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ABSTRACT

We report preliminary studies on evolvable simulations applied to Automated Red Teaming (ART). ART is
a vulnerability assessment tool in which agent-based models of simplified military scenarios are repeatedly
and automatically generated, executed and varied. Nature-inspired heuristic techniques are utilized to drive
the exploration of simulation models to exhibit desired system behaviors. To date, ART investigations have
essentially addressed the evolution of a limited fixed set of parameters determining the agents’ behavior. We
propose to extend ART to widen the range of evolvable simulation model parameters. Using this “evolvable
simulation” approach, we conduct experiments in which the agents’ structure is evolved. Specifically, a
maritime scenario is examined where the individual trajectories of belligerent vessels are evolved to break
Blue. These experiments are conducted using a modular evolutionary framework coined CASE. The results
present counter-intuitive outcomes and suggest that evolvable simulation is a promising technique to enhance
ART.

1 INTRODUCTION

Automated Red Teaming is an agent-based simulation method which aims at identifying the critical weaknesses
of military operational plans (Ilachinski 2004, Choo, Chua, and Tay 2007). In ART experiments, multiple
simulation models are evaluated where two teams (a defensive “Blue” and belligerent “Red”) are confronted
against each other using different tactical plans. The modeling and analysis of these tactical plans are automated
and are driven by search algorithms. The objectives of the search algorithms are, for instance, to generate
Red tactical plans to best defeat Blue.

Through the analysis of simulation outcomes, we may thus identify Red tactical plans which may pose
serious threats. Following on from this, defense analysts may first examine and validate the seriousness of
the threats (this process may also assist in the correction or refinement of the base simulation model). Then
it may subsequently be attempted to resolve the operational weaknesses revealed through ART.

To our knowledge, most ART studies have focused on the examination of the teams’ behavior (e.g., aggres-
siveness, cohesiveness, determination, etc.), see (McDonald and Upton 2005), (Yang, Abbass, and Sarker 2006)
and (Ilachinski 2009). Such properties were subjected to variation using for instance evolutionary computation
techniques (Fogel 2006). In these studies, the set of “evolvable parameters” was fixed and commonly included
less than 20 behavioral parameters.

We argue that such studies are limited when considering real life military operations. For instance, one
may be interested in examining/generating critical complex courses of actions which cannot be expressed as a
mere set of behavioral parameter values. More advanced techniques are required where additional simulation
model properties are to be varied/evaluated.

To extend and enhance the ART methodology, we investigate the evolvable simulation approach presented
in works such as (Upton et al. 2004) and (Xu, Low, and Choo 2009) in which additional simulation model
properties (e.g., the model or distinct agent’s structure) can be subjected to variation. To assist this research,
we utilize a modular evolutionary framework coined CASE. Evolutionary computation techniques (e.g.,
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evolutionary /swarm algorithms) are utilized as the search techniques due to their suggested ability to efficiently
tackle complex optimization problems characterized by non-linear dynamics and considerable search spaces.

A brief literature review on Automated Red Teaming and involved technologies is first provided. Then
we describe our framework CASE. Experiments, using CASE and the multi-agent system MANA, are then
conducted to evaluate the application of evolvable simulations to ART. Finally, we conclude the paper and
outline future research directions which may merit investigations to develop this work.

2 LITERATURE REVIEW

We first present the key technologies supporting Automated Red Teaming. Then a brief survey of ART
approaches is provided.

2.1 Agent-based Simulations

ABSs (Bonabeau 2002) are computational methods which, on the contrary to the Lanchester equations
(Lanchester 1916), can model the intricate and non-linear dynamics of warfare. Combat is here concep-
tually regarded as a complex adaptive system (Holland 1992). The agents’ computational methods may
include stochastic processes resulting in a stochastic behavior at the system level. Examples of ABS ap-
plied to Military Decision Making include: CROCADILE (Easton and Barlow 2002), ISAAC/EINSTein
(Ilachinski 1997, Ilachinski 2009), MANA (Lauren and Stephen 2002), Pythagoras (Bitinas et al. 2003) and
WISDOM (Yang, Abbass, and Sarker 2004). A review of ABS applied to various military applications is
provided by (Cioppa, Lucas, and Sanchez 2004).

These systems have been specifically devised to simulate defense related scenarios in which the properties
of the environment and the Red/Blue teams may be specified (Lucas et al. 2007). The level of representa-
tion/abstraction (e.g., number of spatial dimensions, range of agents’ properties, type of vehicles, etc.) varies
among these ABS systems. Although the level of accuracy in representing real world environments/individuals
may not faithfully reflect reality, it is argued that such ABS models account for the key features (e.g., local
interactions between agents) necessary to exhibit complex emerging phenomena/behavior at the system level
which are typical of real battlefields (Ilachinski 2004, Yang, Abbass, and Sarker 2006). Thus, these systems
can expose the emerging phenomena of interest without the burden of modeling and simulating unnecessary
complex features (e.g., gravity, wind, detailed physics of distinct simulated agents/weapons/vehicles, etc.).

2.2 Evolutionary Computation

Evolutionary computation (EC) techniques are non-deterministic search algorithms inspired by real phenomena
occurring in nature (Fogel 2006). These algorithms can be classified into two main categories: Evolutionary
Algorithms (EAs) and Swarm intelligence based Algorithms (SAs). These techniques differ from each other
on the specification and implementation of common system properties: problem representation, variation and
selection of candidate solutions.

EAs simulate natural evolution through the variation (i.e., chromosomal recombinations and gene mutations)
of genetic material and selection of fittest (from a phenotypic viewpoint) candidate solutions. Examples of
EAs include: Genetic Algorithms, Genetic Programming and Evolution Strategy. SAs exploit the collective
intelligence emerging from the crowd behavior of social entities such as fish schools, bird flocks and insect
colonies. Examples of SAs include: Particle Swarm Optimization and Ant Colony Optimization.

Both families of methods have successfully been applied to a wide range of both numerical and combinatorial
optimization problems. Specifically, EC techniques have proven to be highly efficient when applied to
optimization problems characterized by non-linear interactions and vast multi-dimensional search spaces.
Finally, these techniques have been extended to address explicitly (in contrast with linear combination or
weighted sum of objectives methods) Pareto-based multi-objective optimization problems (Deb 2001). This
is relevant for military operations as they are often characterized with multi-dimensional constraints which
are often conflicting with each other.

2.3 Automated Red Teaming

Automated Red Teaming combines the agent-based simulation and evolutionary computation techniques as
follows. ART exploits EC techniques to evolve simulation models to exhibit pre-specified/desirable output
behaviors (i.e., when Red defeats Blue). Note that the term “Automated Red Teaming” was coined by Choo
et Al. in (Choo, Chua, and Tay 2007), nevertheless the methodology was originally proposed by Ilachinski
(Ilachinski 2004). We here utilize the ART term as, we believe, it best captures the “automated” approach to
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red teaming, in contrast with the traditional “manual” red teaming method (Defense 2003). Two main classes
of ART approaches can be distinguished:

• One-sided parametric ART: Only the parameter values (e.g., troop clustering/cohesion, response to
injured teammates, aggressiveness, stealthiness, etc.), defining the behavior or personality of the Red
team, are evolved to optimize its efficiency (e.g., maximize damage to target facilities) against the
Blue team. Example studies include the works (Ilachinski 1997, Low, Chandramohan, and Choo 2009,
Yang, Abbass, and Sarker 2006, Choo, Chua, and Tay 2007, Upton, Johnson, and McDonald 2004).
These studies demonstrated the promising potential of ART systems to automatically identify the
Blue team’s weaknesses. Nevertheless the analytical work necessary to resolving these weaknesses
or making the Blue team more robust still have to be researched through time-consuming manual
means. In the next section, we examine further techniques which aim at automating this analytical
process by coevolving the Blue team to counteract the adaptive Red team.

• Coevolutionary parametric ART: The set of behavioral parameter values of both teams are coe-
volved. This arms race approach complements the previous one by automating the analysis required
to improve the Blue team’s defense operational plan against the adaptive Red team. Example coevo-
lutionary ART studies can be found in (Kewley and Embrechts 2002, McDonald and Upton 2005,
Choo, Chua, Low, and Ong 2009). These approaches presented significant improvements over their
one-sided predecessors. A major benefit of these approaches is the suggested ability of coevolution
to resolve the local optima issue of EC techniques. This benefit enables one to generate operational
tactics that are more efficient and robust against a larger range of scenarios. Nevertheless a trade-off
exists in terms of robustness over efficiency according to the range of confronted Red tactics (i.e., the
evolved tactics only yield average performances against multiple Red tactics).

Note that the extension of one-sided to coevolutionary ART significantly increases the search spaces
allowing for the exploration of more diverse simulation models. As the diversity of evaluated simulation
models is increased, a wider range of potentially critical scenarios may be identified. Exploring more diverse
scenarios enables one to devise more robust and effective defensive strategies against potential threats and
adaptive adversaries. Nevertheless, expanding this search is associated with a dramatic increase in computational
cost which would commonly require the use of High Performance Computing techniques.

Similarly, evolvable simulations extend the coevolutionary ART approach. We intend to evolve additional
simulation model properties to identify more intricate conditions exposing the weaknesses of operational plans.
It is thus expected that computational requirements will also increase. Future work will address these budget
computing issues through examining the cloud computing paradigm (Buyya et al. 2009). Nevertheless this
issue is not further discussed here as it is beyond the scope of this paper.

3 THE CASE FRAMEWORK

A detailed description of the CASE framework is provided in this section.

3.1 Overview

CASE was implemented in a modular manner (using the Ruby programming language presented in the work
(Flanagan and Matsumoto 2008)) to accommodate with ease the user’s specific requirements (e.g., use of
different simulation engines or evolutionary algorithms, etc.). This framework was inspired by the Automated
Red Teaming framework (Chua et al. 2008) which was developed by the DSO National Laboratories of
Singapore. In contrast with DSO’s system (which was dedicated to examining military simulation models),
we aim at providing a flexible and platform-independent system capable of evolving simulation models for a
wider variety of application domains.

3.2 Architecture

CASE is composed of three main components which are distinguished as follows:

1. The model generator: This component takes as inputs a base simulation model specified in the
eXtended Markup Language and a set of model specification text files. According to these inputs,
new XML simulation models are generated and sent to the simulation engine for evaluation. Thus, as
currently devised, CASE only supports simulation models specified in XML. Moreover, the model
generator may consider constraints over the evolvable parameters (this feature is optional). These
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constraints are specified in a text file by the user. These constraints (due for instance to interactions
between evolvable simulation parameters) aim at increasing the plausibility of generated simulation
models (e.g., through introducing cost trade-off for specific parameter values).

2. The simulation engine: The set of XML simulation models is received and executed by the stochastic
simulation engine. Each simulation model is replicated a number of times to account for statistical
fluctuations. A set of result files detailing the outcomes of the simulations (in the form of numerical
values for instance) are generated. These measurements are used to evaluate the generated models,
i.e., these figures are the fitness (or “cost”) values utilized by the evolutionary algorithm (EA) to direct
the search.

3. The evolutionary algorithm: The set of simulation results and associated model specification files
are received by the evolutionary algorithm, which in turns, processes the results and produce a new
“generation” of model specification files. The generation of these new model specifications is driven
by the user-specified (multi)objectives (e.g., maximize/minimize some quantitative values capturing
the target system behavior). The algorithm iteratively generates models which would incrementally,
through the evolutionary search, best exhibit the desired outcome behavior. The model specification
files are sent back to the model generator; this completes the search iteration. This component is the
key module responsible for the automated analysis and modeling of simulations.

The above components are depicted in Figure 1 which presents the flowchart of a CASE experiment.
Communications between the three components are conducted via text files for simplicity and flexibility

(enabling the use of PISA evolutionary algorithm modules (Bleuler et al. 2003)1). Note that the flexible
nature of CASE allows one to develop and integrate different simulation platforms (using models specified in
XML), and evolutionary algorithms. Moreover CASE may exploit multi-core CPUs through simultaneously
evaluating (using multi-threads) multiple simulation models.

The input files are specified as follows:

• Evolvable parameters setting: This text file specifies the list of simulation model parameters which
are subjected to the evolutionary process. For each parameter, the XPath, name and numerical values
ranges (min,max) have to be provided. In addition to (real) numerical values, it is possible to include
parameter values in the form of enumerable sets (e.g., low, medium, high, etc.) to address model
properties that cannot be expressed as numerical values.

• Constraints setting: Optional constraints may be devised to introduce specific considerations when
evolving particular parameter values. For instance, the user may devise Interactions between parameters
which would occur according to some pre-defined threshold values. The specification of such constraints
may be carried out through the definition of a mapping table. The XPath, name and threshold values
of interacting parameters have to be provided. According to the value of the “master” parameter, the
values of the “slave” parameters are adjusted according to the associated mapping table. Constraints
are applied over the model specifications prior to the generation of XML models. A Ruby script
manages the application of the constraints. Note that this feature is not utilized in the experiments
presented in this paper.

• Experiment setting: Here, the overall experimental run settings are specified. This includes:

– The selected simulation engine.

– The selected evolutionary algorithm and associated setting (e.g., population size, number of search
iterations, mutation probability, set of objectives, etc.).

– The number of simulation execution replications (ABSs are stochastic systems which require
repetitions of the simulation model executions to account for statistical fluctuation).

– The number of CASE run replications (similarly to ABSs, evolutionary algorithms are stochastic
processes, replications of the experimental runs may also be necessary).

– The number of available CPUs (for multi-threading purposes).

In the next section, we report our series of experiments using the above framework.

1PISA is a platform and programming language independent interface for search algorithms which aims at facilitating the evaluation of
evolutionary algorithms. A number of search algorithms and benchmark problems have been implemented and are interfaced via text-files. More
details can be found at http://www.tik.ethz.ch/sop/pisa/.
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Figure 1: Flowchart of a CASE experiment. The dashed documents distinguish the user inputs. Using the base XML
model, a population of randomly generated model variants is first created. The initial parameter values are randomly
generated using a uniform distribution and are bounded by the evolvable parameters setting file provided by the user.
Three core modules (the simulation engine, evolutionary computation and XML generator modules) are implemented as
Ruby scripts. Both the simulation engine and evolutionary computation module call external libraries and/or binaries.
The XML model generator employs the Libxml library (http://libxml.rubyforge.org) to parse and generate
XML models. The constraint setting file is utilized by the XML model generator to apply user-defined constraints
over the evolvable parameters. The ease of development provided by the Ruby language and script based nature of
CASE enable one to rapidly introduce/implement new termination criteria, use additional simulations/search algorithms
or devise new constraints over evolvable parameters.

4 EXPERIMENTS

We report a series of experiments using the CASE framework and the agent-based simulation platform MANA.
In these studies the agents’ structure, specifically the number of pathway points and associated coordinates
determining the trajectories of the agents, are subjected to the evolutionary process.
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4.1 The Scenario

We consider a maritime anchorage protection scenario which was originally proposed in (Wong et al. 2007)
and later further developed in (Xu et al. 2009, Low et al. 2009). In this scenario, a Blue Team (composed
of 7 vessels) conducts patrols to protect an anchorage (in which 10 Green commercial vessels are anchored)
against threats. Red forces (5 vessels) attempt to break Blues defense tactics and inflict damages to anchored
vessels. The aim of the study is to discover Reds strategies that are able to breach through Blues defensive
tactic. Figure 2 depicts the scenario which was modeled using the ABS platform MANA.

Figure 2: MANA model of the maritime anchorage protection scenario. The map covers an area of 100 by 50 nautical
miles (1 nm = 1.852km). Left: The dashed lines depict the patrolling paths of the different Blue vessels. The Blue
patrolling strategy is composed of two layers: an outer (with respect to the anchorage area, 30 by 10 nm) and inner
patrol. The outer patrol consists of four smaller but faster boats. They provide the first layer of defense whereas the
larger and heavily armored ships inside the anchorage are the second defensive layer. Three of the Red crafts (Team 1)
were set up to initiate their attack from the north while the remaining two attack (Team 2) from the south. This allows
Red to perform multi-directional attacks at the anchorage. The initial positions of Blue vessels are fixed. In contrast, the
Green commerical vessels’ initial positions are randomly generated within the anchorage area at each MANA execution.
Right: Example Red trajectories. Home waypoints (Home WP) are constrained to the distinct agent’s initial areas.
Similarly, the final waypoints are to be located in the opposite area. Intermediate waypoints occur in the remaining
middle area. Note that in the below experiments, we dynamically evolve the number of intermediate waypoints. In
addition the coordinates of all waypoints, including the home and final ones, are subjected to evolution.

In (Xu, Low, and Choo 2009), the measures of effectiveness only considered the number of Green casu-
alties. In other words, Red was evolved to maximize the number of commercial vessels casualties regardless
of Red casualties. In this study, the number of trajectory waypoints was incrementally increased (manually)
in a series of experiments. It was found that for a particular number of waypoints (3)2, ART was able to
generate Red tactical plans that were more efficient and complex than other models involving differing number
of waypoints.

Low, Chandramohan, and Choo (2009) proposed a multi-objective approach to this model where the
number of Red casualties was also considered. Trade-offs in Green vs Red casualties were considered,
however, the number of waypoints was fixed limiting the comparison of strategies resulting from the two
studies.

Here we study further this simulation model and address both multi-objective optimization and the
automated evolution of Red trajectories.

4.2 Experimental Setting

In CASE, each candidate solution (a distinct simulation model) is represented by a vector of real values
defining the different evolvable Red behavioral parameters (Table 1(c)). As the number of decision variables
increases, the search space becomes significantly larger. According to the number of evolvable properties and

2We conducted further experiments to examine the reasons underlying these optimal tactical plans involving 3 waypoint trajectories. It was
found out that the maximal number of MANA running time steps was potentially set too low. Indeed, the simulations would actually terminate
before Red vessels could visit the fourth and following waypoints. This time limit constraint may have prevented the evolution of more complex
and efficient trajectories involving more waypoints.
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associated ranges given for this experiment, the search space contains 1.007×1028 distinct candidate solutions
(i.e., variants of the original simulation model).

Table 1: (a): Fixed Blue parameters. Note that value pairs are specified for the determination and aggressiveness
properties. In this model, Blue changes its behavior upon detecting Red, i.e., Blue “targets” Red, with aggressiveness
being increased, when the latter is within Blue’s detection range. (b): Fixed Red parameters. The behavioral parameters
are not specified as these parameters are subjected to evolution. (c): Evolvable Red parameters: As mentioned earlier,
the home and final positions together with the n intermediate waypoint(s) define the trajectory of each distinct Red
vessel. In addition, the final positions of the Red crafts are constrained to the opposite region (with respect to initial
area) to simulate escapes from the anchorage following successful attacks.

(a) Fixed Blue parameters

Parameter Value
Detection range (nm) 24
# hits to be killed 2
Weapon hit prob. 0.8
# patrolling agents 7
Speed (unit) 100
Weapon range (nm) 8
Determination 50∨0
Aggressiveness 0∨100
Cohesiveness 0

(b) Fixed Red parameters

Parameter Value
Detection range (nm) 8
# hits to be killed 1
Weapon hit prob. 0.8
# agents 5
Speed (unit) 100
Weapon range (nm) 5

(c) Evolvable Red paramaters

Parameter Min Max
Squad 1 home (x,y) ×3 (0,0) (399,39)
Squad 2 home (x,y) ×2 (0,160) (399,199)
Number of inter. WPs n 1 5
Intermediate WPs (x,y) ×n (0,40) (399,159)
Squad 1 final (x,y) ×3 (0,160) (399,199)
Squad 2 final (x,y) ×2 (0,0) (399,39)
Determination 20 100
Aggressiveness -100 100
Cohesiveness -100 100

Behavioral or “psychological” elements are included in the decision variables. The aggressiveness
determines the reaction of individual vessels upon detecting an adversary. Cohesiveness influences the
propensity of vessels to maneuver as a group or not, whereas determination stands for the agent’s willingness
to follow the defined trajectories (go to next waypoint). The Red vessels’ aggressiveness against the Blue
patrolling force are varied from unaggressive (-100) to very aggressive (100). Likewise, the cohesiveness of
the Red crafts are varied from independent (-100) to very cohesive (100). Finally, a minimum value of 20 is
set for determination to prevent inaction from occurring.

In contrast with (Xu, Low, and Choo 2009), the waypoints composing the Red vessels’ trajectories are
here evolved automatically through the ART process. The Non-dominated Sorting Algorithm II (NSGA-II)
is employed to conduct the evolutionary search. This algorithm is executed using the following parameters:
population size = 100, number of search iterations = 200, mutation probability = 0.1, mutation index = 20,
crossover rate = 0.9 and crossover index = 20. These parameter values are commonly used, as reported in
the literature, when MSGA-II is applied to two-objective optimization problems. The population size and
number of search iterations indicate that 20,000 distinct MANA simulation models are generated and evaluated
for each experimental run. Each individual simulation model is executed/replicated 30 times to account for
statistical fluctuations.

The efficiency of the search is measured by the number of Green casualties with respect to the number
of Red casualties. In other words, the NSGA-II objectives are:

• To minimize the number of Green (commercial) vessels “alive”.
• To minimize the number of Red casualties.

Considering the current scenario, these objectives are thus conflicting. In the next section we report our series
of experiment using the above model.

4.3 Case Study 1

As outlined earlier, the simulation model time limit may potential affect the outcomes of the evolutionary search.
Therefore it is here increased (from 250 up to 2000 time steps) to allow for complex trajectories to emerge
and potentially ameliorate the Red tactical plans. Given the results reported in (Xu, Low, and Choo 2009), it
was moreover predicted/expected that the ART process would result in generating more efficient Red tactical
plans through exploiting more complex trajectories (for instance some Red vessels could divert Blue patrols
whilst the remaining Reds cover the anchorage area).

Six independent CASE runs were conducted. Figure 3 depicts the final set of best solutions resulting
from these experimental runs. The dynamics of the hypervolume indicator provide information with regards
to the improvement of the Pareto optimal front over time. This approach considers the hypervolume of the
dominated portion of the objective space as a measure for the quality of Pareto set approximations. This
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method is widely used in the multi-objective evolutionary computation field to assess search algorithms
(Zitzler, Brockhoff, and Thiele 2007).
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Figure 3: Left: Pareto optimal front: final set of best simulation models accounting for trade-offs between Red and
Green casualties. The point types indicate the number of intermediate waypoints used in a given simulation model.
Right: Dynamics of the hypervolume indicator value throughout the evolutionary search. We plot the negative value
of the hypervolume indicator to be consistent with the fitness or “cost” minimization approach typically utilized in
evolutionary computation studies.

We first note that out of the 139 optimal design points found throughout the 6 runs, only two solutions
utilized Red trajectories containing two intermediate waypoints; the remaining solutions involve a single
intermediate waypoint. This clearly contradicts our initial expectation as these results suggest that the optimal
Red trajectories are, in fact, the simplest ones including a single intermediate waypoint. Moreover the
hypervolume indicator dynamics indicate that all runs seem to have reached convergence. This indicates that
few improvements are to be expected if the experiments were run longer. With regards to the behavioral
parameters, it was noted that determination was given the highest value, i.e., Red had a strong willingness to
follow their specified trajectories.

Figure 4: Two examples of evolved simulation model taken from experimental run 5. Left: A 1-intermediate waypoint
trajectory solution where the average Red and Green casualties are 1 and 4.93 respectively. The black lightning icon
indicates the location where Red would typically get killed during simulation executions. Trajectories are colored green
when the Red vessel does not engage with either Blue patrols nor inflict damage to Green vessels; trajectories are
colored Red otherwise. Right: An example 2-intermediate waypoint trajectory solution where the average Red and
Green casualties are 3.1 and 7.97 respectively.

In Figure 4 (left), we can observe that the Red vessels 1,2 and 3 avoid the anchorage area. In contrast the
two other vessels engage combat with one being commonly taken down by Blue. In the second example, the
two intermediate waypoint trajectories provided little support as the Red vessels 1,2 and 4 would typically
get killed before navigating through their remaining path segments.
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According to the experimental results reported here, utilizing more intricate trajectories would not benefit
Red in achieving the objectives, i.e., a single intermediate waypoint is enough to achieve efficiently the
objectives. We propose a number of explanations that might illuminate these results:

1. We suggest that the current model, by design, does not require more complex trajectories from Red
to best achieve the objectives. Indeed we may consider the relatively small area of the anchorage
being examined. This limited area may constrain Red’s movements.

2. Moreover, this relatively small area can easily be covered by all five Red vessels, where each one
may complement another to cover a section of the area.

In the next experiment, we test this hypothesis by modifying the model to encourage the emergence of
more complex Red tactical plans.

4.4 Case Study 2

To test the hypothesis presented in the previous section, we propose to modify the simulation model as follows.
We significantly increase the area of the anchorage. To evenly spread out green commercial vessels within
this larger area, 10 additional green vessels are inserted. To compensate the greater area to be cover, the speed
and patrolling paths of Blue patrols are expanded accordingly. Finally, a single Red vessel is considered.

Given this updated model, it is now expected that: If the trajectory of a single Red vessel is evolved to
inflict maximal damage to Green whilst maximizing its own survival rate, then a relatively intricate trajectory
would be necessary to cover the expanded anchorage area. Trajectories containing at least 3+ intermediate
waypoints are expected to emerge in this experiment. The latter is conducted using identical complementary
experimental conditions presented in the previous sections.
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Figure 5: Experimental results using updated simulation model.

In Figure 5, we first observe that among the 46 solution models generated out of the six CASE runs, only
three 1-WP point models are present against twenty-one 2-WP, twelve 3-WP and ten 5-WP models. These
results support our hypothesis proposed earlier. We detail two example simulation models in Figure 6.

Figure 6 depicts Red trajectories including multiple intermediate waypoints. These trajectories enabled
the Red vessel to cover the expanded anchorage area. Moreover it can be observed, especially in the second
model taken from run 2, that Red manages to infiltrate the anchorage, inflict damage to Green vessels and
escape the area without engaging combat with the Blue vessels. This particular (and relatively complicated)
Red trajectory successfully identified and exploited loopholes in the Blue patrolling pathways. This experiment
illustrates the benefits of the evolvable simulation technique to enhance Automated Red Teaming.

5 CONCLUSIONS

We first provided brief introductions to the key technologies supporting Automated Red Teaming, namely
agent-based simulations and evolutionary computation. ART was then surveyed where two main classes were
identified: one-sided parametric and coevolutionary ART. A third ART class was investigated in this paper
where evolvable simulations are applied to ART. This approach relaxes the ART methodology by enabling the
variation, using evolutionary computation techniques, of additional simulation model properties such as the
agents’ structure. To assist this research, we presented and utilized a modular evolutionary framework called
CASE. Using this framework and the agent-based simulation platform MANA, we conducted two series of
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Figure 6: Example Red trajectories optimized for the updated base simulation model. Left: 2-WP model with average
Green casualty is 9.63 where the average Red survival rate is 20% (run 6). Right: 5-WP model with average Red
survival rate 80% and Green casualties 9.27 (run 2).

experiments examining a maritime anchorage protection scenario. The belligerent Red agents’ trajectories
were subjected to evolution. The results of the first experimental series presented unexpected outcomes,
which after examination, were shown to be due to the actual design of the simulation model. A second series
of experiments supported this initial examination and demonstrated the potential benefits of the evolvable
simulation approach. To further develop this work, we plan to evaluate the evolution of additional simulation
model properties such as the number and composition of Red squads. This future work may lead to the
identification of optimal squad composition to improve the robustness of military operations against a set of
Blue strategies. Finally, the use of higher resolution simulation engines will also be investigated to examine
the evolution and effects of further simulation components such as environmental obstacles, deflagration of
buildings, etc. This would alleviate the limitations of using distillation models such as MANA and fully exploit
the potential of the evolvable simulation concept.
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