher 
than the sales associate supervisors. The median pay for repair associates is between $12.40 and $16.91 
per hour according to payscale.com as of September 2009. 
 The third group consists of customer service associates. Generally these associates have the responsi-
bility of handling product returns and replacements. These associates require little training such as the 
sales associates. They are of higher value to the company as they help to retain customers, keep the cost 
of fraud return low, and determine the liability cost of defective inventory from manufacturers. Their me-
dian pay is sometimes higher than that of sales associates.  The median pay of customer service associates 
is $9.67/hr according to payscale.com as of September 2009. 
 The final group of associates is the floaters who often start as particular type of associates and transfer 
to various types of associate groups. Since these associates have been trained in various types of jobs they 
can easily be utilized to handle responsibilities of various associate groups. Often these associates are su-
pervisors and work with all groups and are therefore called flexible servers. It is because of their exten-
sive experience and qualifications gained throughout the organization that their wages are higher. The rate 
is $19.00/hr on the average. 
 One can easily find similar examples in practice for which the current model can be applied. The pa-
per is organized as follows. In Section 2, we describe the mathematical model along with a brief descrip-
tion of the MAP. The simulation aspects of this model are given in Section 3, and illustrative simulated 
numerical examples are presented in Section 4. 
 
2. MODEL DESCRIPTION 

 
Customers arrive to a service system according to a MAP, a versatile point process introduced by Neuts 
(1979). In practice, we come across many situations where the arrival processes are not necessarily re-
newal processes. For example, consider a queueing network consisting of, say, 2 nodes. The output of 
node 1 will form the input to node 2. If we consider non-Poisson arrivals, say, to the first node, the output 
process will not necessarily be a renewal process. Thus, MAP is convenient as well as proper processes to 
model under these conditions. A MAP is constructed as follows. 
 Consider an irreducible continuous-time Markov chain (CTMC) with m transient states. At the end of 

a sojourn in state i, that is exponentially distributed with parameter λi, there are two possibilities. The first 
possibility corresponds to an “event” (or an arrival) and the CTMC can visit any of the m transient states 
including the state from which this event occurred with probability pij. The second possibility corresponds 
to no arrival and the CTMC can visit any of the m-1 transient states (all m except i) with probability qij. 
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Thus, the CTMC can go from state i to state i only through an arrival. Define matrices )( )0(

0 ijdD =  

and )( )1(

1 ijdD =  such that ,,1,,,1,,,1, )1()0()0(
mjipdmjiijqdmid ijiijijiijiii ≤≤=≤≤≠=≤≤−= λλλ  

with .1for ,1 miqp
ij

ij

j

ij ≤≤=+∑∑
≠

 By assuming that D0 to be a nonsingular matrix, the successive 

times between “events” (or arrivals) will be finite with probability one and that the process will not termi-
nate.  
 Thus, a MAP is described by the two parameter matrices (D0, D1) of order m such that the transitions 
corresponding to no arrivals are governed by D0 and the transitions corresponding to arrivals are governed 
by D1. The underlying CTMC has the generator given by Q = D0+D1.  This representation of MAP is a 
special case of batch Markovian arrival process (BMAP). This BMAP was originally introduced by Neuts 
(1979) as a versatile Markovian point process (VMPP) in 1979. MAP includes several well-known point 
processes such as Poisson, Erlang, and hyperexponential. For full details on MAP and its applications to 
stochastic models we refer the reader to the survey papers by Lucantoni (1991) and Chakravarthy (2001). 

The fundamental rate (the rate of arrivals per unit of time), λ, is given by ,eπ 1D=λ  where π is the 

steady state probability vector of the generator Q governing the underlying CTMC satisfying πQ = 0, πe 
= 1 and where e is a column vector of 1’s with dimension m.  
 A phase type distribution (PH-distribution) is obtained as the time until absorption in a finite state 
continuous time Markov chain with n transient states and one absorbing states. The generator, Q, of this 
Markov chain is of the form given by 









=

00

0
SS

Q , 

where S is an n × n matrix, So is a column vector of order n such that Se + So = 0, where e is a column 

vector of 1’s of dimension n.  In this case, we say that Y ∼ PH (ββββ, S) of order n.  The mean and variance 

of Y are given, respectively, by  ββββ(-S)-1
e, and 2ββββ (S)-2

e – [ββββ(-S)-1
e]2.  

 PH-distributions include well-known distributions such as exponential, (generalized) Erlang, and 
hyperexponentials as very special cases. For details on PH-distributions and their properties we refer the 
reader to Neuts (1995). 
 An arriving customer is of type i, i =1, 2, 3, with probability pi. Thus, the rate of arrivals of type i cus-

tomers to the system is λpi. There is a finite buffer of size K for the arriving customers to wait if all serv-
ers are busy attending to other customers. Any arrival finding the buffer to be full is considered lost. For 
our model in this paper, we assume that the buffer is common to all three types of customers. However, it 
is very easy to modify this assumption to include separate buffer for each type of customers. There are di 
dedicated type i servers as well as df flexible servers to attend to the customers. While dedicated type i 
servers can offer services only to type i customers, the flexible servers can offer services to any type. An 
arriving type i customer finding a free dedicated type i server will get into service with one of the dedicat-
ed servers. However, if all dedicated type i servers are busy and if at least one flexible server is available 
at that instant, then one of the free flexible servers will offer service. Otherwise, the arrival will enter into 
the finite buffer of size K and wait for the next available server should there be a space in the buffer; oth-
erwise the arrival will be lost. Waiting customers are served on a first-in-first-out basis within their types 
by either their respective dedicated servers or by flexible servers. When services are offered by freed flex-
ible servers there is a priority involved in the selection of the type of the customers. Any waiting type 1 
customer has the highest priority followed by type 2 and type 3. Thus, a waiting type 3 will be served by a 
flexible server when and only when there are no type 1 or type 2 customers waiting in the buffer. Note 
that this priority rule applies only when a flexible server becomes free as dedicated servers can only serve 
their respective customers. Services within a type are offered on a first-come-first-served basis by both 
dedicated and flexible servers. 
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 The service times of type i, 1 ≤ i ≤ 3, customers are assumed to be of phase type with representation 
given by (β(i), S(i)) of order ni if services are offered by dedicated servers and (β(i,F), S(i,F))) of order niF 
if services are offered by flexible servers. Let µ i, for i=1, 2, 3, denote the rate of services when offered by 

dedicated type i servers. That is, µ i = [ββββ(i) (-S(i))-1
e]-1. The rate of services when offered by flexible serv-

ers to type i customers is denoted by µ iF, for i, 1 ≤ i ≤ 3. That is, µ iF = [ββββ(i,F) (-S(i,F))-1
e]-1.  

 By keeping track of the phase of the arrival process, the number of type i customers in the system in-
cluding the number of flexible servers busy with type i customers, the model described above is amenable 
to study through the classical algorithmic methods due to Neuts (1989, 1995).  However, we have chosen 
to simulate this service system using ARENA, a simulation software, as the state space for the current 
model grows exponentially and the book-keeping becomes very intensive due to the type of priorities as-
sociated with services involving flexible servers. Furthermore, the computation of the distributions of the 
waiting time in the system of various types of customers is very complicated to describe analytically. 
Thus, simulation will not only help to compare analytical results with those of the simulated ones but also 
get a feel for the waiting time distributions.  
 
3. SIMULATION OF THE MODEL 
 
In this section we will outline how ARENA is used to simulate the service system under study. The 
ARENA modules for developing the model under study are displayed in Figures 1 through 4. The purpose 
of this section is to bring out the qualitative aspects of the service system under consideration through 
some interesting simulated (numerical) examples. 
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Figure 1: Main model 
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Figure 2: MAP arrivals 
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Figure 3: Service system 
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Figure 4: Generation of signals to release customers 
 
 For our numerical discussions, we consider five different arrival processes and three different service 
time distributions. The five arrival processes with parameter matrices D0 and D1 are as follows. 
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EXPA: Exponential:  D0 = -1and D1 = 1. 
 
HEXA: Hyperexponential: This is the mixture of two exponential with mixing probabilities 0.7 0.2, and 
0.1, and with parameters 12.7, 1.27, and 0.127. Here 
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[Note: In ARENA, HEXA is simulated using the expression: 
 DISC(0.7,EXPO(1/12.7),0.9,EXPO(1/1.27),1,EXPO(1/0.127))] 
 
MNCA: MAP with negatively correlated arrivals:  Here we take D0 and D1 to be 
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MPCA: MAP with positively correlated arrivals: Here we take D0 and D1 to be 
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 All these five MAP processes are normalized so as to have an arrival rate of 1. However, these are 
qualitatively different in that they have different variance and correlation structure. The first three arrival 
processes, namely ERLA, EXPA, and HEXA, correspond to renewal processes and so the correlation is 0. 
The arrival process labeled MNCA has correlated arrivals with correlation between two successive inter-
arrival times given by -0.4889 and the arrivals corresponding to the processes labeled MPCA has a posi-
tive correlation with values 0.4889. The ratio of the standard deviations of the inter-arrival times of these 
five arrival processes with respect to ERL are, respectively, 1, 1.732051, 5.913554, 2.44136, and 2.44136. 
 The three PH-services are as follows. While we use identical distributions for all servers for our ex-
amples here, they are not that restrictive in general. 
 
ERLS: Erlang of order 10 
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EXPS: Exponential 

ββββ = (1) , S = (- ξ). 
 

HEXS: This is the mixture of two exponential with mixing probabilities 0.9 and 0.1 and with parameters 
a and a/10, where a is chosen so as to have a desired mean. 
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 All three PH-distributions will be normalized by modifying the parameters µ, ξ, and a so as to have a 
specific mean. However, these are qualitatively different in that they have different variance structure. 
Note that the coefficient of variation of ERLS, EXPS, and HEXS are, respectively, less than 1, equal to 1 
and greater than 1. 
 For all our examples we fix λ = 1/min. We take the probabilities of an arrival to be type 1, 2, and 3, 
respectively, p1 = 0.4, p2 = 0.2, and p3 = 0.4. The service rates are taken to be µ1 = µ2 = µ3 = 0.10 per 
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minute, and µ1F = µ2F = µ3F = 0.2/3 per minute.  For the resources (number of dedicated and flexible serv-
ers), we take d1 = d2 = d3 = df = 3, and the buffer size, K = 300. 
 We define the following system performance measures for our discussion on the simulated results. 

,31,)( ≤≤ iP
i

Lost  is the probability that an arriving customer of type i is lost. 

)(all

LostP is the probability that an arriving customer (irrespective of the type) is lost. [Note that this proba-

bility is the sum of the probabilities of type 1, type 2, and type 3 customers are lost. However, this meas-
ure’s half-width value cannot be obtained from those of the individual types.] 

,31,)( ≤≤ i
i

WTSµ  is the mean waiting time (in hrs) in the system of a type i customer. 

,31,)( ≤≤ i
i

WTSσ  is the standard deviation (in hrs) of the waiting time in the system of a type i customer. 

,31,)( ≤≤ i
i

Busyµ  is mean number of busy dedicated type i servers. 

,)(F

Busyµ  is mean number of busy flexible servers. 

,31,)( ≤≤ iP
i

Flexible  is the probability that a type i customer will be served by a flexible server. 

 For the above five arrival processes by fixing the other parameters to be as indicated earlier, we ran 
our simulation model for 10000 units and five replications. Due to space limitations only selected perfor-
mance measures from the above set with the half-widths of the intervals are displayed for ERLS, EXPS, 
and HEXS, in Tables 1 through 3 below. However, we will summarize the results for other measures 
here. 
 First we consider the renewal arrivals (namely, for ERLA, EXPA, and HEXA cases). 

The measure ,31,)( ≤≤ iP
i

Lost appears to increase with increasing variability of the arrivals times. This ap-

pears to be the case even if the variability in the service times increases. 

The measures )1(

WTSµ  and )2(

WTSµ  appear to increase with increasing variability of the arrival times for the 

three service cases considered. 

The measure )3(

WTSµ appears to decrease with increasing variability of the arrivals only for ERLS and EXPS 

services; however, for HEXS services this measure appears to increase with increasing variability of the 
arrivals.  

The measure )1(

FlexibleP  appears to increase with increasing variability of the arrival times for all three ser-

vice cases studied.  

The measures ,32,)( ≤≤ iP
i

Flexible  appear to decrease with increasing variability of the arrival times for all 

three service cases studied.  
The mean waiting time in the system for admitted type 3 customers has the largest value (for all five ar-
rival processes) as compared to other two types of customers. This is as expected since type 3 customers 
have the lowest priority when served by flexible servers. This is true for all three service cases consi-
dered. 
 Whenever the flexible servers are used they seem to be busy mostly with type 1 customers, followed 
by type 3, and type 2 customers.  
 Now we compare the results of MNCA and MPCA arrivals. With respect to these two correlated 
processes, we see some interesting results. Note that these two processes have the same mean and va-
riance. However, MNCA is negatively correlated while MPCA has positive correlation.  

 It appears that MPCA has a smaller value as compared to MNCA for ,32,)( ≤≤ iP
i

Flexible  

,31,)( ≤≤ i
i

Busyµ  and .)(F

Busyµ In the case of the measure )3(

WTSµ  MPCA has a lower value only for ERLS 

and EXPS cases. For HEXS services, MPCA has a larger value for )3(

WTSµ  as compared to MNCA. For all 

other measures MPCA has a higher value as compared to MNCA.  
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 Finally, it is worth pointing out some interesting contrasts between HEXA and MPCA cases. Note 
first that HEXA has a larger variance and MPCA has the largest (positive) correlation among all five ar-

rival processes. The measures )1(

WTSµ  and )2(

WTSµ  appear to be larger for MPCA as compared to HEXA for 

all three service cases; the measure )3(

WTSµ  is higher for HEXA for all three services. The measures 

,31,)( ≤≤ i
i

Busyµ  appear to be larger for HEXA than for MPCA in all cases. This illustrates the crucial 

role played by the correlated, especially the positive one, arrivals in stochastic modeling. We have seen 
such a crucial role played by the correlated arrivals in our other stochastic models analyzed using analyti-
cal and computational modeling tools. 

 
Table 1: Selected system performance measures for Erlang services 

 

Measure ERLA EXPA HEXA MNCA MPCA 
)(all

LostP
 0.06152 0.06663 0.11485 0.06674 0.12444 

)1(

WTSµ
 0.23537 0.24704 0.39379 0.24784 1.12680 

)3(

WTSµ
 13.21500 13.13100 12.62000 13.11800 4.98260 

)1(

FlexibleP
 0.55386 0.56773 0.66735 0.56858 0.61635 

)2(

Busyµ
 1.75130 1.75580 1.72640 1.75430 1.70740 

 
Table 2: Selected system performance measures for exponential services 

 

Measure ERLA EXPA HEXA MNCA MPCA 
)(all

LostP
 0.06247 0.06800 0.10563 0.06734 0.13305 

)1(

WTSµ
 0.26777 0.27871 0.41761 0.27831 1.12240 

)3(

WTSµ
 12.97300 12.89300 12.23100 12.89700 5.13620 

)1(

FlexibleP
 0.56225 0.56868 0.64950 0.56966 0.61416 

)2(

Busyµ
 1.75110 1.74700 1.72370 1.74520 1.70900 

 
Table 3: Selected system performance measures for hyperexponential services 

 

Measure ERLA EXPA HEXA MNCA MPCA 
)(all

LostP
 0.00002 0.00022 0.02443 0.00011 0.10324 

)1(

WTSµ
 0.27206 0.28476 0.39878 0.28410 0.89044 

)3(

WTSµ
 1.53010 2.16580 6.69770 2.08980 3.63660 

)1(

FlexibleP
 0.50571 0.51399 0.58836 0.51897 0.56901 

)2(

Busyµ
 1.77980 1.79150 1.80050 1.79300 1.69790 

  
 Now we look at the fitted distributions of the waiting time distributions of various types of customers. 
Using the simulated data, ARENA has the option to identify the best fit (based on the least sum of squares 
due to error) among many distributions. In Table 4 we list the fitted distributions for various types for the 
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five arrival processes and three types of services considered. An examination of this table reveals the fol-
lowing. 
 It is worth noting that the waiting time distribution of an admitted type 3 customer is fitted using beta 
distribution for more scenarios. As is known, beta distribution has the ability to fit a variety of shapes in 
the data, and due to type 3 customers having the lowest priority (when served by flexible servers) the 
waiting times have more variability.  
 For MPCA arrivals, the fitted distributions for the waiting times for type 1 as well as for type 2 cus-
tomers are beta or lognormal indicating again the variability caused by the positively correlated arrivals. 
Normally the waiting time distribution in a queueing model is skewed to the right (to accommodate for 
some customers having to wait unusually longer than the others) and this can be seen in ARENA identify-
ing lognormal distribution to be the best fit for many combinations. 
 

Table 4: Identification of the fitted distributions for the waiting times in the system 
 

Arrival 
process 

Service  

Type 1 

 

Type 2 

 

Type 3 

ERLA ERLS GAMM(0.0346, 6.8) LOGN(0.186, 0.0688) NORM(13.2, 0.972) 

EXPS -0.001 + GAMM(0.191, 1.41) -0.001 + GAMM(0.175, 1.13) 18 BETA(30.9, 12) 

HEXS -0.001 + LOGN(0.3, 0.626) -0.001 + LOGN(0.219, 
0.509) 

-0.001 + 17 BETA(0.584, 
5.9) 

EXPA ERLS LOGN(0.248, 0.106) LOGN(0.191, 0.0735) NORM(13.1, 0.938) 

EXPS -0.001 + GAMM(0.197, 1.42) -0.001 + GAMM(0.177, 1.14) 18 BETA(30.9, 12.2) 

HEXS -0.001 + LOGN(0.316, 0.65) LOGN(0.25, 0.665) -0.001 + 19 * BETA(0.643, 
5) 

HEXA ERLS GAMM(0.114, 3.46) LOGN(0.264, 0.146) 16  BETA(29.2, 7.76) 

EXPS -0.001 + 4 BETA(1.39, 11.9) GAMM(0.242, 1.14) 18 BETA(16.8, 7.93) 

HEXS 0.001 + WEIB(0.357, 0.942) -0.001 + LOGN(0.391, 
0.974) 

NORM(6.7, 3.83) 

MNCA ERLS LOGN(0.248, 0.107) LOGN(0.191, 0.0734) NORM(13.1, 1.01) 

EXPS -0.001 + WEIB(0.291, 1.32) GAMM(0.182, 1.11) NORM(12.9, 1.2) 

HEXS -0.001 + LOGN(0.315, 
0.641) 

-0.001 + LOGN(0.235, 
0.552) 

-0.001 + 17 BETA(0.629, 
4.49) 

MPCA ERLS LOGN(1.24, 1.92) LOGN(0.773, 1.07) 14 BETA(1.05, 2.04) 

EXPS -0.001 + 6.8 BETA(0.819, 
4.27) 

6 BETA(0.672, 4.66) TRIA(0, 0.188, 15) 

HEXS GAMM(1.31, 0.678) -0.001 + 13 BETA(0.571, 
8.71) 

-0.001 + 18 BETA(0.723, 
3.07) 

 
 Now we consider two optimization problems of interest. For these optimization problems, the objec-
tive function is defined as the expected total cost per hour and is calculated based on various costs (a) for 
hiring dedicated and flexible servers, (b) for customers waiting in the system, and (c) for lost customers 
due to finite buffer. The expected total cost per unit of time, F, is then given by (recall that λ is given in 
minutes and the mean waiting times are in hours) 

   ∑∑∑
===

+−++=
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3

3

1
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1

1 60)1(6019
i

i

Lostii
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i

WTS

i

Lostiif

i

ii PpcPpcddcF λµλ ,                   (1) 

where the costs (per hour) are as given in the following table. 
 

Table 5: Various costs (per hour) 
 

(c1,1, c1,2, c1,3) (c2,1, c2,2, c2,3) (c3,1, c3,2, c3,3) 

(9.49, 12.4, 9.67) (4. 3, 2) (10, 8, 6) 
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OPT1: Optimization problem 1: We first fix λ = 1/min, p1 = 0.4, p2 = 0.2, p3 = 0.4, µ1 = µ2 = µ3 = 
0.10/min, µ1F = µ2F = µ3F = 0.2/3 per min, d1 = d2 = df = 3, and K = 300. We want to find an optimum val-
ue for d3 for the five arrival processes and for the three service cases such that the function F given in (1) 

is minimized subject to 5.0)3( ≤WTSµ hr. Using one replicate of length 10,000 hours, the output from 

ARENA is summarized in Table 6. Along with the optimum values for the number of dedicated type 3 

servers, four key measures )1(
WTSµ , )2(

WTSµ , )1(
FlexibleP , and )2(

FlexibleP are compared for the current case with the 

one for which d1 = d2 = d3 = df = 3 (see Tables 1 through 3). MPCA has the largest expected total cost per 
hour among all.  

 The measures, )1(
WTSµ  and )2(

WTSµ  are large as compared to their corresponding values displayed in 

Tables 1 through 3, for all the five arrival processes. Note that the values in Tables 1 through 3 are for d1 
= d2 = d3 = df = 3. At first it might look counter-intuitive see high values when the number of dedicated 
type 3 is increased. However, a closer look will indicate that as the number of dedicated type 3 servers is 
increased more type 3 customers will be taken into service by their dedicated servers leaving room for 
additional type 1 and type 2 customers. This results in an increase for the mean waiting times for type 1 
and type 2 customers. 
 Due to an increase in the values for d3 we see a decrease in the flexible servers attending type 3 cus-
tomers and see an increase in the flexible servers attending both type 1 and type 2 customers. 
 

Table 6: Optimum values for d3 and F[(d3*, F*)] for various arrivals and services 
 

SERVICES ERLA EXPA HEXA MNCA MPCA 

ERLS (4, 203.18) (4, 209.98) (6, 264.05) (4, 210.93) (5, 422.45) 

EXPS (5, 228.58) (5, 217.99) (5, 266.36) (5, 218.70) (5, 421.49) 

HEXS (4, 209.08) (4, 213.81) (6, 243.11) (4, 213.13) (6, 366.38) 

 
OPT2: Optimization problem 2: We first fix λ = 1/min, p1 = 0.4, p2 = 0.2, p3 = 0.4, µ1 = µ2 = µ3 = 
0.10/min, µ1F = µ2F = µ3F = 0.2/3 per min, and K = 300. We want to find optimum values for d1, d2, d3, 
and df , for the five arrival processes such that the function F given in (1) is minimized subject to 

.42,52,3,2,31,5.0 321

)( ≤≤≤≤≤≤≤≤≤ f

i

WTS ddddiµ  Using “Optquest” in ARENA with one 

replicate of length 10,000 hours the results are summarized in Table 7.  
 

Table 7: Optimum values for the number of servers 
 

ARRIVALS ERLS EXPS HEXS 

ERLA (3, 2, 4, 3, 196.20) (3, 2, 5, 3, 209.40) (3, 2, 5, 3, 205.24) 

EXPA (3, 2, 5, 3, 205.97) (3, 2, 5, 3, 215.66) (3, 3, 5, 3, 208.31) 

HEXA (3, 3, 5, 4, 264.64) (3, 3, 5, 4, 264.39) (3, 3, 5, 3, 244.26) 

MNCA (3, 2, 5, 3, 206.41) (3, 2, 5, 3, 244.26) (3, 2, 5, 3, 206.14) 

MPCA Infeasible Infeasible Infeasible 

 
 A quick look at this table reveals the following observations 
 
 For MPCA arrivals there is no feasible solution indicating that the need for a large number of servers 
in order to guarantee the mean waiting time in the system for any type customers to be no larger than 0.5 
hr. Even though type 2 customers arrive less on the average, for HEXA requires more dedicated type 2 
servers due to its high variability.  
 
 As expected the maximum number of available dedicated type 3 servers are used in most cases. 
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4. CONCLUDING REMARKS 

 
In this paper we studied a service system model in which three types of customers receive services from a 
pool of dedicated and flexible servers. Using MAP arrivals and phase type services, the complex model is 
studied through simulation using ARENA. Interarrivals times having a larger variation and or a positive 
correlation yield higher values for the mean time spent in the system. Furthermore, we observed that ser-
vicing calls that arrive in a positively correlated manner incur the largest expected total cost per hour to 
the system. Additional experimentation to look into more interesting qualitative behavior of the model is 
in progress and the results will be reported elsewhere. 
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