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ABSTRACT 

Many combat and agent-based models use time-step as their simulation time advance mechanism. Since 
time discretization is known to affect the results when numerically solving differential equations, it stands 
to reason that it might likewise affect the results of such simulations. This paper demonstrates that is in-
deed the case. Using simple queueing models, we demonstrate that the size of the time step can have a 
substantial impact on estimated measures of performance. While large time steps can execute faster than a 
corresponding discrete event model, there can be substantial errors in the estimates. Conversely, with 
small time steps the results match both the discrete event measures as well as the analytic values, but can 
take substantially longer to execute. 

1 INTRODUCTION 

Time advance mechanisms for simulations are divided between next-event, for discrete event simulation 
(DES) models (Law and Kelton 2000) and time-step, or discrete time simulation (DTS), commonly used 
in military combat models and agent-based models. Time-step is also the preferred mechanism for conti-
nuous simulations, that is those involving differential equations. The time advance method used for a par-
ticular model is often nearly invisible to the modeler and hardly ever questioned. 

It turns out that the DTS approach �������	
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of the time step, that can have a substantial impact on the results of the simulation. In most applications 
using DTS, the model does not allow changing the size of the time step, and thus introduces the possibili-
ty that the results have unknowingly been affected. When a time step model is used, there is a possibility 
that the results are in fact in large part due to the size of the time step rather than the inherent characteris-
tics of the simulation model. To our knowledge there has been no systematic investigation of the compar-
ative effects of different size time steps in such simulations, nor have there been any extensive studies of 
the differences between models constructed with one or the other approach. 

In this paper we will investigate these differences for a few simple cases. Specifically, we will study 
the impact of the size of the time step on the results as well on the execution time. The results of time step 
models will also be compared to corresponding DES models. It is important to note that the objectives of 
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results of a few simple examples suggest, the use of time step advance in simulation models is fraught 
with danger. The remedy is to use next-event time advance instead, since it appears to not have the diffi-
culties associated with time step. The literature on numerical solution to differential equations is vast, and 
it should be noted that the use of a simple stiff equation with the Euler method is only intended as a moti-
vating example. There are many superior approaches to solving differential equations; however, only the 
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Euler method has direct analogy with time step simulation models in practice. To the knowledge of the 
authors, neither time step simulation models nor agent-based models incorporate such more  sophisticated 
methods. Nor do any appear to include such features as adaptive time steps, another common numerical 
method. Although potentially harmful effects of the size of the time step is well-known in the numerical 
methods literature, there has been little work in traditional simulation modeling domains, such as queue-
ing systems. What has been done appears to confirm the fact that the use of time steps affects the accura-
cy of the results (e.g. Park and Fishwick 2008). 

First we will discuss the two different approaches to time in the next section, followed by a motivat-
ing example from differential equations. After that, we empirically investigate different outcomes as a 
function of the time advance mechanism and, in the case of DTS, the size of the time step. We finish with 
conclusions and future work. 

2 TIME STEP AND NEXT EVENT APPROACHES TO TIME ADVANCE 

In this section we will briefly present and discuss each of the two time advance methods studied in this 
paper. Each approach models the system in question as a collection of state variables, possibly including 
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The time step approach, or discrete time simulation (DTS), is the most straightforward and simple 
way for a simulation model to advance time, which perhaps explains its popularity in many application 
areas such as agent-�
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�����"t, then every state variable (and entity if used) is updated according 
to the logic defined by the model. The time-step method is used in many agent-based frameworks (e.g. 
MANA, Pythagoras) as well as many combat simulations (e.g. JANUS, COMBAT XXI). 

The next-event method starts by restricting state variables to have piecewise constant trajectories, and 
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transitions can occur at any time, and since all states are constant from any current simulation time until 
the time of the earliest state transition, time can advance to that earliest state transition time, that is to the 
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��������s, time advances in non-constant intervals, potentially jumping over relatively long pe-
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There are some advantages to using a time-step method for a particular simulation model. The first, as 
previously mentioned, is that it is extremely simple to understand. Also, it corresponds with numerical 
methods for solving differential equations, at least in the traditional sense (see the following section), so it 
provides some comfort to a modeler coming from that domain. There are few restrictions on the types of 
state trajectories that are possible, thus allowing for potentially greater latitude in defining state variables 
with such a framework. This possibly accounts for its popularity in agent-based modeling. 

There are a number of disadvantages to the time-step approach as well. Perhaps the most salient is the 
fact that time is only defined as multiples of "t and thus most state transitions occur simultaneously. This 
introduces a number of modeling difficulties (in addition to the ones we will discuss later in the paper). 

&��	
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�����"t, the values of state variables in between time steps is es-
sentially undefined. Furthermore, in many cases it is not natural for state changes to only occur at exact 
multiples. For example, consider a model that includes objects colliding with each other. In a time-step 
model, such collisions will typically occur in-between time steps, and indeed a collision is often signaled 
by the fact that at the time step, the objects are in fact embedded in each other. In the case of hard objects 
���������������������������
�������
��������������
	'����
���	
�culate when the collision actually did occur 
and compute where the objects actually are at the time increment. This is really an attempt to duplicate 
the continuous time property of next-event models but in an ad hoc manner. It implicitly recognizes the 
fact that important state transitions often do not occur at regular intervals in multiples of "t. 

Perhaps a more serious limitation is in dealing with the many simultaneous state transitions that are 
inevitable in a time-step model, since everything happens at the same time. In many situations the order 
of the state transitions can have a large effect on the behavior of the system. In a time-step simulation, this 
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occurs very frequently (i.e. at every time step), and whichever tiebreaking mechanism is used, it is bound 
to be inappropriate for at least some situations.  

In most DES models this is not encountered frequently since events can occur at arbitrary times. Al-
though it may be important in some situations to implement a tiebreaking priority scheme for events that 
happen to occur at exactly identical times, these are generally quite rare, and thus even when they exist 
will tend to not have a profound impact on the results. 

Often time discretization is accompanied by a state space discretization, for example a checkerboard 
type of movement where each entity occupies a cell and moves from one cell to an adjacent one at each 
time step. In that case, there is an upper bound on the speed of any entity, namely ,/ tx �� where "x is the 
size of the state discretization. 

DES models tend to be more efficient than corresponding time step models. Much of this comes from 
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through in a DES model. In such circumstances, the typical time step size is too small. Correspondingly, 
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		����������#�ereas the 
time step model tends to steps over these places and may not be able to capture the rate at which the 
changes are occurring. In these circumstances the time step is too big. 

Finally, since the size of the time step must often be set very small to capture essential elements of the 
model, execution times can become much greater than for corresponding DES models. This will be ex-
plored further when we study a specific situation with both a time step and DES approach. 

3 MOTIVATING EXAMPLE: SOLVING DIFFERENTIAL EQUATIONS 
To motivate the concern over the accuracy of time-step models, we will first look at a classic approach to 
numerically solving differential equations, the Euler method (Golub and Ortega 1992). Although this is 
the simplest, and perhaps most naïve approach, it is appropriate to study in this context because it is the 
one that is most analogous to a standard time-step simulation. In one dimension a simple linear differen-
tial equation has the form. 

 

 . ),( tyf
dt
dy

�  (1) 

 
The Euler method turns the differential equation into a difference equation by discretizing time into inter-
vals of ���
�"t, thus turning Equation (1) into Equation (2) below (Golub and Ortega 1992). 

 

 )),(()()( ttyfttytty ������  (2) 

 
Equation (2) can be thought of as a first-order Taylor series approximation to Equation (1). Note how Eq-
uation (2) is analogous to a typical time-step simulation model. The new state value is the old state value 
plus an increment. The Euler method starts with an initial value y(0) and then uses Equation (2) to update 
the value of the state y at successive time increments. 

It is well-known that difficulties arise with the Euler method even with a very simple linear equation. 
For example, taking 100100),( ��� ytyf  and 2)0( �y (this is a so-	
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ing numerical solution is wildly different for different ���
��������
���
��"t (See Figure 1). 
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Figure 1: Euler Solutions to Stiff Equation 

5����
��
�����"t less than 0.02, the steady-��
�
��
��
����6�<����
����
	�
���
������������"t = 0.019 it 
��	���
�
��
�������
��
��
����
��
����	���
�������>�#
�
�������"t = 0.021 there is a qualitative difference 
�����
������������
������#����������	���
�����
�
�����
�#������������
�
������
����������

�����	���
������ 

From a certain perspective, such a disparity between results based only on the size of the time step 
should be considered a red warning flag for all time-step models. If there can be such an effect for this 
simple, one-state linear model, what unknown effects might the size of time steps be having on more 
complicated models? How confident can a modeler be that the results obtained from a simulation (or 
agent-based) model are qualities inherent in the model itself versus anomalies introduced by the discreti-
�
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�@ 

3.1 Quantization Method 
An elegant and efficient approach to solving differential equations with a DES approach was introduced 
by Ziegler, quantization (Zeigler, Praehofer, and Kim 2000; Nutaro 2005). A simplified version involves 
discretizing the state space instead of the time domain. For a simple differential equation model such as 
discussed in the previous section, the simplest approach is to quantize the state space to be multiples of 
some fixed quantity D. Depending on the sign of ),,( tyf the next level of state will be one higher or one 
lower than the current state. The time for that transition to occur can be approximated by solving Equation 
(2) for "t. Although this approach was originally formulated in terms of DEVS (Zeigler, Praehofer, and 
Kim 2000), our simplified version can be compactly expressed as an Event Graph (Schruben 1983), as in-
dicated in Figure 2. 

Run Step

}{ 0yy � )},(sgn({ tyfDyy ��
),( tyf

D

)0),(( �tyf

)0),(( �tyf

),( tyf
D

 
Figure 2: Event Graph for Quantized Model 
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 The parameters for the model in Figure 2 are the initial value, ,0y and the state space quantum, D; 
the state variable is y. 

When this approach was applied to the Stiff linear equation of the previous section, the results were 
much more satisfactory than the Euler method (See Figure 3). For one thing, there was little deviation in 
behavior for vastly different sized quanta D. All solutions converged quickly to the neighborhood of the 
steady-state value of 1.0. Those for which the steady-state value was in fact a multiple wound up staying 
at the correct value, whereas those which were not a multiple of the quantum ended up oscillating around 
the steady-state value.  Even then, the state values were never more than D �������
�����
���
lue. 

 
 

 

Figure 3: Quantized Solution for Various State Quantizations 

The relative ease with which the quantization approach can be implemented along with its superior 
robustness with respect to the Euler method suggests strongly that a DES approach may be generally pre-
ferable to a time-step approach in many more areas than previously thought. 

We now turn to simple queueing models to demonstrate the contrast between time-step and DES ap-
proaches. 

4 QUEUEING MODEL 

For our purposes, an M/M/k model is ideal since there are closed-form equations for steady-state meas-
ures. This allows the simulation results to be compared with the known exact results. 

4.1 DES Model 

The DES version of the model was implemented in Simkit (Buss 2010), a package written in Java�. It is 
based on the Event Graph model shown in Figure 4. 
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Figure 4: Event Graph for Multiple Server Queue 

4.2 DTS Model 

Although queueing models are traditionally modeled using DES, occasionally a time-step approach has 
been used (for example, Lozano and Macias 2004). To create a time-step version of the M/M/k queue re-
quires the observation that the exponential distribution used for inter-arrival times and service times in the 
DES model can be approximated by the appropriate geometric random variables, which in turn can be 
generated by successive Bernoulli trials. Thus, for example, at each time step an arrival will occur with 
probability .Ap  5���
����
���
�����"t, the interarrival distribution is Nt �� where ).Geom(~ ApN  The 
mean is Apt /�  ���
��

�����
�
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� ./	tpA ��  The service times are han-
dled in a similar manner. 

4.3 Analytical Results 
For the M/M/k queueing model, there are well-known closed-form solutions for steady-state measures 
(Gross and Harris 1998). Specifically, if 0P is the probability the system is empty, L the expected number 
in the system, and W the expected time in the system, 
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where \������
�
����
���
�
��� the service rate, and ./ �	� k�  

4.4 Simulation Results and Comparison with Analytic Results 

The simulation models were executed starting in an empty and idle state. For the baseline system to 
�������#
�	���
�\�^�_��� = 4, and k = 2, resulting in a traffic intensity of � = 0.875. Later higher intensi-
ties will be considered. `������������
��
�
��������������	���
�����	�
�
���
�����
��#
��-�����
����������
this study we wanted to examine the differences in how steady state was achieved, and so collected output 
for all customers starting from the first. For 400 independent replications, the results were averaged and 
as shown in Figure 5, show that the steady state is approached fairly rapidly. By time 1000, the modeler 
can be fairly certain that steady-state has been approximately reached. 
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Figure 5: Output Measures for DES Model 

The DTS model was then run in a similar manner for three different sizes of time step shown in Fig-
ure 6. 
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Figure 6: Output Measures for DTS Model with Different Time Steps 

These results show that, even though the qualitative behavior is similar to the DES output for a very 
smaller time steps (�� = 0.0002 and 0.002), for the larger time step there is a substantial gap, even when 
the simulation was run for substantially longer time. 

The DTS systems were then run even longer, for 3000 time units, with 1000 replications and confi-
dence intervals computed for the two larger time steps. The results are summarized in Table 1. 

Table 1. DES, DTS, and Exact Solutions for the M/M/2 Queue 

 

 

 

 

 
 As can be seen from Table1, the DES model produced highly accurate estimates, whereas for the 
DTS models, the smaller size resulted in somewhat less accurate estimates (although the confidence in-

Exact
DES DTS

Results of 1000 Runs �������� ���������
Mean 95% CI Mean 95% CI Mean 95% CI

Avg. # Cust. in System 7.466 7.449 (7.374,7.524) 8.088 (8.037,8.139) 7.47 (7.426,7.514)
Avg. Time in System 1.066 1.065 (1.064,1.067) 1.157 (1.150,1.164) 1.068 (1.062,1.074)
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tervals did include the true means), whereas the larger time step produced estimates that were substantial-
ly off, with confidence intervals that did not cover the true means. 

The situation deteriorates even more as the time step is increased. Figure 7 shows the percent error for 
the average number in the system as the time step is increased. As expected, the error grows considerably 
as time step as large as 0.1 is used. 
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Figure 7. Percent Error as a Function of Time Step for DTS Models 

A final set of experiments was run varying the number of servers and the traffic intensity. For these, 
the service time was fixed at � = 4 , with the number of servers k varied between 3 and 5 and traffic inten-
sities running from 0.1 to 0.95. The results are shown in Table 2. 

Table 2. Percent Error with Different Values of k and � $�+�
���^�
�
	���������
% 

   DES DTS
    �������	 �������� ��������� ����������

k 
 Err%ExeT Err% ExeT Err% ExeT Err% ExeT Err% ExeT

3

0.1 0.0 0.166 67.7 0.015 6.0 0.35 0.3 2.85 0.3 3.5
0.3 0.4 0.51 43.8 0.02 1.2 0.4 0.3 4.55 0.5 5.77
0.5 0.1 0.81 22.8 0.03 0.1 0.6 0.2 5.15 0.1 8.54
0.7 0.2 1.19 5.3 0.033 4.0 0.7 0.6 6.67 0.3 13.6
0.9 0.9 1.51 14.0 0.04 1.4 0.8 3.7 7.72 1.6 18.75

0.95 0.5 1.58 19.2 0.05 3.7 1.2 8.2 9.22 3.2 24.5

5

0.1 0.0 0.28 97.4 0.025 5.4 0.38 0.6 3.24 0.2 4.8
0.3 0.4 0.83 96.2 0.03 3.2 0.53 0.1 5.7 0.5 8.88
0.5 0.0 1.42 55.4 0.042 2.0 0.71 0.0 8.61 0.1 14.65
0.7 0.1 1.97 22.5 0.053 1.1 0.93 1.4 11.9 1.6 19.43
0.9 0.1 2.58 3.8 0.06 11.9 1.12 8.1 13.5 0.7 26.1

0.95 0.7 2.66 10.3 0.085 7.0 1.2 6.8 14.94 2.0 38.36
 
These results confirm the previous ones that with very small time steps relatively accurate results can 

be obtained, but with larger ones results can be substantially off. This disparity tends to increase with in-
creased traffic intensity. 

The execution times are also shown in Table 2. With the rapidly changing environment for compu-
ting, any such performance measures must be taken with a grain of salt as absolute measures. However, 
since all simulations were  executed on the same computer, the relative performance gives useful informa-
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tion. In particular, Table 2 shows that for large time steps, the DTS model executes quite rapidly, much 
faster than the DES model. However, the errors in the output estimates for these time steps certainly out-
weigh any performance benefits. Conversely, even though the smallest time step gives relatively accurate 
results comparable to the DES model, there is a substantial performance penalty more than an order of 
magnitude in some cases. 

5 CONCLUSIONS AND FUTURE WORK 

This paper has shown that the time step approach in simulation models is analogous to the Euler method 
for the numerical solution to differential equations. It has further demonstrated that, at least for some sim-
ple queueing models, many of the same problems demonstrated by the Euler method for differential equa-
tions arise for simulation models as well. The choice of time step can have a substantial impact on the re-
sults of the simulation as well as on the execution time. Briefly, with relatively large time steps, the 
incorrect answer is obtained very rapidly, whereas for the small time steps required to obtain accurate re-
sults, there is a corresponding substantial performance penalty. 

Perhaps more serious is the fact that the modeler may be completely unaware of the fact that the size 
of the time step is impacting the measures obtained from the simulation model. Whether aware or  not, 
since the time step magnitude can affect the results, there is always some uncertainty as to whether it in 
fact is influencing the results. The examples in this paper were chosen because there were analytic results 
available to verify the accuracy of the simulations. In general, simulation models are used precisely in sit-
uations for which there are no analytic results known. In such circumstances, the use of naïve time step is 
not advised. Based on the few examples presented here, as well as more models analyzed in follow-up 
work, the next-event time advance used by DES models appears to be uniformly superior to the standard 
time-step approach commonly used. 

As mentioned previously, this research is not intended to address optimal solutions of differential eq-
uations or other numerical methods. In those situations there are many well-known approaches that are 
superior to the Euler method. Nor is this work attempting to find ideal or optimal values of time step in-
tervals. Rather, the conclusion is that in simulation modeling applications (including most agent-based 
applications) the use of next-event time advance provides a more reliable and accurate methodology than 
the use of time-step as it is typically employed. 

This has implications for agent-based models, which are almost universally implemented in a time-
step manner. The time advance method for such models is almost never questioned. Yet the results shown 
here suggest that there should be some concern about the efficacy of any results obtained using time step 
models. ��
���
��
�����
���
��� �����
���
�������
	�����#
�
�	
��
����������large� in any absolute sense, 
and not even relative to the parameters of the model. Yet the disparity between the known analytic solu-
tions and the errors in the estimates produced in those runs ought to give any modeler pause. 

All of the results of this research (the models presented here as well as those studied in other related 
work) suggest that whenever there is a choice between using a discrete event simulation (DES) and a 
time-step approach to building a model, that the former should be chosen. In situations for which there 
may not be an existing standard DES approach, the modeler should also be aware that DES has consider-
able flexibility and modeling power, especially when used with a compelling modeling methodology such 
as Event Graphs (e.g. Allore and Schruben 2000; Buss and Sanchez 2005). 

This work is continuing by examining more complex models still within the queueing realm (for ex-
ample, adding balking, reneging, and time-varying parameters) as well as in military combat models as 
well as models of behavior and social interactions. The area of agent-based modeling is a rich one that is 
gaining much attention. Although there have been some attempts to incorporate DES concepts in agent-
based models, there has not been a full-fledged DES world-view incorporated into an agent-based ap-
proach. All agent-based implementations of which we are aware and explicitly or implicitly time-stepped 
in their world view. Specifically, the logic is generally to advance the clock by a time interval, then up-
date the state of every agent. A DES world view would model each agent as staying in whichever state it 
was in, and only changing when some event occurred. For example, an agent that was moving towards a 
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destination would continue in that state until the destination was reached (an event) or some intervening 
event caused a change to its (internal) state. This approach will be fleshed out in future work. 
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