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ABSTRACT

This paper presents a new approach to the construction of game theoretic metamodels from data
obtained through stochastic simulation. In this approach, stochastic kriging is used to estimate payoff
functions of players involved in a game represented by a simulation model. Based on the estimated
payoff functions, the players’ best responses to the values of the decision variables chosen by the
other players are calculated. In the approach, the concept of best response sets in the context of game
theoretic simulation metamodeling is applied. These sets contain the values of the players’ decision
variables which cannot be excluded from being a best response and allow the identification of the
potential Nash equilibria. The utilization of the approach is demonstrated with simulation examples
where payoff functions are known a priori. Additionally, it is applied to data acquired by using a
discrete event air combat simulation model.

1 INTRODUCTION

Game theory is a branch of applied mathematics that deals with the behaviour of individuals in
situations where multiple decision makers are simultaneously trying to achieve their own objectives
(see, e.g., Fudenberg and Tirole 1991, Gibbons 1992). Examples of such situations can be found
in economics, biology, and military operations. In a game, the decision makers are called players
and the decision alternatives available to the players are represented by the decision variables. The
achievement of the players’ objectives is represented by payoff functions, which depend on the decision
variables of all the players. The best response of a player is the value of the decision variable that
maximizes the player’s payoff function when the values of the decision variables of the other players
are given. The solution of the game called a Nash equilibrium is obtained when the values of the
decision variables of all the players are best responses to each other. In this solution, no player has
an incentive to unilaterally change their decision.

If the situation depicted as a game is sufficiently complex, it may be impossible to analytically
represent the payoff functions of the players. In such a situation, the calculation of the values of the
payoff functions can be carried out using a suitable stochastic simulation model (see, e.g., Law 2006).
Forexample, anair combat scenario may be modeled using discrete event simulation where uncertainties
such as radar detections are taken into account by sampling from relevant probability distributions.
Such a simulation model takes the values of the decision variables as input and gives a sample of
the values of the payoff functions as output. An estimate for the value of the payoff function is then
obtained based on the sample. However, the number of evaluations required to calculate the estimate
may be large making the simulation time consuming. In addition, the values of the payoff functions
can only be estimated with a discrete set of values of the continuous decision variables. Therefore,
determining the best responses and the Nash equilibria in this manner requires significant time and
computational effort.

This issue can be overcome by using a suitable experimental design (see, e.g., Montgomery 2001)
to obtain a sample of the values of the payoff functions in order to be able to construct a simulation
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metamodel (see, e.g., Blanning 1974 and Friedman 1996) for the simulated game. The metamodel
gives estimates for the payoff functions which are used to solve the best responses and the Nash
equilibria of the game. The use of the metamodeling approach typically requires less computational
effort than solving the best responses and the Nash equilibria directly from the simulation model.

Game theoretic metamodels have been previously used in the analysis of air combat simulation
models (Poropudas and Virtanen 2010). This paper introduces a new approach to the construction of
game theoretic metamodels based on simulation data using stochastic kriging (Ankenman et al. 2008),
a global interpolation technique. Stochastic kriging is an extension of deterministic kriging originally
developed for geostatistics (Sacks, Welch, Mitchell, and Wynn 1989, Matheron 1963). Although de-
terministic kriging has been applied in analyzing data generated by stochastic simulations (e.g.,
Kleijnen 2009), it does not take into account random variations present in the simulation data. This
limitation is rectified in stochastic kriging which is used in this paper to estimate the players’ payoff
functions. The estimated payoff functions are then used to calculate the set of the values of the
decision variables that cannot be excluded from being best responses for each player. Based on these
best response sets, potential Nash equilibria for the simulated game are identified. The application
of stochastic kriging extends previous game theoretic metamodeling approaches by allowing the
construction of global estimates for the player’s payoff functions.

The paper is organized as follows. Section 2 reviews the required game theoretic concepts as
well as the theory of stochastic kriging. In addition, Section 2 introduces the construction of game
theoretic metamodels and the determination of the best response sets using stochastic kriging. Section
3 demonstrates the use of stochastic kriging with three examples of two-player games. In the first
two examples, payoff functions are known a priori. The purpose of these examples is to compare the
best responses and the Nash equilibria obtained with game theoretic metamodels with the true ones.
The third example illustrates the use of stochastic kriging in the construction of a game theoretic
metamodel based on data acquired by using a discrete event air combat simulation model. In this
example, the functional forms of the payoff functions are unknown. Conclusions are given in Section
4.

2 CONSTRUCTION OF A GAME THEORETIC METAMODEL BASED ON SIMULATION DATA

2.1 Required Game Theoretic Concepts

This section introduces game theoretic concepts required in the paper. Now, the discussion is limited
to two player games but it could be extended analogously to games with several players. In addition,
each player has only one decision variable. A strategic-form game consists of a set of players, decision
variables available to the players, and payoff functions of the players. The decision of player i is
described by the decision variable xi ∈ Xi. The rule by which a player makes the decision, i.e.,
selects the value of the decision variable is called the player’s strategy. The achievement of a player’s
objective is represented by a payoff function. The payoff function Yi of player i maps the decisions of
both players to a real number, i.e., Yi(x1,x2) : X1×X2 → R. The best response of player 1 against the
value of the decision variable chosen by player 2 is the value x∗1 that maximizes the payoff function
of player 1 when the value of the decision variable of player 2 is x2, i.e., x∗1 = argmaxx1

Y1(x1,x2).
A Nash equilibrium (x∗1,x

∗
2) for the game is obtained when both players simultaneously select their

best responses to the other player’s best response, i.e., for player 1 x∗1 = argmaxx1
Y1(x1,x∗2) and for

player 2 x∗2 = argmaxx2
Y2(x∗1,x2). Thus, in a Nash equilibrium, neither player has an incentive to

unilaterally change the value of the decision variable.
For the types of games considered in this paper, a Nash equilibrium exists if the players are

allowed to choose the values of their decision variables according to probability distributions, also
called mixed strategies (see, e.g., Fudenberg and Tirole 1991). If the players select a single value
for their decision variable, referring to a pure strategy, the Nash equilibrium may not exist or it may
not be unique. However, the aim of the approach is to compare decision alternatives available to the
players, and there are no real world practices to which the use of mixed strategies could be compared
(Poropudas and Virtanen 2010). Therefore, only pure strategies are used in this paper. The discussion
is also limited to games of perfect information, i.e., both players know each other’s payoff functions
as well as the domains of each other’s decision variables (Fudenberg and Tirole 1991).

The best response of a player is calculated by maximizing the player’s payoff function while
keeping the value of the other player’s decision variable fixed. In situations considered in this paper,
the value of the payoff function can only be obtained at discrete points based on the output of a
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stochastic simulation model. As the players’ decision variables are continuous, it is not possible to
calculate the best responses for all the values of the decision variables directly from data produced
by the simulation. Instead, a suitable experimental design is used to construct a game theoretic
metamodel containing estimates of the payoff functions for all combinations of the values of the
decision variables. The best responses as well as the Nash equilibria are then calculated according to
the estimated payoff functions.

2.2 Stochastic Kriging

This section presents the use of stochastic kriging in the construction of a game theoretic metamodel
for a two player game. Now, a player’s payoff is an unknown functionY (x) where x = (x1,x2)

T denotes
the vector of the decision variables of the players. The unknown function can only be evaluated with
discrete values of the decision variables using a stochastic simulation model. Each evaluation of the
unknown function contains random variation, i.e., noise. Thus, the function is sampled ni times at
point xi = (xi,1,xi,2)

T where xi,1 denotes the value of the decision variable for player 1 at design site
i and xi,2 likewise for player 2. An estimate for the value of the function is then obtained in the form
of the sample mean denoted by Y (xi). In order to understand the behaviour of the payoff function
over the domains of the decision variables, a suitable experimental design consisting of design sites
and numbers of evaluations (xi,ni), i = 1, . . . ,k is chosen (see, e.g., Montgomery 2001).

The purpose of a game theoretic metamodel is to evaluate the value of the unknown payoff
function at an arbitrary point x0 based on the samples obtained from the stochastic simulation model.
In deterministic kriging, the unknown function is interpolated by using the combination of a regression
function f(xi)

T β and a random field M(xi) (Sacks, Welch, Mitchell, and Wynn 1989)

Y (xi) = f(xi)
T β +M(xi) , (1)

where f(xi) is a vector of known functions and β is a vector of parameters. M(xi) is a stationary
Gaussian random field which represents local deviations from an underlying trend described by the
regression function. The random field is assumed to exhibit positive spatial correlation which is
formalized by stating that the covariance of the value of Y (xi) between two design sites xi and x j is
of the form

ΣM(xi,x j) = σ2RM(xi −x j,θ) . (2)

Here, σ2 is the variance of M(xi) for all xi, RM(xi−x j,θ) is a correlation function depending on the
distance between design sites xi = (xi,1,xi,2)

T and x j = (x j,1,x j,2)
T , and θ = (θ1,θ2)

T is a vector of
unknown parameters. The usual assumption in kriging is that the two-dimensional correlation function
is a product of one-dimensional correlation functions (Sacks, Welch, Mitchell, and Wynn 1989), i.e.,

RM(xi −x j,θ) = R1(xi,1 − x j,1,θ1)R2(xi,2 − x j,2,θ2) . (3)

With the assumptions related to Eq. (1), the estimate Ŷ (x0) of the function Y (x0) minimizing
the mean square error (MSE) is a weighted combination of the sample means Ȳ (xi) where the
weights depend on x0 (Sacks et al. 1989). Deterministic kriging is an exact interpolation method,
i.e., Ŷ (xi) = Y (xi) if xi is one of the design sites. This feature is desirable when dealing with
deterministic simulation as it ensures that the estimate matches the observed value of the unknown
function. However, when the samples are obtained using stochastic simulation, the requirement of
exact interpolation is no longer necessary or even reasonable.

Stochastic kriging (Ankenman, Nelson, and Staum 2008) has been introduced as a way of over-
coming limitations of deterministic kriging. In stochastic kriging, the random variation present in
each evaluation of the payoff function is taken into account. Thus, the estimated value of the function
does not have to exactly match the sample mean of the unknown payoff function at a design site.
The representation used to estimate the value of the function Y (xi) on evaluation h at design site xi
is (Ankenman, Nelson, and Staum 2008)

Yh(xi) = f(xi)
T β +M(xi)+ εh(xi) . (4)
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Eq. (4) is similar to Eq. (1) except the term εh(xi) is added to represent the random variation in
evaluation h at design site xi. The errors εh(xi) are assumed to be normally distributed with mean 0
and variance V (xi) and to be independent of each other and the random field M(xi). According to
the assumptions related to Eq. (4), the estimate of the unknown function that minimizes the MSE is
(Ankenman, Nelson, and Staum 2008)

Ŷ (x0) = f (x0)
T β +ΣM(x0,x)T [ΣM(x,x)+Σε(x,x)]−1(Ȳ− f (x0)

T β1k) . (5)

In the above, x refers to a k× n matrix of the values of the decision variables at the design sites
(x1, . . . ,xk)

T , ΣM(x0,x) refers to a k×1 vector where element i is ΣM(x0,xi), and ΣM(x,x) is a k×k
matrix where the element (i, j) is ΣM(xi,x j). In addition, Σε denotes the covariance matrix where
the element (i, j) is Cov[∑ni

h=1 εh(xi)/ni,∑
n j
h=1 εh(x j)/n j], Ȳ is a k×1 vector of the sample means of

the unknown payoff function at the design sites, and 1k is a k× 1 vector of ones. The MSE of the
estimate presented in Eq. (5) is

M̂SE(x0) = ΣM(x0,x0)−ΣM(x0,x)T [ΣM(x,x)+Σε(x,x)]−1ΣM(x0,x) . (6)

In practice, estimating a stochastic kriging model proceeds by first calculating the sample variances
V̂ (xi) at design sites xi based on the observed value Yh(xi) of the unknown function at evaluation h,
i.e.,

V̂ (xi) =
1

ni −1

ni

∑
h=1

(
Yh(xi)−Y (xi)

)2
, (7)

and then calculating the estimate of the covariance matrix Σε . This is a diagonal matrix where
the diagonal elements are the sample variances divided by the number of evaluations, i.e., Σ̂ε =

Diag
{

V̂ (x1)/n1, . . . ,V̂ (xk)/nk

}
. Then, the functional form of the correlation functions Ri(xi−x′i,θi)

presented in Eq. (3) is chosen. Once the correlation functions are selected and the estimate Σ̂ε is
known, the least squares estimates for the parameters β in Eq. (4) are obtained. Finally, the maximum
likelihood estimates of the parameters σ and θ in Eqs. (2) and (3) are obtained using a suitable
nonlinear optimization method.

The kriging models constructed in this paper are estimated by using the stochastic kriging package
developed by Nelson et al. (2010), see also (Staum 2009), which is also used to obtain the estimates
for the values of the unknown payoff functions as well as the MSE at alternative x0.

2.3 Best Response Sets

Once the game theoretic metamodel containing estimates for the players’ payoff functions is con-
structed, it is possible to determine the best responses of the players. However, due to random
variations present in each evaluation of the payoff function, there is a range of values of a player’s
decision variable for which the value of the payoff function does not differ statistically significantly
from the value obtained at the best response. These values form the best response set of a player. In
the following, the estimate of the payoff function of player 1 Y1(x1,x2) is denoted by Ŷ1(x1,x2) where
xi is the decision variable of player i.

Now, the best response x∗1 of player 1 to the value of the decision variable x2 is calculated by
maximizing the estimated payoff function of player 1, i.e., x∗1 = argmaxx1

Ŷ1(x1,x2). The similar
maximization is carried out for player 2 giving the best response of player 2, i.e., x∗2. Keeping the
value of the decision variable of player 2 fixed, it is possible to determine whether the value of the
payoff function at (x′1,x2) differs statistically significantly from that obtained at the best response
(x∗1,x2) by using a statistical test where the null hypothesis is

H0 : Y1(x
′
1,x2) = Y1(x

∗
1,x2) , (8)
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and the alternative hypothesis is

H1 : Y1(x
′
1,x2) < Y1(x

∗
1,x2) . (9)

Here, the test statistic is

Z(x∗1,x
′
1) =

Ŷ1(x∗1,x2)− Ŷ1(x′1,x2)

SD(x∗1,x
′
1,x2)

, (10)

where SD(x∗1,x
′
1,x2) denotes the standard error of the difference Ŷ1(x∗1,x2)− Ŷ1(x′1,x2). The test

statistic Z(x∗1,x
′
1) follows a normal distribution with mean 0 and variance 1. As Ŷ1(x1,x2) is an

unbiased estimate for the value of the payoff function (Ankenman, Nelson, and Staum 2008), the
MSE calculated according to Eq. (6) is also the estimate for the variance of the value of the payoff
function at (x1,x2), denoted by σ̂2

Y1
(x1,x2) = M̂SE

(
(x1,x2)

T
)
. The MSE presented in Eq. (6) together

with the correlation function R1(x∗1 − x′1,θ1) is then used to calculate S2
D(x∗1,x

′
1,x2) as follows:

S2
D(x∗1,x

′
1,x2) = σ̂2

Y1
(x∗1,x2)+ σ̂2

Y1
(x′1,x2)−2R1(x

∗
1 − x′1, θ̂1)σ̂Y1(x

∗
1,x2)σ̂Y 1(x

′
1,x2) , (11)

where θ̂1 is the maximum likelihood estimate for the parameter θ1 of the correlation function. It should
be noted that the estimate of the variance σ̂2

Y1
(x1,x2) also depends on the values of the parameters

Σε , β , σ , and θ obtained when estimating the stochastic kriging model. Even though these are
stochastic in nature, Eq. (6) does not take this randomness into account, which can lead to the
underestimation of the true variance (Kleijnen 2008). To correct this shortcoming, Kleijnen suggests
the use of bootstrapping or cross-validation. However, in this paper, these approaches are omitted.

If the level of significance for the test is α = 0.05, the acceptance region for the null hypothesis
presented in Eq. (8) consists of the region Z(x∗1,x

′
1) < Zα = 1.65. After determining the estimated

best response of player 1 against the given x2, the best response set is then calculated by using the
statistical test with varying values of x′1 while keeping x∗1 and x2 fixed. Eqs. (8), (9), (10), and (11)
can also be written for player 2 by interchanging the decision variables x1 with x2 as well as replacing
Ŷ1(x1,x2) with Ŷ2(x1,x2) and R1(x∗1 − x′1,θ1) with R2(x∗2 − x′2,θ2). The use of the statistical test is
illustrated in Fig. 1 and the concept of the best response sets in Fig. 2.

Ŷ1(x1,x2) Ŷ1(x′1,x2) Ŷ1(x′1,x2)

Ŷ1(x∗1,x2)

Ŷ1(x∗1,x2)−

Ŷ1(x∗1,x2)−

Zα SD(x∗1,x
′
1,x2)

x′1 x∗1 x1

Figure 1: The use of the statistical test for determining the best response set of player 1. The solid line represents the

estimated payoff function Ŷ1(x1,x2) and the estimated best response of player 1 is denoted by x∗1. The dash-dotted line
represents the 1−α confidence interval for the value of the estimated payoff function obtained with the best response.
The best response set is represented by the thick segments along the x1-axis. For example, the value of the payoff
function at x′1 is not statistically significantly different from the value of the payoff function at x∗1.

The best response set of a player represents the values of the decision variable which cannot be
excluded from being the best response to the value of the decision variable chosen by the other player.
Similarly, the intersection of the best response sets represents the values of the players’ decision
variables which are potential Nash equilibria. If the best response of player 1 in a game represented
by stochastic simulation is not unique, the function Y1(x1,x2) has a non-unique maximum with fixed
x2, leading to a non-unique Nash equilibrium. Despite this, the estimated best response is typically
unique due to the random variation present in each evaluation of the payoff function. This variation
is taken into account when constructing the best response set according to the acceptance region, and
the original non-unique Nash equilibrium can be found.
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x1

x2

0

1/2

1/2

1

1

Figure 2: An example of the best responses and the best response sets in a two player game. The decision variables of
player 1 and player 2 are denoted by x1 and x2. The solid blue curve represents the best response of player 1 and the
dashed red curve the best response of player 2. The three Nash equilibria are circled. The best response sets of the
players are represented by the shaded blue and red area around the best responses of player 1 and 2. The intersections
of the best response sets, i.e., the potential Nash equilibria are shaded purple.

3 EXAMPLES OF GAME THEORETIC METAMODELS

3.1 Known Payoff Functions

In this section, two examples of game theoretic metamodeling are presented. In the underlying
games, the payoff functions are known a priori, and thus the best responses and Nash equilibria can be
calculated. Both examples deal with zero-sum games, i.e., Y1(x1,x2) =−Y2(x1,x2). The experimental
design is obtained using Latin hypercube sampling (LHS) (McKay, Beckman, and Conover 1970).
This sampling method is used as it ensures that samples are generated evenly from the domains of
the decision variables even when the payoff function depends on more than two variables without
increase in the number of necessary evaluations.

After the experimental design consisting of 50 design sites is selected, the payoff function is
evaluated ni = 100 times at each design site xi. For each evaluation, a normally distributed noise term
is added with µ0 = 0 and σ2

0 = 0.16. The regression function used in the stochastic kriging model is
chosen to be quadratic

f(xi)
T β = β0 +β1xi,1 +β2xi,2 +β3x2

i,1 +β4xi,1xi,2 +β5x2
i,2 . (12)

A quadratic function is used because including the term xi,1xi,2 in the payoff function links the players’
payoff functions together. This ensures that neither player can unilaterally optimize the payoff function
without taking into account the decision of the other player. Based on initial numerical tests, the
correlation function is chosen to be exponential

RM(xi −x j,θ) = exp(−θ1|xi,1 − x j,1|)exp(−θ2|xi,2 − x j,2|) . (13)

The payoff function of player 1 in the first example is

Y1(x1,x2) = (x1 −0.5)2 − (x2 −0.5)2 +2(x1 −0.5)(x2 −0.5), where x1 ∈ [0,1], x2 ∈ [0,1] . (14)

Now, the payoff function is quadratic meaning that a good fit should be obtainable with the regression
function (12). The payoff function (14) is presented in Fig. 3(a). The corresponding best responses
of the players along with the Nash equlibrium are presented in Fig. 3(b). The Nash equilibrium is
found at the intersection of the best responses, i.e., at the values of the decision variables x1 = 0.5
and x2 = 0.5.

LHS is used to determine the design sites which are presented in Fig. 4. The figure also presents
the MSE obtained from stochastic kriging. The magnitude of the MSE is small indicating that a good
fit is found. The stochastic kriging estimate of the payoff function as well as the best response sets
and the potential Nash equilibria are presented in Fig. 5. By comparing Fig. 5(a) to Fig. 3(a), it is
concluded that the estimate of the payoff function matches the true payoff function. The best response
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(a) The payoff function for player 1, Y1(x1,x2).

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x2

x1

(b) The best response of player 1 (blue solid curve) and the best
response of player 2 (red dashed curve). The Nash equilibrium is
represented by the purple circle.

Figure 3: The known payoff function for player 1 as well as the best responses and the Nash equilibrium in the first
example. The decision variables of player 1 and player 2 are denoted by x1 and x2.

sets presented in Fig. 5(b) are located symmetrically around the estimate of the best response and the
estimates of the best responses are similar to the true best responses. The estimated Nash equilibrium
is also located close to the true Nash equilibrium. Thus, in the first example, the use of game theoretic
metamodeling produces consistent results.

x2

x1

 

 

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1.1634

1.1636

1.1638

1.164

1.1642

x 10
−6

Figure 4: The design sites obtained by LHS (black crosses) as well as the MSE corresponding to the stochastic kriging
estimate of the payoff function in the first example. The decision variables of player 1 and player 2 are denoted by x1

and x2.

(a) The stochastic kriging estimate of the payoff function for
player 1, Ŷ1(x1,x2).

x2

x1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(b) The estimate of the best response of player 1 (blue solid curve)
and the estimate of the best response of player 2 (red dashed curve).
The best response sets are represented by the blue area for player
1 and the red area for player 2. The potential Nash equilibria are
shaded purple.

Figure 5: The game theoretic metamodel the first example. The decision variables of player 1 and player 2 are denoted
by x1 and x2.

In the second example, the known payoff function of player 1 is

Y1(x1,x2) = min(2x2,2x1,1), where x1 ∈ [0,1], x2 ∈ [0,1] , (15)
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which is not continuously differentiable. The payoff function is presented in Fig. 6(a) and the best
responses of the players along with the Nash equilibria are presented in Fig. 6(b). In this case, the
best responses of the players are not unique and the Nash equilibrium is described by the set where
x1 ∈ [0,1], x2 = 0.

(a) The payoff function for player 1, Y1(x1,x2).

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x2

x1

(b) The best response of player 1 (blue solid curve) and the best
response of player 2 (red dashed curve). The Nash equilibria are
shaded purple.

Figure 6: The known payoff function for player 1 as well as the best responses and the Nash equilibria in the second
example. The decision variables of player 1 and player 2 are denoted by x1 and x2.

LHS is again used to obtain the design sites which are presented in Fig. 7. Fig. 8(a) presents
the stochastic kriging estimate of the payoff function. The corresponding best response sets and the
Nash equilibria are presented in Fig. 8(b). The estimate of the payoff function presented in Fig. 8(a)
matches the true payoff function well. Yet, the areas where the payoff function is not differentiable
show noticeable deviation. To evaluate the goodness of fit, the best response sets presented in Fig.
8(b) are compared to the true best responses presented in Fig. 6(b). For player 1, the estimate of the
best response is one of the true best responses. The best response set is close to the true set of the
best responses for player 1 with differences around the points x1 = 0, x2 = 0 and x1 = 0.5, x2 = 1.
For player 2, the estimate of the best response matches the true best response except for the points
located at the set x1 = 0, x2 ∈ [0,1]. The intersection of the best response sets in 8(b) contains the
set of the true Nash equilibria except for small differences in the areas with few design sites. Adding
more design sites would likely improve the estimate. However, it can be concluded that the use of
stochastic kriging in game theoretic metamodeling is well-founded even in cases where the payoff
functions to be estimated are not differentiable.

x2

x1

 

 

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1

2

3

4

5

x 10
−3

Figure 7: The design sites obtained by LHS (white crosses) as well as the MSE corresponding to the stochastic kriging
estimate of the payoff function in the second example. The decision variables of player 1 and player 2 are denoted by
x1 and x2.

3.2 Unknown Payoff Functions

This section demonstrates the construction of a game theoretic metamodel in a situation where payoff
functions are determined based on data obtained from stochastic simulation. An air combat scenario
is simulated where two fighters are engaged head on. After approaching each other, both aircraft fire
an air-to-air missile at the opponent. The pilot of the launching aircraft must decide how long to
provide data on the location of the target to the missile which is known as supporting the missile. If
the pilot doesn’t support the missile long enough, the missile may miss the target. On the other hand,
the pilot should not support the missile too long in order to avoid being hit by the opponent’s missile.
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(a) The stochastic kriging estimate of the payoff function for player
1, Ŷ1(x1,x2).
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(b) The estimate of the best response of player 1 (blue solid curve)
and the estimate of the best response of player 2 (red dashed curve).
The best response sets are represented by the blue area for player
1 and the red area for player 2. The potential Nash equilibria are
shaded purple.

Figure 8: The game theoretic metamodel in the second example. The decision variables of player 1 and player 2 are
denoted by x1 and x2.

Further details of the air combat scenario can be found in (Karelahti, Virtanen, and Raivio 2006,
Poropudas and Virtanen 2010).

The air combat scenario is simulated with a discrete event air combat simulation model called
X-Brawler (L-3 Communications Analytics Corporation 2002). In X-Brawler, pilot decision making
as well as equipment and aircraft are modeled at a high level of detail. In addition, uncertainties related
to air combat such as probabilities of radar detections are simulated by sampling from appropriate
probability distributions. Typically, a large number of evaluations are required for a reliable analysis
of a single air combat scenario.

The scenario is formulated as a game as follows. First, the players’ decision variables are determined
to be the missile support times. Based on initial simulation data, the upper limit of the support time
is determined to be 20 seconds. On the other hand, the missile has a small chance of tracking the
target even when fired without any support. Thus, the domain of the decision variables of both players
is X1 = X2 = [0,20] (seconds). Next, the payoff functions are chosen. The payoff function for both
players is a weighted sum of the probability of killing the opponent and the probability of being killed.
The payoff function of player 1 is

Y1(x1,x2) = w1P2(x1,x2)+(1−w1)P1(x1,x2) , (16)

where Pi(x1,x2) is the probability of aircraft i being killed when the support times are x1 for player
1 and x2 for player 2. The weight w1, 0 ≤ w1 ≤ 1, is used to describe the aggressiveness of player 1.
Likewise, for player 2, the payoff function is

Y2(x1,x2) = w2P1(x1,x2)+(1−w2)P2(x1,x2) . (17)

LHS is again used to obtain the experimental design. The number of design sites is 50 and the
number of evaluations at each design site is 1000. The quadratic regression function presented in
Eq. (12) and the exponential correlation function presented in Eq. (13) are used in the stochastic
kriging model. The values of the payoff functions at the design sites are obtained from X-Brawler by
conducting simulations at each design site and estimating the probabilities P1(x1,x2) and P2(x1,x2)
based on the simulation data. The weight for player 1 is selected such that player 1 is trying to
maximize the probability of killing player 2, i.e., w1 = 1. The weight for player 2 is selected such
that more weight is placed on not being killed, which leads to the weight w2 = 0.3. These weights
results in a non zero-sum game.

The design sites as well as the MSE obtained by stochastic kriging are presented in Fig. 9(a) for
player 1 and in Fig. 9(b) for player 2. As the magnitude of the MSE is approximately the same as
in the second example of Section 3.1, the estimated payoff functions should be good representations
for the payoff functions defined implicitly by the simulation model.

The payoff functions estimated by stochastic kriging are presented in Fig. 10(a) for player 1 and
in Fig. 10(b) for player 2. The payoff function for player 1 seems reasonable because it increases as
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(a) The MSE for player 1. The design sites are represented by white
crosses.
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(b) The MSE for player 2. The design sites are represented by white
crosses.

Figure 9: The design sites obtained by LHS as well as the MSEs corresponding to the stochastic kriging estimates of
the payoff functions. The decision variables of player 1 and player 2 are denoted by x1 and x2.

the value of x1 increases for all values of x2, i.e., the probability of player 1 killing player 2 increases
regardless of the support time of player 2. The payoff function for player 2 also seems to be consistent
with the selected weight w2 = 0.3, as selecting too large a value for x2 results in a low payoff, i.e., the
probability of player 2 being killed is high if player 2 supports too long. The estimated best responses,
the best response sets and the potential Nash equilibria are represented in player Fig. 11.

(a) The estimate of the payoff function for player 1, Ŷ1(x1,x2). (b) The estimate of the payoff function for player 2, Ŷ2(x1,x2).

Figure 10: The game theoretic metamodel in the third example. The decision variables of player 1 and player 2 are
denoted by x1 and x2.
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Figure 11: The estimate of the best response of player 1 (blue solid curve) and the estimate of the best response of
player 2 (red dashed curve). The best response sets are represented by the blue area for player 1 and the red area for
player 2. The potential Nash equilibria are shaded purple.

Based on the best response sets, player 1 should support the missile at least for approximately 12
seconds unless player 2 supports less than a second. In this case, all of the support times of player 1
belong to the best response set. For player 2, all of the support times belong to the best response set if
player 1 supports less than approximately 7 seconds. If the missile of player 1 is supported between
7 and 13 seconds, player 2 should support the missile for at least 13 seconds. Finally, if the missile
of player 1 is supported longer than 12 seconds, player 2 should support less than 5 seconds.
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The best response sets intersect in two areas. In the first area, player 1 supports less than 6 seconds
while player 2 supports less than a second. In the second area, player 1 supports the missile for more
than 12 seconds while player 2 supports for less than 5 seconds. These potential Nash equilibria are
consistent with the weights selected for the players. The player with more weight placed on killing
the opponent supports longer than the player with more weight placed on survival. These observations
as well as the observations related to the best response sets imply that game theoretic metamodels
based on stochastic kriging offer an appropriate way to support simulation studies conducted with
discrete event simulation models.

4 CONCLUSIONS

This paper presented a new approach to the construction of a game theoretic metamodel using
stochastic kriging. Such a metamodel contains estimates for the payoff functions of players involved
in a simulated game. These estimates are used to determine the best response sets, i.e., the values of
a player’s decision variable which cannot be excluded from being the best responses to the decisions
taken by the other players. The intersection of the players’ best response sets reveals potential Nash
equilibria for the simulated game.

The examples presented in this paper illustrate the flexibility of stochastic kriging in obtaining
global estimates for payoff functions. In the first two examples, payoff functions are known a priori.
First, the payoff functions are quadratic and the Nash equilibrium is unique. Appropriate estimates for
the payoff functions are determined with stochastic kriging because the best response sets obtained
through the metamodel contain the true best responses. In addition, the Nash equilibria obtained
with the metamodel contain the true Nash equilibrium. In the second example, the payoff functions
are not differentiable and neither the best responses nor the Nash equilibria are unique. In this case,
the stochastic kriging estimates of the payoff functions are also reasonably accurate as most of the
true best responses are included in the best response sets. In addition, the potential Nash equilibria
include most of the true Nash equilibria. It should be noted that the use of the estimated best responses
without the best response sets would not be suitable when the best responses are not unique. Due
to variations present in the simulation data, the estimated best responses can provide a unique Nash
equilibrium even when the true Nash equilibrium is non unique.

In the third example, stochastic kriging is used in the construction of a game theoretic metamodel
representing a simulated air combat scenario. The example demonstrates the estimation of the players’
payoff functions based on data obtained with discrete event simulation. The constructed metamodel
yields information about the outcome of the simulation in a manner which would be difficult to
obtain using other methods, e.g., a metamodel ignoring the game setting or existing game theoretic
metamodeling approaches. Based on the results of the example, the use of stochastic kriging for game
theoretic metamodeling is concluded to provide versatile representations for games modeled using
discrete event simulation.

Although the examples of this paper are two-player games where each player has only one decision
variable, the game theoretic metamodeling approach using stochastic kriging is also applicable to
game settings with multiple players having multiple decision variables. On the other hand, an
adaptive sampling method (e.g., Ankenman, Nelson, and Staum 2008) could improve the accuracy
of estimated payoff functions. Additionally, an optimal stopping rule could be used to both ensure
sufficient sampling has been done, and also prevent unnecessary sampling. It should also be noted
that game theoretic metamodels could be applied to simulation models that do not inherently represent
game settings. Then, simulation input could be treated as the decision variable of one player and
random factors affecting the simulation could be considered as the decision variable of an opponent.
This type of game theoretic metamodel would offer a new way to study the effects of uncertainties
related to stochastic simulation.
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