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ABSTRACT

Integrated assessment models that combine geophysics and economics features are often used to evaluate environmental
economic policies. In these models, there are often profound uncertainties and Monte Carlo simulations are often used
to evaluate the policies. Generally, the simulation approach requires that the distribution of the uncertain parameters
are clearly specified. In this paper, we adopt the widely used multivariate normal distribution to model the uncertain
parameters. However, we assume that the mean vector and covariance matrix of the distribution are within some
ambiguity sets. We propose a change-of-measure technique to derive the simulation results for any mean vector and
covariance matrix in the sets without actually simulating them. We then show how to find the worst case performance
for all mean vectors and covariance matrices in the ambiguity sets by solving a sequence of convex problems. This
performance provides a robust evaluation of the policies. We test our algorithm on a famous environmental economic
model, known as the DICE model, and obtain some insightful and interesting results.

1 INTRODUCTION

Since the beginning of industrial revolution, human activities particularly burning of fossil fuels and clearing forested
land, has made a much “thicker” blanket of greenhouse gas around the earth, resulting in an unprecedented increase
in the current level of greenhouse gases, at around 430ppm CO2 compared with only 280ppm before the Industrial
Revolution. While debate on whether or not the globe is indeed warming still ensues, overwhelming scientific evidence
has already suggested that climate change presents very serious global risks to human welfare. Facing such dramatic
climate risks, the recent 194-nation UN-led Copenhagen Climate Summit pledged to limit global warming to two
degrees Celsius along with billions of dollars in climate financing in the famous “Copenhagen Accord”.

Climate change is so complicated, for many years scientists and economists typically work together and resort to
numerical computer simulations, so-called “Integrated Assessment Model” (IAM) for evaluating the economic impacts
of global warming. One representative IAM model is the Dynamic Integrated model of Climate and the Economy
(DICE), developed by William Nordhaus (see, for instance, Nordhaus 2008). The model conducts a cost-benefit
analysis and outputs a net present value of abatement costs plus climate changes. Like climate change itself, climate
models seem also concern profound uncertainties, partly due to its intrinsic randomness and partly due to our imperfect
understanding of the evolvement of the complex climate systems. In IAM models, these uncertainties appear to rely
on a wide range of key uncertain parameters on various stages of modeling global warming. A typical approach to
handling these uncertainties is to specify distributions for these parameters, and then conduct an expected cost-benefit
analysis. For instance, Nordhaus (2008) pointed out there are eight critical uncertain parameters in the DICE model. He
modeled all eight parameters as normal distributions and estimated their means and variances, and then evaluated the
expected performances of different policies by generating the parameters from their distributions and running simulation
experiments with these parameters.

However, for most of the uncertain parameters used in environmental economic models, there exists estimation
error for the means and covariances. Ignoring this estimation error may lead to inaccurate estimation of performances by
the simulation model, and therefore may lead to false conclusions. To resolve this difficulty, the DICE model currently
only considers one parameter at a time while fixing other parameters at their means or they (implicitly) assume that
the parameters are independent (Nordhaus 2008). However, this assumption is rarely true and the parameters often
work together to affect the outcomes of the models. In this paper, we assume that the uncertain parameters of the
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environmental simulation model follow a multivariate normal (MVN) distribution with an ambiguous mean vector and
covariance matrix. The MVN distribution is used in the DICE model because of its simplicity and generality (Nordhaus
2008). To model the ambiguity in the mean vector and the covariance matrix, we assume that they are constrained
in two sets, respectively, which we call “ambiguity sets”. We consider different forms of ambiguity sets so that they
are general enough to model practical situations, e.g., the mean vector and covariance matrix are estimated with or
without data, while still maintaining the desired mathematical tractability. When there is ambiguity in specifying the
MVN distribution, the results of the simulation are also ambiguous, making policy comparisons difficult. To solve this
problem, we take a robust approach that is used widely (see, e.g., the robust design of Taguchi 1984 and the robust
optimization of Ben-Tal and Nemirovski 1999). This approach finds the worst-case performance among all MVN
distributions constrained by the ambiguity sets to evaluate a policy and compares different policies based on these
worst-case performances.

To handle the above robust simulation, we implement a change-of-measure technique that uses the simulation
results conducted at a given MVN distribution to infer the simulation results for all MVN distributions constrained
by the ambiguity sets, and then convert the simulation problem to a stochastic optimization problem. To solve the
stochastic optimization problem, we use a sample-average approximation that takes a sample of simulation replications
and reformulates the optimization problem into a semi-definite optimization problem. We then take an iterative approach
and solve a convex optimization problem in each iteration. We prove that the sequence of solutions generated by our
algorithm is improving and converges to a stationary point of the sample-average approximation.

We apply our approach on the DICE model. We consider three performance measures, as well as five environmental
policies. We find that the ambiguity of covariance matrix has very little impact on all three performance measures and,
therefore, the model is robust with respect to the ambiguity covariance matrix. When the ambiguity of the mean vector
is considered, however, the performances may change significantly for all three performance measures. However, these
changes in general do not alter our preferences over different policies, i.e., the ranking of the policies are robust with
respect to the ambiguities of both mean vector and covariance matrix. Therefore, we conclude that the DICE model
is robust in comparing different policies, but its performances are only robust with respect to ambiguous covariance
matrix.

The rest of this paper is organized as follows. In Section 2, we introduce the problem formulation and the
change-of-measure reformulation. In section 3, we develop a sequential algorithm to solve the optimization problem
formulated in Section 2 and analyze its properties. We study the robustness of the DICE model and conclude the paper
in Section 4.

2 PROBLEM FORMULATION

2.1 Basic Formulation

Let ξ denote the d-dimensional vector of the key uncertain parameters in the environmental simulation model. Following
the convention of environmental economics literature, we assume that ξ follows a MVN distribution with a mean vector
µ and a covariance matrix Σ. Let c(ξ ) denote the output of the simulation model when ξ is given. In our context,
c(ξ ) may be the cost, or the temperature increase. Because of the complexity of environmental simulation models,
we assume that the closed-form expression of c(·) is not available and c(ξ ) can only be observed through running
simulation experiment at ξ . In the simulation study, we are interested in estimating E(µ,Σ)[c(ξ )].

Note that E(µ,Σ)[c(ξ )] is a function of (µ,Σ). When there is ambiguity in the specification of (µ ,Σ), there is also
ambiguity in E(µ,Σ)[c(ξ )]. Let M and S denote the sets of possible values that µ and Σ may take, respectively, and
M ×S denote corresponding Cartesian product. We call M , S and M ×S the “ambiguity sets” and discuss in
detail in Section 2.2. To handle the ambiguity in (µ ,Σ), we take a robust approach and find the worst-case performance
of E(µ,Σ)[c(ξ )] among all (µ,Σ) in M ×S . Because c(ξ ) often denotes cost or temperature increase, higher values
are worse. Therefore, we formulate the problem as the following maximization problem:

max
(µ,Σ)∈M×S

E(µ,Σ)[c(ξ )]. (1)

Without loss of generality, we further assume that c(ξ ) is nonnegative for all ξ ∈ ℜd , as in DICE model and many
practical situations. If c(ξ ) is not always nonnegative, we can make it nonnegative by adding a positive number as
long as c(ξ ) is bounded below, and this does not change the solution of Problem (1). For instance, if c(ξ ) ≥−M for
all ξ ∈ ℜd and some constant M > 0, then c(ξ )+M′ ≥ 0 for all ξ ∈ ℜd and any constant M′ ≥ M.

2.2 The Ambiguity Sets

To model the ambiguity of the mean vector µ and the covariance matrix Σ, we consider two different scenarios that
are commonly faced by environmental modelers. In the first scenario, there exist some data that can be used directly
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to estimate µ and Σ. Then, we model the ambiguity sets M and S by their confidence regions, denoted as M1 and
S1, respectively. In the second scenario, there is no data directly available to estimate µ and Σ. The ambiguity sets
are modeled more or less “subjectively” based on modeler’s information or belief, and they are denoted as M2 and
S2, respectively.

2.2.1 The Ambiguity Set of the Mean Vector

We first consider the ambiguity set M of the mean vector µ . In the first scenario, suppose there are m independent
observations of ξ , denoted as {ξ1, . . . ,ξm}. Because ξ follows a MVN distribution, based on the Hotelling’s T2-statistic,
the 1−α confidence region (as well of the ambiguity set) of µ has the following ellipsoid shape (Anderson 1984):

M1 =
{

µ : (µ − µ̂)T Σ̂−1(µ − µ̂) ≤ γ
}

, (2)

where µ̂ = 1
m ∑m

i=1 ξi and Σ̂ = 1
m−1 ∑m

i=1 (ξi − µ̂)(ξi − µ̂)T are the estimates of µ and Σ, and γ > 0 is a given constant
depending on 1−α . Note that M1 is a convex and compact set of µ , and it is also considered in the robust optimization
literature (e.g., Delage and Ye 2010).

In the second scenario, when there is no data available to estimate µ directly, we let

M2 = {µ : µℓ ≤ µ ≤ µu} , (3)

where µℓ,µu ∈ ℜd are the lower and upper bounds of µ . Note that M2 takes the form of a hyper-box and it is also
a convex and compact set of µ . It is more suitable when the estimations of the random parameters are “subjective”
or “judgemental”, as in the DICE model (Nordhaus 2008). Note that both M1 and M2 are convex and compact sets
of µ . Indeed, besides these two forms, the algorithm we propose in Section 3 can handle any convex and compact
ambiguity set M ⊂ ℜd .

2.2.2 The Ambiguity Set of the Covariance Matrix

Let S
d , S

d
+ and S

d
++ denote the d×d symmetric matrix space, d×d positive semi-definite matrix space and the d×d

positive definite matrix space, respectively. Because the covariance matrix Σ needs to be positive definite (we do not
consider degenerate cases), we assume that the ambiguity set S is a compact convex subset of S

d
++.

To model the ambiguity in the first scenario, we let

S1 = {Σ : Σℓ 4 Σ 4 Σu} , (4)

where Σℓ and Σu are positive definite matrices and A 4 B denotes that B−A is positive semi-definite. Suppose there
are m independent observations {ξ1, . . . ,ξm} of ξ . Because ξ follows a MVN with mean µ and covariance matrix Σ,
the estimate Σ̂ of Σ follows a Wishart distribution (Anderson 1984). Then, a 1−α confidence region of Σ is defined as
{

Σ : γ1Σ̂ 4 Σ 4 γ2Σ̂
}

with γ2 > γ1 > 0 and it is exactly in the form of S1. Therefore, when there are data available to
estimate Σ, we may construct an ambiguity set of Σ in the form of S1, and the ambiguity is caused by the estimation
error.

To model the ambiguity in the second scenario, we let

S2 =
{

Σ : Σii ≤ σ2
i , i = 1, . . . ,d, Σ � εI

}

(5)

for some ε > 0, where I denotes a d ×d identity matrix. One may set ε as a very small positive number if there is
no explicit information on it. This condition is equivalent to requiring all eigenvalues of Σ be at least ε , and it is used
to ensure that Σ is strictly positive definite and that S2 is a compact set in S

d
++. Note that Σii is the variance of the

ith element of ξ . The ambiguity set in the form of S2 essentially constrains the variances of all random elements. In
practice, when there is little information (or data) available to estimate the correlations among all random elements,
S2 is a form that one may use to model the ambiguity set of Σ.

Let X = Σ−1 and X = {X : Σ ∈ S }. Note that X is a compact subset of S
d
++ if S is. Because the algorithm

we propose in Section 3 solves for X instead of Σ, we analyze the properties of X in the rest of this subsection. Let

X1 =
{

X : Σ−1
u 4 X 4 Σ−1

ℓ

}

.
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It is easy to see that Σ ∈ S1 is equivalent to X ∈ X1. Furthermore, note that Σii ≤ σ2
i is equivalent to eT

i X−1ei ≤ σ2
i

and, hence, is equivalent to

[

X ei

eT
i σ2

i

]

� 0, where ei denotes the ith column of a d ×d identity matrix. Let

X2 =

{

X :

[

X ei

eT
i σ2

i

]

� 0, i = 1, . . . ,d, X 4 ε−1I

}

.

Then, Σ ∈ S2 is equivalent to X ∈ X2. Note that all constraints in X1 and X2 can be transformed into linear matrix
inequalities, which can be handled efficiently by convex optimization algorithms (Boyd and Vandenberghe 2004).
Indeed, besides the two forms S1 and S2, the algorithm we propose in Section 3 can handle any ambiguity sets where
X is defined by linear matrix inequalities.

2.3 A Change-of-Measure Reformulation

Problem (1) is difficult to solve because the closed form of E(µ,Σ)[c(ξ )] is not known. One approach is to treat it as
an simulation optimization problem (e.g., Fu 2002 and Hong and Nelson 2009), as the objective function of Problem
(1) may be evaluated by running simulation experiments at any (µ ,Σ) ∈ M ×S . However, this approach has two
drawbacks. First, Σ is a positive definite matrix and, to the best of our knowledge, there are no available convergent
simulation optimization algorithms to solve such problems. Second, even there exist such algorithms, this approach
requires running time-consuming simulation experiments at often a large number of different (µ,Σ) values and, hence,
often requires a prohibitively large amount of computational effort.

In this paper we introduce a different approach that reformulates Problem (1) based on a change-of-measure
technique. Let f (·) denote a probability density function defined on ℜd such that f (x) > 0 for any x ∈ ℜd and let E f

denote the expectation taken with respect to the distribution f (·). Let φ(µ,Σ)(·) denote the density of a MVN distribution
with mean µ and covariance matrix Σ. Then,

E(µ,Σ)[c(ξ )] =
∫

ℜd
c(x)φ(µ,Σ)(x)dx =

∫

ℜd
c(x)

φ(µ,Σ)(x)

f (x)
f (x)dx = E f

[

c(ξ )
φ(µ,Σ)(ξ )

f (ξ )

]

, (6)

where ξ has the density f (·) in the last equation. The technique used in deriving Equation (6) is known as change of
measure, i.e., the probability measure that the expectation is taken with respect to is changed from φ(µ,Σ)(·) to f (·),
and the term φ(µ,Σ)(·)/ f (·) is called a likelihood ratio or a Radon-Nikodym derivative. Plugging the function form of
φ(µ,Σ)(·) in Equation (6), we may reformulate Problem (1) as

max
(µ,Σ)∈M×S

E f

[

(2π)−d/2 c(ξ )

f (ξ )
(detΣ)−1/2 exp

{

−
1
2

(ξ −µ)T Σ−1 (ξ −µ)

}]

, (7)

where detA denotes the determinant of a matrix A.
Note that, without the change of measure, the decision variables (µ ,Σ) is in the distribution of ξ . Therefore, to

evaluate E(µ,Σ)[c(ξ )] for different (µ ,Σ) values, we need to generate ξ with different means and covariance matrices
and evaluate c(ξ ) through time-consuming simulation experiments. Then, Problem (1) is difficult to solve. With the
change of measure, however, the decision variables (µ ,Σ) is no longer in the distribution of ξ . This allows us to
separate the decision variables (µ ,Σ) and the randomness ξ . We can now use a sample of ξ and the corresponding
c(ξ ) values to evaluate E(µ,Σ)[c(ξ )] for all (µ ,Σ) ∈ M ×S . This greatly reduces the required computational effort
and makes it possible to solve Problem (7) efficiently.

3 SOLUTION METHOD

Following the notation used in Section 2.2, we let X = Σ−1 and X = {X ∈ S
d
++ : X−1 ∈S }, where S is the ambiguity

set for covariance matrix Σ. In this paper, we only consider the cases where X is defined by linear matrix inequalities,
as in the cases of X1 and X2 (see discussions in Section 2.2). Then, Problem (7) can be reformulated as follows:

max
(µ,X)∈M×X

g(µ ,X) := E f

[

(2π)−d/2 c(ξ )

f (ξ )
exp

{

−
1
2

(ξ −µ)T X (ξ −µ)+
1
2

logdetX

}]

. (8)

In the rest of this section, we develop an efficient algorithm to solve Problem (8).
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3.1 Sample-Average Approximation

Because c(ξ ) is the output from a complex environmental simulation model, a closed-form expression of g(µ ,X) is
typically unavailable. Instead, we can only use simulation observations to estimate g(µ ,X). Suppose that we have an
independent and identically distributed (i.i.d.) sample of ξ , denoted as ξ1, . . . ,ξn, generated from the distribution f (·),
and the i.i.d. simulation outputs c(ξ1), . . . ,c(ξn). We can then estimate g(µ ,X) by

ḡn(µ ,X) =
1
n

n

∑
j=1

(2π)−d/2 c(ξ j)

f (ξ j)
exp

{

−
1
2

(ξ j −µ)T X (ξ j −µ)+
1
2

logdetX

}

for any (µ ,X) ∈ M ×X . Let a j = (2π)−d/2c(ξ j)/ f (ξ j). Note that a j ≥ 0 for any j = 1, . . . ,n, because in Section
2 we assumed that both f (ξ ) > 0 and c(ξ ) ≥ 0 for all ξ ∈ ℜd . We suggest to solve the following sample-average
approximation (SAA):

max
(µ,X)∈M×X

ḡn(µ ,X) :=
1
n

n

∑
j=1

a j exp

{

−
1
2

(ξ j −µ)T X (ξ j −µ)+
1
2

logdetX

}

. (9)

Intuitively, if the sample size n is large enough, the solution to Problem (9) should be close to the solution to
Problem (8). Therefore, it provides a good approximation to the solution of Problem (8). In the rest of this subsection,
we show that the intuition indeed holds under some weak conditions.

For simplicity of the notation, we let

L(µ ,X ,ξ ) = (2π)−d/2 c(ξ )

f (ξ )
exp

{

−
1
2

(ξ −µ)T X (ξ −µ)+
1
2

logdetX

}

.

Let “∇µ ” denote the gradient of a function with respect to µ and “∇X ” denote the derivative of a function with respect
to the matrix X . Note that ∇X logdetX = X−1. Then, by chain rule we have

∇µ L(µ ,X ,ξ ) = (2π)−d/2 c(ξ )
f (ξ )

exp
{

− 1
2 (ξ −µ)T X (ξ −µ)+ 1

2 logdetX
}

X (ξ −µ) ,

and
∇X L(µ ,X ,ξ ) = (2π)−d/2 c(ξ )

f (ξ )
exp

{

− 1
2 (ξ −µ)T X (ξ −µ)+ 1

2 logdetX
}[

− 1
2 (ξ −µ)(ξ −µ)T + 1

2 X−1
]

.

With some abuse of the notation we let ‖ · ‖ denote both the Euclidean norm in ℜd and the Frobenius norm in the
symmetric matrix space S

d (Golub and Van Loan 1996). We make the following assumption on L(µ ,X ,ξ ):

Assumption 1. There exist measurable functions Di(·), i = 1,2, such that E f [Di(ξ )] < ∞, i = 1,2, and

‖∇µ L(µ ,X ,ξ )‖ ≤ D1(ξ ), ‖∇X L(µ ,X ,ξ )‖ ≤ D2(ξ ), ∀ (µ ,X) ∈ M ×X ,∀ ξ ∈ ℜd .

Assumption 1 states that
{

‖∇µ L(µ ,X ,ξ )‖
}

(µ,X)∈M×X
and {‖∇X L(µ ,X ,ξ )‖}(µ,X)∈M×X

are dominated by some
integrable functions. It is a standard assumption for the convergence of SAAs (see, e.g., Shapiro et al. 2009). In our
problem, it turns out to be a very weak assumption. For instance, we have the following propositions.

Proposition 1. Suppose the ambiguity set S is in the form of S1 and f (·) = φ(µs,Σu)(·). If there exists γ > 0, such
that E(µs,Σu)

[

c1+γ(ξ )
]

< ∞, then Assumption 1 holds.

Proposition 2. Suppose the ambiguity set S takes the form of S2 and f (·) = t( · ; µs,Π,ν) where t( · ; µs,Π,ν) is the
multivariate t distribution. If there exists γ > 0, such that E(µs,diag{dσ2

1 ,...,dσ2
d })

[

c1+γ(ξ )
]

< ∞, then Assumption 1 holds.

For any sets MA ×XA,MB ×XB ⊂ ℜd ×S
d , we let

dist((µ ,X),MA ×XA) = inf
(µ ′,X ′)∈MA×XA

(

‖µ −µ ′‖2 +‖X −X ′‖2)1/2

denote the distance from (µ,X) ∈ ℜd ×S
d to MA ×XA, and let

D(MA ×XA,MB ×XB) = sup
(µ,X)∈MA×XA

dist((µ ,X),MB ×XB)
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denote the deviation of the set MA ×XA from the set MB ×XB. Let v̄n and S̄n denote the optimal objective value and
the set of optimal solutions, respectively, of Problem (9), and v and S denote the optimal objective value and the set of
optimal solutions, respectively, of Problem (8). Then, we have the following theorem on the convergence of the SAA.

Theorem 1. Suppose that Assumption 1 is satisfied. Then, S is nonempty and S̄n are nonempty for all n, and, with
probability 1 (w.p.1), v̄n → v and D(S̄n,S) → 0 as n → ∞.

Theorem 1 shows that the optimal solutions of the SAA Problem (9) provide good approximations to the optimal
solutions of Problem (8) when n is large. Therefore, we can solve Problem (9) to approximate the optimal solutions of
Problem (8). Note that Problem (9) may not be a convex optimization problem, because ḡn(µ ,X) may not be concave
(or quasi-concave). Then, finding an optimal solution to Problem (9) may be difficult. We often only find stationary
points of Problem (9). Then, the conclusions of Theorem 1 may not be applicable. Therefore, we need to investigate
the convergence of stationary points of the SAA.

Consider the convex compact subsets M of ℜd and X of S
d
++. Denote by NM (µ) the normal cone of M at

point µ ∈ M and by NX (X) the normal cone of X at point X ∈ X , i.e.,

NM (µ) =
{

z ∈ ℜd : zT (µ ′ −µ) ≤ 0,∀ µ ′ ∈ M

}

, NX (X) =
{

Z ∈ Sd : tr(Z(X ′ −X)) ≤ 0,∀ X ′ ∈ X

}

,

where tr(A) denotes the trace of a matrix A. Recall that a point (µ ,X) ∈ M ×X is a stationary point of Problem (8)
if ∇µ g(µ ,X) ∈ NM (µ) and ∇X g(µ ,X) ∈ NX (X), and is a stationary point of Problem (9) if ∇µ ḡn(µ ,X) ∈ NM (µ) and
∇X ḡn(µ ,X) ∈ NX (X). Let K and K̄n denote the sets of stationary points of Problems (8) and (9), respectively. Then,
we have

K =
{

(µ ,X) ∈ M ×X : ∇µ g(µ ,X) ∈ NM (µ),∇X g(µ ,X) ∈ NX (X)
}

,

K̄n =
{

(µ ,X) ∈ M ×X : ∇µ ḡn(µ ,X) ∈ NM (µ),∇X ḡn(µ ,X) ∈ NX (X)
}

. (10)

The next theorem is parallel to Theorem 1. It ensures that the stationary points of the SAA are also good approximations
to those of Problem (8).

Theorem 2. Suppose that Assumption 1 is satisfied. Then, K is nonempty and K̄n are nonempty for all n, and
D(K̄n,K) → 0 w.p.1 as n → ∞.

Theorem 2 shows that, if we can find a local optimal solution of Problem (9), it provides a good approximation to
a local optimal solution of Problem (8). In the rest of this section, we show how to find a good local optimal solution
of Problem (9).

3.2 Sequential Quadratic & Maxdet Programs

As discussed in the last subsection, Problem (9) may not be a convex optimization problem. This leads to a significant
difficulty in solving it. In this subsection, we introduce an iterative convex optimization scheme that makes improvement
at each iteration and leads to a stationary point of Problem (9). Note that we may introduce a set of intermediate
variables t j, j = 1, . . . ,n, and reformulate Problem (9) as follows:

max
1
n

n

∑
j=1

a jt j (11)

s.t. −
1
2

(ξ j −µ)T X (ξ j −µ)+
1
2

logdetX ≥ log t j, j = 1, . . . ,n, (12)

(µ ,X) ∈ M ×X , t j ∈ ℜ, j = 1, . . . ,n

where we define log(x) =−∞ if x ≤ 0 to make it an extended real-valued function. Note that the newly defined log(x) is
still a concave function of x as the epi-graph of − log(x) defines a convex set (Rockafellar 1970). From the formulation,
it is clear to see that the constraints defined by Equation (12) are tight at the optimal solution of Problem (11).

Suppose (µ0,X0) is a feasible solution of Problem (9), i.e., (µ0,X0) ∈ M ×X . For instance, (µ0,X0) may be the
best guess for the random parameters in the DICE model. Then, we may let

t0
j = exp

{

−
1
2
(ξ j −µ0)

T X0(ξ j −µ0)+
1
2

logdetX0

}

, j = 1, · · · ,n.
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Note that t0
j > 0 for all j = 1, . . . ,n. Then, the constraints defined by Equation (12) are tight at (µ0,X0, t0

1 , . . . ,t0
n )

and, thus, (µ0,X0, t0
1 , . . . ,t0

n ) is a feasible solution of Problem (11). Note that log t j is concave with respect to t j, and
− 1

2 (ξ j −µ)T X (ξ j −µ)+ 1
2 logdetX is a bi-concave function of µ and X , i.e., for every X ∈ X it is concave with

respect to µ , and for every µ ∈M it is concave with respect to X . Obviously, Equation (12) may not define a convex set
and, thus, Problem (11) may not be convex. To solve the problem, we linearize log t j by a first-order Taylor expansion
at t0

j , and fix X = X0 at the same time, and then solve the following nonlinear optimization problem to update the value
of µ :

max
1
n

n

∑
j=1

a jt j (13)

s.t. −
1
2

(ξ j −µ)T X0 (ξ j −µ)+
1
2

logdetX0 ≥ log t0
j +

1

t0
j

(

t j − t0
j

)

, j = 1, . . . ,n, (14)

µ ∈ M , t j ∈ ℜ, j = 1, . . . ,n.

Note that Problem (13) is now a convex optimization problem. The linearization approach used in deriving Problem
(13) is a simple approach to convexifying optimization problems where the constraint can be expressed as the difference
of two convex functions. It is also used by Smola et al. (2005) and Hong et al. (2009) to solve non-convex real-valued
optimization problems.

Note that the constraints defined in Equation (14) are equivalent to

t j ≤
1
2

t0
j

(

−(ξ j −µ)T X0 (ξ j −µ)+ logdetX0

)

+ t0
j

(

1− log t0
j

)

, j = 1, . . . ,n.

Let (µ1, t1
1 , . . . ,t1

n ) be the optimal solution of Problem (13). Then, it is clear that

t1
j =

1
2

t0
j

(

−(ξ j −µ1)
T X0 (ξ j −µ1)+ logdetX0

)

+ t0
j

(

1− log t0
j

)

, j = 1, . . . ,n.

Substituting t1
j , j = 1, . . . ,n, into the formulation of Problem (13), we can easily see that µ1 is the optimal solution to

the following optimization problem:

max
µ∈M

1
n

n

∑
j=1

1
2

a jt
0
j

(

−(ξ j −µ)T X0 (ξ j −µ)+ logdetX0

)

+
1
n

n

∑
j=1

a jt
0
j

(

1− log t0
j

)

. (15)

Let

V1 =
∑n

j=1 a jt0
j ξ j

∑n
j=1 a jt0

j

.

Then, it is easy to verify that finding the optimal solution of Problem (15) is equivalent to finding the optimal solution
to the following problem:

max
µ∈M

−
1
2

µT X0µ +V T
1 X0µ . (16)

Problem (16) is a standard convex quadratic program and can be solved efficiently (Boyd and Vandenberghe 2004).
Note that − 1

2 µT X0µ +V T
1 X0µ is strictly concave. Therefore, Problem (16) has a unique optimal solution µ1.

Once we obtain the new mean vector µ = µ1, we calculate

s1
j = exp

{

−
1
2
(ξ j −µ1)

T X0(ξ j −µ1)+
1
2

logdetX0

}

, j = 1, · · · ,n.

Similarly to the derivation of Problem (15), in Problem (11) we fix µ = µ1 and linearize log t j by a first-order Taylor
expansion at s1

j , and then solve the following semi-definite program to update the value for X :

max
X∈X

1
n

n

∑
j=1

1
2

a js
1
j

(

−(ξ j −µ1)
T X (ξ j −µ1)+ logdetX

)

+
1
n

n

∑
j=1

a js
1
j

(

1− logs1
j

)

. (17)
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Let X1 be the optimal solution of Problem (17). Since the objective function in Problem (17) is strictly concave, the
uniqueness of X1 can also be guaranteed. Let

Π1 =
∑n

j=1 a j s1
j (ξ j −µ1)(ξ j −µ1)

T

∑n
j=1 a j s1

j

.

Note that (ξ j −µ1)
T X (ξ j −µ1) = tr

(

(ξ j −µ1)(ξ j −µ1)
T X

)

. Then, X1 is the unique optimal solution of the following

problem:

max
X∈X

−tr(Π1X)+ logdetX . (18)

Note that, when X is formed by linear matrix inequalities, Problem (18) is known as a log-determinant maximization
problem, which we denote as a maxdet problem. Maxdet problem is a well-known convex semi-definite program and
has been studied thoroughly in the literature (Vandenberghe et al. 1998). It can be solved efficiently using MAXDET
software (Wu et al. 1996) or the convex optimization package CVX (Grant and Boyd 2009). Recently, Wang et al.
(2009) developed a new method capable of solving efficiently large-scale maxdet problems where the dimension of the
matrix can be as high as 2000×2000. For the DICE model we consider in this paper, the dimension of the covariance
matrix is only 8× 8. According to our experience, a maxdet problem of this size can typically be solved within 5
seconds by using CVX on a personal computer.

Because log t j is a concave function, we have log t j ≤ log t0
j + 1

t0
j

(

t j − t0
j

)

, for any t j ∈ ℜ. Then, the objective

function of Problem (15) is bounded from above by the function ḡn(µ ,X0) on the feasible region M , and at point
µ = µ0, the two functions do coincide. Furthermore, note that µ1 is the optimal solution of Problem (15). It follows
that ḡn(µ1,X0) is always larger than or equal to ḡn(µ0,X0). Using the same argument we can obtain that ḡn(µ1,X1) is
always no less than ḡn(µ1,X0). Therefore, if we start with (µ0,X0) ∈ M ×X , which is a feasible solution of Problem
(9), we can solve Problems (16) and (18) to find (µ1,X1) that is feasible to Problem (9) and is at least as good as
(µ0,X0). Note that, once we have (µ1,X1), we can then repeat this process to find even better solutions. This motivates
us to develop the following iterative algorithm, which we call Sequential Quadratic & Maxdet Programs (SQMP):

Algorithm SQMP

Step 0. Give initial point (µ0,X0) ∈ M ×X , and set k = 0.
Step 1. Let

tk
j = exp

{

−
1
2
(ξ j −µk)

T Xk(ξ j −µk)+
1
2

logdetXk

}

for all j = 1, . . . ,n. Set k = k +1, compute

Vk =
∑n

j=1 a jt
k−1
j ξ j

∑n
j=1 a jt

k−1
j

,

and let µk ∈ argmax
{

µ ∈ M : − 1
2 µT Xk−1µ +V T

k Xk−1µ
}

.
Step 2. Let

sk
j = exp

{

−
1
2
(ξ j −µk)

T Xk−1(ξ j −µk)+
1
2

logdetXk−1

}

for all j = 1, . . . ,n. Compute

Πk =
∑n

j=1 a jsk
j(ξ j −µk)(ξ j −µk)

T

∑n
j=1 a jsk

j

,

and let Xk ∈ argmax{X ∈ X : −tr(ΠkX)+ logdetX}.
Step 3. Stop if (µk,Xk) is a stationary point of Problem (9), i.e., (µk,Xk) ∈ K̄n where K̄n is defined in Equation

(10); otherwise, go to Step 1.

Because Algorithm SQMP solves a sequence of standard quadratic problems and maxdet problems, it is compu-
tationally very efficient and it can be implemented easily. Besides the ease of implementation, the algorithm also has
many good theoretical properties. We summarize them in the following theorem.
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Theorem 3. Suppose that {(µk,Xk),k = 0,1, · · ·} is a sequence of solutions generated by Algorithm SQMP when it is
applied to solve Problem (9). Then, it satisfies the following properties:

1. (µk,Xk) is a feasible solution of Problem (9), i.e., (µk,Xk) ∈ M ×X , for all k = 0,1, . . .;
2. {ḡn(µk,Xk),k = 0,1, · · ·} is a nondecreasing convergent sequence;
3. if (µk+1,Xk+1) 6= (µk,Xk), then ḡn(µk+1,Xk+1) > ḡn(µk,Xk); otherwise, (µk,Xk) is a stationary point of Problem

(9);
4. all cluster points of {(µk,Xk),k = 0,1, · · ·} are stationary points of Problem (9). Furthermore, if Problem (9)

has a finite number of stationary points, then {(µk,Xk),k = 0,1, · · ·} converges to a stationary point.

The first property of Theorem 3 shows that the solutions generated by Algorithm SQMP are all feasible solutions
of Problem (9), and, therefore, ḡn(µk,Xk) provides a lower bound on the optimal objective value for all k = 0,1, . . . .
The second and third properties of Theorem 3 show that Algorithm SQMP keeps improving the quality of the solutions
unless the current solution is already a stationary point of Problem (9). Therefore, the solutions found in later iterations
are guaranteed better than the initial solution (µ0,X0), which is often taken to conduct simulation experiments and
make decisions, unless (µ0,X0) is already a stationary point. The fourth property of Theorem 3 is the most important
properties of the four. It shows that Algorithm SQMP indeed has the desired convergence. Furthermore, it shows that
the sequence of solutions generated by Algorithm SQMP converges to a stationary point as long as Problem (9) has
only a finite number of stationary points. Although Problem (9) is not provable convex, it may have only one stationary
point or one stationary point that is better than the initial solution (µ0,X0). Then, Algorithm SQMP guarantees to
converge to the point.

4 ROBUSTNESS OF THE DICE MODEL

In this section, we apply the DICE model to robustly evaluate and compare the following five representative environmental
policies:

1. no controls with 250−year delay, denoted as “no controls”;
2. atmosphere CO2 concentration limited to 2× the preindustrial level (i.e., 560 ppm), denoted as “2×CO2”;
3. temperature increase limited to 2◦C from the preindustrial level proposed by the Copenhagen Accord, denoted

as “2◦C increase”;
4. the policy recommended by the Stern Review, denoted as “Stern Review”; and
5. Al Gore’s proposal which achieves global emissions reductions of 90 percent by 2050, denoted as “Gore

Proposal”.

Readers may refer to Nordhaus (2008) for detailed descriptions of these policies.
We call the GAMS program1 of the DICE model from Matlab, and simulate these five environmental policies

simultaneously. The means and variances of the eight uncertain parameters, i.e., the rate of growth of total factor
productivity g(TFP), the rate of decarbonization g(CO2/GDP), the equilibrium temperature-sensitivity coefficient
T2×CO2, the damage parameter DamCoeff, the price of backstop technology P(back), asymptotic global population
Pop, the transfer coefficient in carbon cycle CarCyc, and total resources of fossil fuels Fosslim are estimated in
Table 7-1 of Nordhaus (2008). We let µ̂ and Σ̂ denote the estimated mean vector and covariance matrix of the eight
uncertain parameters. Note that the off-diagonal elements of Σ̂ are set as 0 because Nordhaus (2008) did not estimate
the correlations. To model the ambiguity, we suppose there exists a 10% estimation error for the mean vector and
set the ambiguity set as M = {µ : 0.9µ̂ ≤ µ ≤ 1.1µ̂}. For the covariance matrix, further enlarging the variances will
cause truncation problems. Moreover, during the estimation Nordhaus (2008) has doubled some of the combined
standard deviations. Therefore in this paper we focus on the left half confidence region and consider the ambiguity set
S =

{

Σ : 0.5Σ̂ 4 Σ 4 Σ̂
}

. We set the sample size n = 25000, and simulate sample from the MVN distribution N(µ̂ , Σ̂).
We implement the procedure introduced in preceding sections to find the worst case performances.

We first calculate the net present values (NPVs) of abatement costs plus climate damages for all five policies,
and report them in Table 1. The first column of Table 1 reports the outputs of the DICE model when the uncertain
parameters are substituted by their means. The results of this column are essentially the same as those reported in
Table 5-1 of Nordhaus (2008).2 The second column reports the average outputs of our 25000 independent simulation
runs. By comparing columns 1 and 2, we find that the most likely values and the average values of all five polices are
very close, which is consistent to what was reported in Nordhaus (2008).

Now we consider the robustness of the DICE model. We let the mean vector and covariance matrix vary in
M ×S and calculate the worst case outputs. In columns 3 and 4, we report the worst-case values and the percentage
changes compared to the average performance, respectively. To further understand the different effects of the mean

1The GAMS code of the DICE model can also be downloaded at http://nordhaus.econ.yale.edu/DICE2007.htm.
2There exist some minor differences. They might be caused by the parameter settings in the GAMS code.
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vector and covariance matrix, we fix the mean vector at µ̂ and allow the covariance matrix to vary in S , and report
the corresponding results in columns 5 and 6.

Table 1: NPVs of Abatement Costs Plus Climate Damages (Trillions of 2005 U.S. $)

Policy Most likely Average Worst case
Change from
Average case

Worst case
(fix mean)

Change from
Average case

No controls 23.12 24.64 38.99 58.21% 26.27 6.62%
2×CO2 20.00 20.89 31.88 52.62% 21.74 4.08%
2◦C increase 24.72 27.27 43.75 60.42% 28.26 3.63%
Stern Review 39.96 38.53 60.28 56.42% 41.75 8.35%
Gore Proposal 45.55 53.67 71.54 33.29% 55.28 3.00%

From Table 1, we have the following observations. First, the DICE model is sensitive to the eight uncertain
parameters. For the given small ambiguity set M ×S , the worst case average costs are 50%−60% higher than the
current average costs for most of the considered policies. Second, in the worst case, the order or the preference of
these policies does not change compared to the most likely or the average cases (i.e., the first two columns of Table 1).
Third, the cost measure seems much more sensitive to the mean vector than to the covariance matrix. From the above
table we see that the 10% estimation error of the mean vector contributes to the most to the change of the costs. This
suggests that, to improve the robustness of the DICE model, more effort needs to be spent on improving the estimates
of the mean vector instead of the covariance matrix.

We also calculate the global temperature increases by 2105 from the pre-industrial level and report them in Table
2. The robustness of this important measure shows a similar pattern compared to the costs reported in Table 1, except
that the covariance matrix of the parameters has an even smaller impact on the temperature change. Another interesting
finding is that the cost measure and temperature change measure may attain their maxima at different points in the
ambiguity sets. For instance, if we consider the mean of g(TFP), maximizing the cost pushes it to its lower bound,
while maximizing the temperature change pushes it to the upper bound. This is because the cost consists of both climate
damages and abatement cost.

Table 2: Global Temperature Increases by 2105 (◦C from the Pre-industrial Level)

Policy Most likely Average Worst case
Change from
Average case

Worst case
(fix mean)

Change from
Average case

No controls 3.19 3.17 3.68 16.09% 3.19 0.64%
2×CO2 2.53 2.37 2.64 11.39% 2.41 1.69%
2◦C increase 2.00 2.00 2.00 0.00% 2.00 0.00%
Stern Review 1.51 1.54 1.73 12.34% 1.56 1.30%
Gore Proposal 1.49 1.49 1.68 12.75% 1.49 0.00%

DICE model is known to be a standard cost-benefit analysis. By comparing the costs and other concerned measures
for different policies, it may suggest that facing global warming, “No Action” can be better than “Action”. A major
reservation about DICE model is perhaps that such cost-benefit analysis would fail when human beings might suffer
an indefinitely large expected loss from catastrophic events. This forms the basic idea of Dismal Theory, (see e.g.,
Weitzman 2009). Catastrophic event is itself a vague content. Many people suggest that it would be catastrophic if the
global average temperature rises by 4◦C above the pre-industrial level. The United Kingdom’s Met Office Hadley Centre
even draws a map depicting some of the impacts that may occur if this event occurs3. At the end of this section we
compare the probabilities of such event for different policies under current normality assumption. From the numerical
simulation we estimate that the probability for no controls policy is 17.7%, with worst case probability being 36.5%.
These probabilities are indeed large, indicating that there exist high risks for the no control policy. On the other hand,
for 2×CO2 policy and Stern Review policy, the underlying event is identified as a rare event, with probability less
than 0.1%. This means the risks of these two policies are much lower. Finally we note that for the aggressive Gore
proposal we did not observe the occurrence of underlying event in these 25000 runs.

Summarizing the robustness analysis on DICE model, our conclusion is essentially consistent with Nordhaus (2008):
There exist major uncertainties. Moreover, to deal with global warming, we DO need to take some MODERATE
environmental policies, such as 2×CO2 policy, or 2◦C increase policy. From the point of view of cost, temperature
change, robustness of output, as well as risk, the 2×CO2 policy seems a competitive policy.
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