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ABSTRACT

A theoretical application of transient queueing analysis is provided for military air traffic control. The
exact distribution of the nth arriving or departing flight’s sojourn time in an M/M/s queue with k
flights initially present is reviewed. Algorithms previously developed for computing the covariance
between sojourn times for an M/M/1 queue with k ≥ 0 flights present at time zero are provided and
utilized. Maple computer code is utilized for practical applications in air traffic control of transient
queue analysis for many system measures of performance without regard to traffic intensity (i.e., the
system may be unstable with traffic intensity greater than one), thus negating the need for simulation.

1 INTRODUCTION

Many traditional simulation studies analyze queueing systems in steady-state, requiring appropriate
warm-up periods and associated long simulation runs. However, in many cases the system being
modeled never reaches steady-state; thus steady-state simulation results do not accurately portray the
system behavior, as is often the case in military air traffic control. The ability to analyze transient
results associated with such models is often complicated by intractable theory, leaving simulation
as the only method for analysis. Further complicating the transient analysis is the effect of initial
conditions (Kelton and Law, 1985). Since steady-state results depend on running the system long
enough to mitigate the impact of initial conditions, these steady-state results reveal nothing about the
transient behavior of the queueing system. Our purpose here is to combine new and existing results
in transient queueing analysis with a symbolic engine in computational probability.

There are many classes of queueing systems where a transient analysis is required, e.g., military
applications often use queueing models that never reach equilibrium. Recognizing the need to develop
theory for transient results, as opposed to steady-state results, has resulted in a wide literature in this
area. Initial work in transient analysis ironically appeared as an attempt to measure when a system
achieved equilibrium. Law (1975) notes the consequences of failing to adequately account for the
initial transient period, leading to Gafarian et al. (1976) outlining a comprehensive framework for the
initial transient problem. Morisaku (1976) addresses the time to equilibrium in simulations modeling
the M/M/1 queue and provides schematics for the transition probabilities given k ≥ 0 customers
initially present at time t = 0. Grassmann (1977) compares three methods for finding transient
solutions in Markovian queueing systems, Runge–Kutta, Liou’s method, and randomization, where
randomization is shown as superior for large sparse transition matrices. Pegden and Rosenshine
(1982) provide a closed-form solution for the probability of exactly i arrivals and j servicings over
a time horizon of length t in an M/M/1 queue starting empty and idle, allowing the calculation of
certain performance measures for a specified time period. Odoni and Roth (1983) take an empirical
approach to compare observed and predicted transient state queue length for the M/M/1 queue, noting
that for small values of t the expected queue length is strongly influenced by initial conditions, and
provide a good approximation for an upper bound of time to steady-state. Kelton and Law (1985)
consider the M/M/s (s ≥ 1) queue and provide expressions for calculating the probabilities of having
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up to n + k customers in the system upon the arrival of the nth customer, where k is the number of
customers in the system at time t = 0. They then apply these calculations to a variety of measures of
performance with implications to convergence on steady-state delays and offer methods for choosing
queue initialization in simulation. Much of the work in this paper is motivated by their results. Kelton
(1985) extends the previous work by considering M/Em/1 and Em/M/1 queues. Parthasarathy (1987)
provides a transient solution for the probability that there are n customers in the system at time t for
an M/M/1 queue. Abate and Whitt (1988) use Laplace transformations to analyze some transient
results of interest in the M/M/1 queue. Leguesdron, et al. (1993) provide transient probabilities for
the M/M/1 queue by inverting the generating function of the uniformized Markov chain describing
the M/M/1 process. Transient distributions of cumulative reward are calculated by e Silva, et al.
(1995) using uniformization, where the distribution of cumulative reward is over a finite interval with
reward rates represented by Markov model states. Grassmann (2008) investigates warm-up periods
in simulation and shows that in many cases these warm-up periods should not be used, especially if
the simulation begins in a high probability state.

The purpose of this paper is to adapt previous work on transient analysis to air traffic control.
Kaczynski et al. (2010) provide an extensive literature review in transient analysis. In this paper we
will focus on the transient analysis of the M/M/1 and the more general M/M/s queues as related
to air traffic control, specifically on the distribution of the nth flight’s (arriving or departing) sojourn
time, which is the sum of the nth flight’s delay time (referred to as holding time in aviation) and service
time. Almost all the references listed in Kaczynski et al. (2010) address measures of performance
specified over a finite time interval and are the results of numerical work, which is in stark contrast
to the measures proposed here, which are based on the exact distribution of specific flights. Rather
than arriving at the results numerically, a computer algebra system calculates exact measures of
performance based on a given number of arriving and departing flights.

The M/M/s queue is defined in Section 2 for a positive integer s, and a method is given for
calculating the probability distribution of the number of aircraft an arriving or departing flight sees
upon contact with air traffic control (ATC) (upon arrival to an M/M/s queue). Section 3 describes
how the sojourn time distribution is calculated for a given flight in an M/M/s queue with k flights
initially present in the system, k ≥ 0. Section 4 includes examples using the implemented procedures to
calculate exact sojourn time distributions, related measures of performance, and graphical illustrations
for varying parameters such as traffic intensity and number of flights in the system. Section 5 applies
two approaches for calculating the covariance and correlation among flights in an M/M/1 queue.
Section 6 extends the covariance and correlation calculations by automating the process of finding
the joint probability distribution function between two flights, and provides the exact covariance and
correlation calculations for varying traffic intensities. Section 7 concludes the paper by reviewing
the content and offering areas of further study. Commented code is available for all computations
conducted here upon request.

2 BASICS OF THE M/M/s QUEUE

The M/M/s queue is governed by iid exponential interarrival times (the arrival stream is a Poisson
process) with arrival rate λ , and iid exponential service times among s identical servers, each with
service rate µ . The interarrival times and the service times are mutually independent. The traffic
intensity of the system is ρ = λ/sµ . The system consists of a single queue with customers waiting
to be serviced by one of the identical s parallel servers. If an arriving customer finds at least one idle
server, the customer immediately proceeds to service; otherwise the customer joins the single queue
of those waiting for service in a first-come, first-served manner. To achieve classic steady-state results
the traffic intensity must satisfy ρ < 1. This critical assumption is not required in transient analysis,
described here, because the system of interest never reaches equilibrium. In this application, if s = 1,
we will assume there is a single controller and a single runway. If s > 1, we will assume there is
one runway for each controller and that the controllers have adequate space to independently serve
flights.

Let Pk(n, i) be the probability that upon the arrival of the nth flight there are exactly i flights
in the system including the nth flight (in queue or in service), given k flights are present at time
t = 0. Using propositions provided by Kelton and Law (1985) and a recursion algorithm, Pk(n, i) for
i = 1,2, . . . ,n+k can be computed. Using these probabilities, it is possible to find the distribution of
the sojourn time for the nth flight in an M/M/s queue, given k flights are present at time t = 0.

Kaczynski et al. (2010) includes these results coded in theMapleprocedureQueue(X,Y,n,k,s),
where
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• X is the exponential interarrival time distribution,
• Y is the exponential service time distribution,
• n is the index of the flight of interest,
• k is the number of flights in the system at time t = 0,
• s is the number of identical parallel servers.

The procedure is written in Maple and uses A Probability Programming Language (APPL), which
can be downloaded for free at www.APPLsoftware.com and is described in Glen et al. (2001).
We choose to calculate the distribution of the sojourn time because it is a purely continuous random
variable enabling us to exploit associated procedures in APPL.

3 CREATING THE SOJOURN TIME DISTRIBUTION

Once the necessary Pk(n, i), i = 1,2, . . . ,n + k, probabilities are calculated, the exact sojourn time
distribution for the nth flight can be calculated. We define Xn as the number of flights, including
flight n, in the system at time t, the arrival time of the nth flight. The possible values of Xn can vary
from a minimum of 1, which occurs when flight n arrives to empty airspace, to a maximum of n+k,
which occurs when 0 completions occur prior to flight n’s arrival. The mathematical derivations for
both the M/M/1 and M/M/s queues make extensive use of the memoryless property, permitting the
construction of the distribution of Tn, the sojourn time of flight n. We present each case separately
below.

3.1 Distribution of Tn for the M/M/1 queue

Kaczynski et al. (2010) show the M/M/1 queue sojourn time distribution for k = 0 initial flights
generalizes very elegantly to include k > 0, as indicated in Table 1. Line i of the table occurs with
probability Pk(n, i) and lists the distribution of the sojourn time for the nth flight, conditioned on i
flights being in the system upon its arrival.

Table 1: Conditional sojourn time distributions for the M/M/1 queue.

Xn Delay Service Conditional sojourn time distribution
1 0 exponential(µ) exponential(µ)
2 exponential(µ) exponential(µ) Erlang(µ , 2)
3 Erlang(µ , 2) exponential(µ) Erlang(µ , 3)
4 Erlang(µ , 3) exponential(µ) Erlang(µ , 4)
...

...
...

...
n+ k Erlang(µ , n+ k−1) exponential(µ) Erlang(µ , n+ k)

Let gi(t) be the PDF of an Erlang(µ, i) random variable. Using the conditional sojourn time
distributions for i = 1,2, . . . ,n + k potential flights in the system, each with probability Pk(n, i), the
probability density function (PDF) for the nth flight’s sojourn time Tn is the mixture

fn(t) =
n+k

∑
i=1

Pk(n, i)gi(t) t > 0. (1)

3.2 Distribution of Tn for the M/M/s queue

Given s > 1 parallel identical servers (controllers), the nth flight’s sojourn time distribution is still a
mixture of n + k conditional sojourn time distributions. However, each distribution might be more
complicated. For illustration, consider an M/M/3 queue starting empty and idle with exponential(λ )
arrivals and three identical exponential(µ) servers. It is clear that for flights 1, 2, and 3, the sojourn
time is exponential(µ) since all three flights proceed directly to service. Therefore, in the general
case, for the number of flights in the system including flight n, which we defined as Xn, when Xn ≤ s
the conditional sojourn time distribution is exponential(µ). However, if Xn > s, then the nth flight
experiences a delay while observing Xn − s service completions. When s > 1 and Xn > s, the service
distribution observed by flights in queue is exponential with rate sµ . Using this result, it is apparent
that the delay time for the nth flight is the sum of Xn−s independent exponential(sµ) random variables,
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and using (1) is Erlang(sµ,Xn − s). To calculate the nth flight’s sojourn time for a particular value
of Xn, we sum the delay time and the service time. Table 2 shows the distributions conditioned on
the number of flights Xn encountered by flight n (including itself) for the M/M/3 queue, given k = 0
flights present at time t = 0. The APPL procedure Convolution calculates the distribution of a
sum of independent random variables. We use the symbol ⊕ to represent convolution.

Table 2: Conditional sojourn time distributions for the M/M/3 queue with k = 0.

Xn Delay Service Conditional sojourn time distribution
1 0 exponential(µ) exponential(µ)
2 0 exponential(µ) exponential(µ)
3 0 exponential(µ) exponential(µ)
4 exponential(3µ) exponential(µ) exponential(3µ) ⊕ exponential(µ)
5 Erlang(3µ , 2) exponential(µ) Erlang(3µ , 2) ⊕ exponential(µ)
...

...
...

...
n Erlang(3µ , n−3) exponential(µ) Erlang(3µ , n−3) ⊕ exponential(µ)

Since Xn represents the number of flights in the system upon arrival of the nth flight, including
itself, the first row in Table 2 corresponds to flight n arriving to an empty system and the last row
corresponds to no service completions prior to flight n’s arrival. The general form for the M/M/s
sojourn time PDF is identical to (1), however, in the M/M/s case each gi(t) can potentially require
an additional step to calculate the distribution of a sum of random variables.

4 AIR TRAFFIC CONTROL TRANSIENT ANALYSIS APPLICATIONS

It is apparent that calculating the conditional sojourn time distribution for large n is tedious. Kelton
and Law (1985) acknowledge the computational difficulty in achieving the Pk(n, i) probabilities
alone. Conducting the added steps of up to n− s convolutions for the M/M/s queue and then
mixing the resulting conditional distributions with the appropriate probabilities can be complicated to
implement. Due to these computational difficulties, simulation is often required for analysis, however,
APPL provides the underlying computational engine to achieve exact results for such problems. As
mentioned earlier, the APPL procedure Queue(X, Y, n, k, s) returns the exact sojourn time
distribution for flight n. APPL is capable of symbolic results, as illustrated in Examples 1 and 2.

Example 1. Consider an M/M/1 queue (a single controller, single runway facility)
with arrival rate λ and service rate µ starting empty and idle at time t = 0. For the
fourth flight, calculate the probabilities P0(4, i) for i = 1,2,3,4.

The APPL command MMsQprob(4, 0, 1) returns exact symbolic probabilities, and
for ρ = 9/10,

P0(4,1) =
5ρ2 +4ρ +1

(ρ +1)5 =
865000
2476099

≈ 0.3493

P0(4,2) =
ρ

(

5ρ2 +4ρ +1
)

(ρ +1)5 =
778500
2476099

≈ 0.3144

P0(4,3) =
ρ2 (3ρ +1)

(ρ +1)4 =
29970
130321

≈ 0.2300

P0(4,4) =
ρ3

(ρ +1)3 =
729

6859
≈ 0.1063,

where ρ = λ/µ . It is easy to verify that for any ρ > 0, ∑4
i=1 P0(4, i) = 1, as required.

Example 2. For the queue described in Example 1, calculate the fourth flight’s sojourn
time distribution, mean sojourn time and sojourn time variance.
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The APPL statements

X := ExponentialRV(lambda);
Y := ExponentialRV(mu);
T := Queue(X, Y, 4, 0, 1);
Mean(T);
Variance(T);

calculate the desired results. The first two lines define the interarrival and service time
distributions, while the third line calculates the fourth flight’s sojourn time distribution.
The last two lines are self explanatory. The resulting PDF is

f4(t) = µ4e−µt
(

30λ 2 +30λ 3t +24λ µ +24λ 2µt +6µ2 +6µ2λ t +9t2λ 4+

12t2λ 3µ +3t2λ 2µ2 + t3λ 5 +2t3λ 4µ + t3λ 3µ2
)

/6(λ + µ)5 t > 0.

Using f4(t) above, the Mean and Variance commands return

E [T4] =
µ5 +6λ µ4 +26µ2λ 3 +16µ3λ 2 +17µλ 4 +4λ 5

µ (λ + µ)5

and

V [T4] =
(

181µ2λ 8 +484µ3λ 7 +816µ4λ 6 +868µ5λ 5 +574µ6λ 4+

244µ7λ 3 +40µλ 9 +68µ8λ 2 +12µ9λ + µ10 +4λ 10
)

/
(

µ2 (λ + µ)10
)

.

Substituting λ = 1 and µ = 10/9, the results simplify to

f4(t) =
5000

66854673
e−10/9t (361t3 +2109t2 +5190t +5190

)

t > 0,

E [T4] =
23323347
12380495

≈ 1.8839, and V [T4] =
383506725720906
153276656445025

≈ 2.5021.

The CPU time associated with the examples is negligible. Examples 1 and 2 represent simple
applications of these procedures that circumvent time intensive hand-calculations. They serve only
as indications of more challenging problems solvable using these procedures.

Example 3. Calculate the mean sojourn time of the 30th flight in an M/M/2 queue
with arrival rate λ = 1, service rate µ = 9/20 (ρ = 10/9), and k = 3 flights initially
present.
The mean can be calculated in a single APPL statement by embedding the function
calls
Mean(Queue(ExponentialRV(1),ExponentialRV(9/20),30,3,2));
which yields 9.634524585.

Representing the sojourn time distribution for the nth flight in closed form also provides valuable
information on asymptotic behavior for queueing systems, including steady state convergence rates
for different initial conditions. Figure 1 shows the mean sojourn time for flight n = 1,2, . . . ,120 in
an M/M/1 queue with λ = 1, µ = 10/9, and ρ = 9/10 for several values of k. The points that are
plotted have been connected by lines. As expected, despite the initial condition, all cases appear to
move toward the steady-state value of 9 with increasing n. The horizontal axis is only limited to
n = 120 for display purposes and in fact, identical computations were carried out for n > 300 flights
to verify convergence. However, as shown in the cases where k = 6 and k = 10, the convergence to
steady-state is not always monotone. Additionally, in testing various traffic intensities, the rate of
convergence to steady-state increases rapidly with decreasing traffic intensity for varying values of k.

APPL also has the ability to calculate the closed-form cumulative distribution function (CDF)
for the nth flight’s sojourn time permitting CDF comparisons for varying n as well as distribution
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Figure 1: M/M/1 mean sojourn time for ρ = 9/10 given k at t = 0.

percentiles for a given flight. Varying k for an M/M/1 queue provides another basis for comparison
of CDFs, where resulting CDFs are plotted across k allowing direct comparison of sojourn time
percentiles for flight n.

Given the complete specification of the sojourn time distribution, one can use APPL to calculate
not only the mean but also the 2nd, 3rd, and 4th moments for flight n. This is especially valuable
for steady-state analysis. It is common in simulation to verify attainment of steady-state behavior
by examining the mean delay or mean sojourn time. Though some literature exists on estimating
transient mean and variance, we are not aware of any literature addressing higher moments. Literature
addressing the second moment seems mostly focused on variance estimation and not necessarily
convergence. Therefore, even when the first moment might acceptably approximate the steady state
value, there is reason for further analysis of higher moments. For example, Figure 2 displays the first
four moments of the sojourn time for flight n in an M/M/1 queue, where λ = 1, µ = 2, ρ = 1/2,
with the initial condition k = 0,4,8.

The vertical dashed lines give the smallest flight number for which all three of the transient values
are within 1% of the steady state value. The relatively low traffic intensity ρ = 1/2 was selected
purposely to allow quick convergence and easy visual inspection. Even with this somewhat low traffic
intensity, it is apparent that the higher moments converge more slowly than the lower moments. In
other scenarios where ρ > 1/2, the higher moments exhibit an even slower convergence. Each vertical
dashed line in Figure 2 was triggered by the k = 8 curve, suggesting that the moments are more sensitive
to a heavily pre-loaded system. For the cases k = 0,4,8, the flight numbers for which the transient
results were within 1% of the steady state values are listed in Table 3. To verify the initial-condition
effect on the convergence rate of the first four moments, k was increasingly incremented beyond eight
and displayed a further slowing of convergence.

Table 3: Smallest flight number where the sojourn time transient result is within 1% of steady state for an M/M/1
queue with k = 0,4,8 and ρ = 1/2.

k = 0 k = 4 k = 8
E[T ] 19 21 36

√

Var[T ] 27 29 46
E

[

((T −µ)/σ)3
]

28 29 50
E

[

((T −µ)/σ)4
]

34 35 56

5 FLIGHT COVARIANCE AND CORRELATION IN THE M/M/1 QUEUE

The dependence exhibited in sojourn times of successive flights is one reason for the difficulty in
calculating interval estimators for queue measures of performance. In the simplest case, consider an
empty and idle M/M/1 queue with interarrival and service rates λ and µ . Our desire is to calculate
the covariance between the sojourn times of any two flights for the first three flights of the day.
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Figure 2: First four moments of the M/M/1 sojourn time for flights 2 through 60 for ρ = 1/2 and k = 0,4,8. The
arrival rate is λ = 1 and the service rate is µ = 2, resulting in steady-state values for the four measures of performance
of 1,1,2,9.

When considering n = 3 flights, there are five possible ways flights can arrive and be serviced.
In general, for n flights, the number of ways that flights can enter and leave the ATC is given by the
nth Catalan number, which is

Cn =
(2n)!

(n!)(n+1)!
.

Figure 3 shows the five possible arrangements for n = 3 flights along with the sojourn times T1, T2, and
T3 for each, with the arrival and completion times for the ith flight denoted by ai and ci respectively.
The vertical arrows at event times represent service completions (pointing up) or arrivals (pointing
down).
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Figure 3: Five cases for n = 3 flights’ sojourn times in an M/M/1 queue.

Using a theorem presented in Kaczynski et al. (2010), the joint PDFs for each of the pairs (T1,T2),
(T1,T3), and (T2,T3) in each of the five cases can be determined and then mixed to achieve the three
associated joint PDFs. Using these joint densities, the symmetric 3×3 variance–covariance matrix is

Σ =





















1
µ2

λ (2µ +λ )

(λ + µ)2µ2

λ 2(λ 2 +4λ µ +5µ2)

(λ + µ)4µ2

•
2λ 2 +4λ µ + µ2

(λ + µ)2µ2

λ (2λ 2 +8λ 2µ +11λ µ2 +2µ3)

(λ + µ)4µ2

• •
3λ 6 +18λ 5µ +45λ 4µ2 +54λ 3µ3 +30λ 2µ4 +8λ µ5 + µ6

(λ + µ)6µ2





















.

Substituting λ = 1 and µ = 2, for example, results in

Σ =

















1
4

5
36

29
324

•
7
18

13
54

• •
1451
2916

















≈

[

0.2500 0.1389 0.0895
• 0.3889 0.2407
• • 0.4976

]

.

These results have been verified via Monte Carlo for the first n = 3 flights. The sojourn time
variance increases with flight number down the diagonal of the matrix because of the nature of the
queueing process, where the sojourn time distribution for each additional flight is dependent on all
the previous flights. On the other hand, the off-diagonal covariance entries in each row decrease with
flight separation, for example σ13 < σ12.
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6 EXTENDING FLIGHT COVARIANCE CALCULATIONS

The APPL procedure Cov(a, b, n) calculates the covariance between flights a and b (a < b) in
a system of n flights. For computational considerations (i.e., evaluating the fewest cases necessary
for a given n), setting the number of flights n = b provides the fastest result. Additionally, calling
Cov(a,b,n)where n > b produces a result identical to n = b because flights arriving after flight b do
not affect the covariance of previous flights. Using this procedure, the symmetric variance–covariance
matrix for n = 10 flights with parameters λ = 1, µ = 2, and ρ = 1/2 is calculated and displayed
with matrix elements rounded to four significant digits. CPU time is a factor in these computations.
Each element in the tenth column of the variance–covariance matrix is calculated from a joint PDF
which is a mixture of C10 = 20!/(10!11!) = 16,796 component distributions, each corresponding to
a unique ordering of ATC arrivals and completions.



























0.2500 0.1389 0.0895 0.0621 0.0450 0.0336 0.0257 0.0199 0.0157 0.0125
• 0.3889 0.2407 0.1639 0.1176 0.0872 0.0663 0.0513 0.0402 0.0319
• • 0.4976 0.3251 0.2286 0.1676 0.1263 0.0972 0.0759 0.0600
• • • 0.5845 0.3948 0.2837 0.2113 0.1611 0.1251 0.0984
• • • • 0.6547 0.4524 0.3302 0.2488 0.1915 0.1498
• • • • • 0.7119 0.5000 0.3694 0.2808 0.2177
• • • • • • 0.7587 0.5396 0.4022 0.3080
• • • • • • • 0.7974 0.5725 0.4298
• • • • • • • • 0.8293 0.5999
• • • • • • • • • 0.8559



























As the traffic intensity increases, so do the values in the variance–covariance matrix. To illustrate,
the same matrix is provided for the increased traffic intensity parameters λ = 1, µ = 10/9, and
ρ = 9/10. The increasing sojourn-time variance along the diagonal is expected with the increasing
traffic intensity. In addition, the rate that covariance between flights decreases as flight separation
increases is less pronounced.



























0.8100 0.5856 0.4737 0.4040 0.3553 0.3189 0.2904 0.2673 0.2481 0.2318
• 1.3956 1.1097 0.9393 0.8226 0.7363 0.6692 0.6150 0.5702 0.5323
• • 1.9561 1.6298 1.4167 1.2626 1.1441 1.0494 0.9714 0.9057
• • • 2.5021 2.1458 1.8995 1.7142 1.5679 1.4484 1.3485
• • • • 3.0364 2.6565 2.3831 2.1715 2.0009 1.8593
• • • • • 3.5605 3.1614 2.8652 2.6310 2.4389
• • • • • • 4.0754 3.6600 3.3444 3.0904
• • • • • • • 4.5818 4.1524 3.8199
• • • • • • • • 5.0803 4.6386
• • • • • • • • • 5.5713



























Traditional steady-state queueing theory and analysis lacks the insight provided in these transient
variance–covariance matrices. For military airfields where the number of flights in a day is so small that
true steady state is never achieved, routine queueing measures of performance are not representative
of reality. Additionally, consider a system where the traffic intensity exceeds one. An appropriate
example is the Haiti airport following the 2010 earthquake where military control over the airport
was exercised. For a such a system, an analyst might be interested in the covariance between flight
sojourn times. Increasing the traffic intensity so that ρ > 1 does not preclude covariance calculations
using this method, and therefore allows transient analysis of such systems. A variance–covariance
matrix for ρ = 3/2, is presented below. Given this traffic intensity, the system is unstable and the
expected sojourn times for successive flights increase without bound. Along the main diagonal the
flight variance is clearly increasing, and the covariance decreases as the separation occurs between
flights. This decrease is monotonic, and though not studied in detail here, it appears that the rate of
covariance decrease might be of interest for an unstable traffic intensity.
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2.2500 1.8900 1.7172 1.6135 1.5438 1.4937 1.4558 1.4263 1.4027 1.3835
• 4.1400 3.7368 3.5018 3.3459 3.2344 3.1507 3.0856 3.0337 2.9913
• • 6.0957 5.6825 5.4166 5.2292 5.0896 4.9817 4.8958 4.8261
• • • 8.1312 7.7208 7.4397 7.2332 7.0747 6.9493 6.8479
• • • • 10.2424 9.8410 9.5538 9.3361 9.1652 9.0276
• • • • • 12.4235 12.0342 11.7463 11.5230 11.3444
• • • • • • 14.6687 14.2931 14.0081 13.7828
• • • • • • • 16.9727 16.6115 16.3319
• • • • • • • • 19.3310 18.9846
• • • • • • • • • 21.7397



























7 SOJOURN TIME COVARIANCE WITH k FLIGHTS INITIALLY PRESENT

When k flights are present in the M/M/1 queue at time zero, the approach used to compute sojourn-
time covariance between flights becomes more difficult. When the two flights of interest possess
indices larger than k (i.e., Ti where i > k), then the approach is similar to that derived in Section 6 of
Kaczynski et al. (2010). However, there are two other possibilities. The first possibility is that the
first flight has an index of k or less, and the second flight has an index larger than k. In this instance,
the only difference in deriving the joint CDF is that the lower indexed flight begins its sojourn time
at time zero. In the second possibility, both flights have an index of k or below. If these indices are i
and j, where i < j ≤ k, the time intervals for sojourn times Ti and Tj begin at zero. These calculations
are coded in Maple as the procedure kCov(X, Y, a, b, n, k). The first two arguments X and
Y are the distribution of time between arrivals, exponential(λ ), and the service time distribution,
exponential(µ), respectively. The arguments a and b are the flights of interest for the covariance
calculation, where a < b. The argument n is the number of flights processing through the system not
including those present at time zero, which is indicated by the last argument, k. Therefore, the total
number of flights processing through the system is n+ k, and a covariance calculation between any
two of these flights can be achieved with the appropriate function call. For example, the function call
kCov(ExponentialRV(1), ExponentialRV(2), 1, 2, 1, 3) calculates the covariance
between flights 1 and 2 in an M/M/1 queue with an arrival rate λ = 1, with service time rate µ = 2,
with three flights present at time zero, and a single additional flight processes through the system.
The variance–covariance matrix for an M/M/1 queue with arrival rate λ = 1, and service time rate
µ = 2, where k = 4 flights are present at time zero and an additional n = 6 flights process through
the system is

















































1
4

1
4

1
4

1
4

211
972

1579
8748

11651
78732

28553
236196

630131
6377292

4646155
57395628

•
1
2

1
2

1
2

211
486

1579
4374

11651
39366

28553
118098

630131
3188646

4646155
28697814

• •
3
4

3
4

211
324

1579
2916

11651
26244

28553
78732

630131
2125764

4646155
19131876

• • • 1 211
243

1579
2187

11651
19683

28553
59049

630131
1594323

4646155
14348907

• • • •
37289
26244

271153
236196

1966777
2125764

1588153
2125764

34755203
57395628

763875281
1549681956

• • • • •
1629655
1062882

11663887
9565938

9353743
9565938

203800469
258280326

4465399991
6973568802

• • • • • •
263490131
172186884

208262483
172186884

4506205633
4649045868

98323535707
125524238436

• • • • • • •
63939878
43046721

1359189250
1162261467

29402061622
31381059609

• • • • • • • •
179260456277
125524238436

379721786263
3389154437772

• • • • • • • • •
62708955663745
45753584909922

















































.

Here the matrix elements are listed exactly, illustrating Maple/APPL’s ability to conduct exact cal-
culations. Unlike the previous variance–covariance matrices, some row elements, in particular those
elements associated with flights that are initially present, do not decrease monotonically. These entries
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are explained in detail in Kaczynski et al. (2010). It can be shown in general that

Var(Ti) = Cov(Ti,Tj) =
i

µ2

for i < j ≤ k, where k flights are present at time zero.

8 OTHER POTENTIAL APPLICATIONS

Queueing applications in which the queue behavior does not reach steady-state are commonplace
in the military. One potential area of study is the soldier processing center in Kuwait. This center
is a clearing house for processing service members in and out of Iraq and Afghanistan. The entire
process is complicated, however, individual stations certainly follow the FIFO queue discipline and
are good candidates for Markovian queues. This center is known to have substantial problems in
(1) arrival rates exceeding service rates, i.e., ρ > 1, (2) stations that shut down intermittently without
servicing all customers already present, i.e, do not achieve steady state, and (3) form queues prior
to servers being available for service, i.e., k > 0 customers present at time t = 0. Another potential
application is installation access through security checkpoints. It is often observed that the arrival rate
is substantially higher than the service rate, especially during peak periods. This is better represented
as a non-homogeneous Poisson process, and would be an interesting future research topic in transient
queueing analysis.

9 CONCLUSIONS AND LIMITATIONS

Previous transient analysis results for the M/M/1 and M/M/s queues have been combined with the
functionality of the Maple computational engine (and subsequently APPL) in a military air traffic
control environment to develop both symbolic and numeric exact flight sojourn time PDFs that can be
manipulated to compute and study various measures of performance. A complete variance–covariance
matrix for the first n = 10 flights and varying traffic intensity is calculated, illustrating this approach’s
ability to determine the joint PDF between two flight sojourn times. The models presented in this
paper have assumed that there are two runways that are dedicated to incoming and outgoing flights
which operate independently. Therefore, both arriving flights and departing flights can be viewed
separately as independent M/M/1 queues, with the runway playing the role of the server. An analyst
would need to assure that data supports the Markovian assumptions, and the policy at the airport
supports the FIFO queue discipline. A single-runway airport handling both arriving and departing
flights is less likely to conform to the models presented here. A logical epoch for arrival time for
an outgoing flight would be the hand off from ground control to tower for outgoing flights; a logical
epoch for arrival time for an incoming flight would be initial report to terminal control. Similar
conventions would apply when determining the appropriate time for completion of service. The
results offer a framework for describing how the well-known M/M/s queue steady-state results occur
as the queue progresses toward steady-state. When possible, results are checked against corresponding
Monte Carlo simulation and/or previous literature. The first principles derivation suggests a viable
alternative for future research would be to apply the approaches provided in this work to a G/G/1
queue. Computational considerations take priority as n increases. Making use of other computational
formulae (such as Hagwood (2009)) may offer significant time savings and is another interesting
avenue for future work.
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