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ABSTRACT

Most methods in simulation-optimization assume known environments, whereas this research accounts for uncertain
environments combining Taguchi’s world view with either regression or Kriging (also called Gaussian Process) meta-
models (emulators, response surfaces, surrogates). These metamodels are combined with Non-Linear Mathematical
Programming (NLMP) to find robust solutions. Varying the constraint values in this NLMP gives an estimated
Pareto frontier. To account for the variability of this estimated Pareto frontier, this contribution considers different
bootstrap methods to obtain confidence regions for a given solution. This methodology is illustrated through some
case studies selected from the literature.

1 INTRODUCTION

Simulation-optimization aims at optimizing one or more performance measures that characterize the behavior of a
system described through a simulation model. A major part in simulation-optimization assumes known environments,
which implies that all relevant simulation inputs are supposed to be known. Unfortunately, ignoring the uncertainty in
some inputs of the simulation model may lead to a suboptimal or infeasible solution. The goal of robust optimization
is to tackle uncertainty affecting a system and derive solutions that are relatively insensitive to perturbations in the
simulation inputs.

In such an uncertain world, strategic decision-making may use Taguchi’s approach, originally developed to
help Toyota design ‘robust’ cars; i.e., cars that perform reasonably well in many circumstances; see, among others,
Beyer and Sendhoff (2007), Kleijnen (2008) and Taguchi (1987).

Our contribution is structured as follows. Section 2 describes the framework we propose for robust simulation-
optimization, focussing on three alternative metamodeling approaches. Section 3 discusses the analysis of uncertainty
through bootstrapping and confidence intervals. Section 4 presents the results of our methodology applied to a
robust variant of the classic Economic Order Quantity (EOQ) model. Section 5 summarizes our conclusions.

2 METHODOLOGY FOR ROBUST SIMULATION-OPTIMIZATION

We combine Taguchi’s view of systems affected by uncertainty with two metamodeling techniques, namely regression
and Kriging. Metamodeling treats the simulation model as a black box; i.e., metamodeling observes only the
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Input/Output (I/O) of the simulation model. Metamodels run much faster than the underlying–possibly computationally
expensive–simulation models, enabling fast approximation. We estimate one univariate metamodel per simulation
output (response), and combine these metamodels in a nonlinear Mathematical Programming model; the latter
model selects one of the multiple simulation outputs as the goal variable, while the remaining outputs must satisfy
given constraints (thresholds). Changing these thresholds on the constrained outputs and solving the corresponding
Mathematical Programming problems provides an estimate of the Pareto frontier, enabling the users (managers)
to select a robust solution for the simulated system. In summary, our methodology combines the following three
building blocks: 1. Taguchi’s worldview; 2. Design Of Experiments (DOE) and Metamodeling; 3. Mathematical
Programming.

Taguchi (1987) identifies two types of input variables; namely, decision or control variables, which we denote
by d = (d j) j=1,...,k, and environmental or noise variables, which we denote by e = (eg)g=1,...,c. The former are under
the control of the manager, whereas the latter cannot be controlled. Taguchi considers a single output (say) w, and
accounts for the uncertainty due to the environmental factors through optimizing a mean-to-variance ratio of this
output.

Taguchi focusses on physical systems, whereas we focus on simulated systems. Assuming that a single run of
a simulation model is computationally expensive, we approximate the system’s behavior through three alternative
approaches detailed in the following three subsections. Notice that we do not use Taguchi’s statistical techniques,
which have been criticized by many statisticians; for a detail discussion, see the panel report by Nair (1992).
Assuming that the environmental variables follow a given statistical distribution, we combine a space-filling design
for the decision variables with Latin Hypercube Sampling (LHS) for the environmental factors, sampled from the
corresponding distribution.

2.1 Regression Metamodeling

In our first approach, we use regression. Myers et al.(2009) combine Taguchi’s worldview with Response Surface
Methodology (RSM). RSM proceeds stepwise (multi-stage); i.e., it consists of a sequence of first-order polynomial
regression metamodels to search for the minimum, using steepest descent; it ends with a second-order polynomial
to estimate the extremum (maximum, minimum, saddle point).

We adapt Myers et al.’s robust variant of RSM, accounting for the particularities of simulation described in
Section 1. Like Myers et al., we assume

• a second-order polynomial with first-order effects βββ and second-order effects B for the decision factors d;
• a first-order polynomial with first-order effects γγγ for the environmental factors e;
• decision-by-environmental two-factor interactions ∆∆∆;

these assumptions result in the low-order polynomial metamodel (which is a regression model that is linear in its
parameters)

y = β0 +βββ
′d+d′Bd+ γγγ

′e+d′∆∆∆e+ ε (1)

where y denotes the metamodel’s estimator (predictor) of the simulation output w, ε denotes the residual with
E(ε) = 0 and constant variance σ2

ε , βββ = (β1, . . . ,βk)′, d = (d1, . . . ,dk)′, B denotes the k× k symmetric matrix with
main-diagonal elements β j; j and off-diagonal elements β j; j′/2, γγγ = (γ1, . . . ,γc)′, e = (e1, . . . ,ec)′, and ∆∆∆ = (δ j;g).

This metamodel (1) implies the regression predictor for the true mean E(w)

E(y) = β0 +βββ
′d+d′Bd+ γγγ

′E(e)+d′∆∆∆E(e) (2)

and the regression predictor for the true variance var(w)

var(y) = (γγγ ′+d′∆∆∆)ΩΩΩe(γγγ +∆∆∆
′d)+σ

2
ε (3)

where the environmental factors are assumed to have a distribution with known E(e) = µµµe and cov(e) = ΩΩΩe, and
σ2

ε is the (constant) variance of the residual; see Dellino, Kleijnen, and Meloni (2010a). To predict the standard
deviation of the output, we take the square root of the right-hand side of (3).
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2.2 One-Layer Kriging Metamodel (Kriging variant 1)

In our second approach, we replace the polynomial metamodel by a Kriging metamodel. Kriging provides more
flexible metamodels than a low-order polynomial does; i.e., Kriging is better suited to global instead of local fitting;
see del Castillo (2007), Kleijnen (2008). The polynomial metamodel (1) implies the mean and variance predictors
(2) and (3); the Kriging metamodel, however, has no such analogue. We therefore estimate the response mean E(w)
and variance var(w) from the crossed design (which is popular in the Taguchian approach). This design combines
the (say) nd combinations of the decision variables d and the ne combinations of the environmental variables e.
More specifically, we cross a space-filling design for the decision factors and a LHS design accounting for the
distribution of the environmental factors. This design gives the simulation outputs wi; j, so the mean and variance
estimators become

wi =
∑

ne
j=1 wi; j

ne
i = 1, . . . ,nd , (4)

s2(wi) =
∑

ne
j=1(wi; j−wi)2

ne−1
i = 1, . . . ,nd . (5)

To the nd estimates resulting from (4), we fit a Kriging metamodel for the mean; from the estimates in (5) we
compute the nd standard deviations, and fit a Kriging metamodel for the standard deviation.

2.3 Two-Layer Kriging Metamodel (Kriging variant 2)

Our third approach is still based on Kriging. In layer 1, however, our approach does not distinguish between
decision and environmental variables yet, and no assumption is made for the distribution of the environmental
factors; i.e., we select a space-filling design for the k + c factors. In layer 2, we select a larger design by crossing
a space-filling design for the decision factors, and a LHS design for the environmental factors accounting for
the distribution of these environmental factors. For this large design we do not run expensive simulations but
compute the Kriging predictions of the simulation output w. We use these predictions to estimate the conditional
means and standard deviations; i.e., in the right-hand sides of (4) and (5) we replace ne and nd by Ne and
Nd—the large-sample analogues of the small-sample sizes ne and nd—and w by ŷ where ŷ denotes Kriging pre-
diction. From these I/O data we again build two Kriging metamodels for the mean and standard deviation of the output.

2.4 Mathematical Programming

Using the metamodels obtained through one of the approaches described in the preceding three subsections, we
formulate the following Mathematical Programming (MP) problem:

minw

s.t. sw ≤ T
(6)

for a given threshold T , quantifying the manager’s risk attitude; i.e., lower T -values correspond to risk averse
management, whereas higher T -values denote a risk seeking behavior. We use the standard deviation instead of the
variance because both the mean and the standard deviation are expressed in the same units.

We solve the MP problem (6) through Matlab’s fmincon, but many alternative solvers are available in the
MP software.

Then, we move the threshold within a given interval, and solve the problem for each T value. Collecting these
solutions, we derive an estimate of the Pareto frontier balancing the mean and standard deviation of the output w.

3 BOOTSTRAPPING FOR UNCERTAINTY ANALYSIS

The metamodels for w and sw derived in Section 2 are based on estimates; therefore we further investigate these
metamodels through bootstrapping.
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3.1 Parametric bootstrapping of the regression metamodel

Following Dellino, Kleijnen, and Meloni (2010a), p. 17, Eq. (15), we apply parametric bootstrapping to the vector
of regression coefficients ζζζ using (7):

ζ̂ζζ
∗
∼ Nq(ζ̂ζζ , ĉov(ζ̂ζζ )) (7)

where (also see Dellino, Kleijnen, and Meloni (2010a), p. 6, Eq. (5), and p. 7, Eq. (6)):

ζ̂ζζ = (X′X)−1X′w (8)

is the least squares estimator of the regression parameters ζζζ = (β0,βββ ,b,γγγ,δδδ ) of size q where b is the vector that
follows from stapling the elements of the matrix B, and δδδ is the vector following from stapling the elements of ∆∆∆,
and

ĉov(ζ̂ζζ ) = (X′X)−1
σ̂2

ε (9)

where X is the n×q matrix of explanatory variables, accounting for the (first-order and some second-order) effects of
the decision factors, environmental factors and their interactions; n = nd ·ne denotes the number of combinations of
the k decision factors which are combined in nd combinations, and c environmental factors which are combined in ne
combinations, so n denotes the number of combinations in the crossed design; w consists of the n simulation outputs
corresponding with the n simulation input combinations of decision and environmental factors; σ̂2

ε is estimated by
the mean squared residuals. We emphasize that the covariance matrix defined in (9) assumes that the explanatory
variables are fixed; i.e., this covariance matrix is conditional on the values of the environmental variables that have
been sampled in the ne combinations.

From (7) we get ζ̂ζζ
∗
, which we plug-in into (2) and (3) to obtain the bootstrapped regression predictors for the

mean and variance of the simulation output:

ŷ∗ = β̂0
∗
+ β̂ββ

∗′
d+d′B̂∗d+ γ̂γγ

∗′
µµµe +d′∆̂∆∆∗µµµe , (10)

v̂ar(y)
∗
= (γ̂γγ∗′+d′∆̂∆∆∗)ΩΩΩe(γ̂γγ

∗+ ∆̂∆∆
∗′

d)+ σ̂2
ε . (11)

Notice that Kriging does not enable a parametric bootstrap procedure analogous to the one described for
regression modeling.

3.2 Distribution-free bootstrapping of the regression and Kriging models

Following Dellino, Kleijnen, and Meloni (2010b), p. 8, we apply distribution-free (non-parametric) bootstrapping
to the simulation output data w, by resampling—with replacement—the ne vectors w j ( j = 1, . . . ,ne), each with nd
elements; we resample these vectors instead on the n = nd×ne scalars w because all elements within such a vector
are correlated (they use the same values for the environmental factors: common random numbers). This resampling
gives the ne bootstrapped output observations w∗j , which together give the matrix W∗ with n elements. To reduce
the sampling error in this bootstrapping, we repeat this sampling (say) B times; B is called the bootstrap sample
size (in our numerical example we use B = 100).

In our regression model we go back to (8), where we now replace the vector w by w∗; this vector w∗ results
from stapling the ne (nd-dimensional) vectors in the matrix W∗; this gives the bootstrapped regression parameter
ζ̂ζζ
∗
:

ζ̂ζζ
∗
= (X′X)−1X′w∗ . (12)

Like in parametric bootstrapping, we derive the bootstrapped regression metamodels for the mean and standard
deviation of the output from (10) and (11), where ζ̂ζζ

∗
is now given by (12).

1286



Dellino, Kleijnen and Meloni

Comparing (12) and (7), we see that parametric bootstrapping relies on the fixed set of simulation outputs w,
whereas distribution-free bootstrapping creates variability in the simulation outputs; this variability corresponds with
resampling of the environmental variables.

In the first Kriging variant we estimate the nd bootstrapped conditional means and variances, analogously to
(4) and (5):

wi
∗ =

ne

∑
j=1

w∗i, j

ne
(i = 1, . . . ,nd) , (13)

s2∗
i =

ne

∑
j=1

(
w∗i, j−wi

∗)2

ne−1
(i = 1, . . . ,nd) . (14)

From the estimates computed through (13) and (14) respectively we estimate two Kriging metamodels.
Our second Kriging variant directly fits a Kriging metamodel to the bootstrapped output observations in W∗.

Then we follow the procedure outlined in Section 2 to derive the Kriging metamodels for the mean and the standard
deviation of the output.

3.3 Bootstrapped Confidence Intervals for means and standard deviations

Based on the bootstrapped metamodels obtained through either parametric or distribution-free bootstrapping described
in Sections 3.1 and 3.2, we compute confidence intervals (CIs) for the expected output through the following procedure
(CIs for the standard deviation will follow).

Select (say) p combinations for the decision variables d that are spread out over the area of interest. For each
di (i = 1, . . . , p) repeat the following steps:

1. Compute the predictor of the expected output using the bootstrapped predictor for E(w) as discussed in
Sections 3.1 and 3.2. We now use the symbol ŷ∗ to denote either a bootstrapped estimated regression or Kriging
predictor of the mean.

2. Because (10) is a linear transformation of the q-variate normal variable defined in (7), compute the parametric
CI, following Efron and Tibshirani (1993), p. 160:[

ŷ∗i − tα/2;B−1sei, ŷ∗i + tα/2;B−1sei

]
(15)

where

ŷ∗i =
∑

B
b=1 ŷ∗b(di)

B
; (16)

α is based on Bonferroni’s inequality; i.e., assuming we are interested in an 80% confidence interval (because
Bonferroni’s inequality is conservative), we take α = 0.20/p; sei is the estimated standard error of ŷ∗i = ŷ∗(di)
defined in (16), computed as follows:

sei =

√√√√∑
B
b=1

(
ŷ∗b(di)− ŷ∗i

)2

B(B−1)
. (17)

Note that the t statistic is quite insensitive to deviations from normality, so (15) may also be used to compute the
CI for the expected output in the Kriging-based approaches.

Alternatively, when the data deviate from normality, we compute a non-parametric CI based on order statistics
denoted by the subscript (), following Efron and Tibshirani (1993), p. 170:[

ŷ∗(bBα/2c)(di), ŷ∗(dB(1−α/2)e)(di)
]

(18)
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To compute CIs for the estimated standard deviation of the output, we follow a similar procedure. For each
di (i = 1, . . . , p) repeat the following steps:

1. Compute the predictor of the expected standard deviation of the output using the bootstrapped predictor for
s(w) derived in Sections 3.1 and 3.2. We now use the symbol s∗ to denote either a bootstrapped estimated regression
or Kriging predictor of the mean.

2. Obviously, the standard deviation estimated through one of the three metamodeling approaches is not normally
distributed. However, the t-statistic is known to be not very sensitive to nonnormality, so compute the parametric
CI; i.e., in (15) we replace ŷ by s.

Alternatively, we compute a non-parametric CI based on order statistics:[
s∗(bBα/2c)(di),s∗(dB(1−α/2)e)(di)

]
. (19)

4 COMPUTATIONAL EXPERIMENTS WITH EOQ MODEL

For the classic EOQ model, Zipkin (2000), pp. 30-39, uses the following symbols and assumptions: (i) The demand
is known and constant, say a units per time unit. (ii) The order quantity is Q units. (iii) Total costs consist of
setup cost per order, K; cost per unit purchased or produced, c; and holding cost per inventory unit per time unit,
h. Management’s goal is to minimize the total costs per time unit C, over an infinite time horizon.

To study robustness issues, we consider a variant of the classic EOQ model which deals with parameters affected
by uncertainty—like Dellino, Kleijnen, and Meloni (2010a) do. Note that the robustness of the EOQ model is also
examined by Yu (1997), who uses other criteria and other methods than we do (he uses two minmax criteria and
analytical methods instead of simulation).

Note that the EOQ model is usually a building block for more complex supply chain models.

4.1 EOQ model with uncertain demand rate

Following Dellino, Kleijnen, and Meloni (2010a), we assume that a (demand per time unit) is an unknown constant;
i.e., a has a Normal distribution with mean µa and standard deviation σa: a∼ N(µa,σa). Furthermore, we assume
µa = 8000 (nominal value), and σa = 0.10µa (uncertainty about the true input parameter). Because this standard
deviation can give negative values for a, we truncate the normal distribution at zero; we use this adjustment of the
Normal distribution for the sampling phase but ignore this truncation in our further analysis. We apply the three
metamodel approaches discussed in Section 2.

For the regression and Kriging variant 1, we select a DOE consisting of nd = 10 values for the order quantity
Q, equally spaced within the interval [15000,45000] and almost centered around the classic EOQ, which is close
to 30000, and ne = 100 values for the demand rate sampled through a normal LHS (we use Matlab’s lhsnorm).
For the Kriging variant 2, we first select nd×ne = 1000 points from a uniform grid in the decision×environmental
space; then, for the second layer, we cross Nd = 30 equally spaced values for Q with Ne = 200 values sampled from
a normally distributed LHS.

Based on these input designs, we run the simulation model and then fit either the regression or the Kriging
metamodels for the mean and standard deviation of the output. Then, we estimate the Pareto frontier through solving
the problem in (6) for different threshold values T ; we consider 100 values for T in the interval [8200,8600].

Next we compute CIs following the procedures sketched in Section 3.3. Because Bonferroni’s inequality
becomes more conservative as p (number of CIs) increases, we take p = 3 values for the threshold T (T1 = 8200,
T2 = 8300, T3 = 8600) and compute the CIs at the corresponding estimated optimal Q-values.

We report only the parametric CIs for the mean computed through (15) and the non-parametric CIs for the
standard deviation, applying (19). In fact, our regression metamodel gives a predicted mean through (10) that
passes the normality test because ζζζ

∗ is normal (see (7)), and (10) is a linear transformation of ζζζ
∗. We expect

that our regression metamodel gives a predicted standard deviation that is not normal, because (11) is a nonlinear
transformation of ζζζ

∗. Fig. 1 shows the CIs for parametric bootstrapping, for the two extreme values of the threshold,
T = T1 and T = T3; obviously these CIs do not cover the true values of the means and standard deviations.

Fig. 2 displays the CIs for distribution-free bootstrapping of the output data (as described in Section 3.2).
Comparing Figs. 1 and 2 shows that non-parametric bootstrapping gives longer CIs that always cover the true values.
Our conclusion is that parametric bootstrapping assuming fixed environmental variables may give misleading results.
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Figure 1: CIs for parametric bootstrapping of regression metamodels for the EOQ model with uncertain demand
rate; true values are displayed in black.
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Figure 2: CIs for non-parametric bootstrapping of regression metamodels for the EOQ model with uncertain demand
rate; true values are displayed in black.
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Figure 3: CIs for non-parametric bootstrapping of Kriging metamodels through variant 1 for the EOQ model with
uncertain demand rate; true values are displayed in black.

Note that we also investigate whether the number of bootstrap samples B could change the results of the
comparison. Eq. (17) prove that the CI length decreases with

√
B; see the factor B in the denominator (the factor

B− 1 is needed because the numerator adds B terms). For the distribution-free CI it is not so simple to apriori
assess the behavior of the CI length as a function of B. We increase B from 100 to 1000, and observe that the CIs
do not change significantly, with a maximum difference in length around 5%.

For the two Kriging variants we apply the distribution-free bootstrapping described in Section 3.2. Although
Kriging models with estimated weights are nonlinear so they give nonnormal predictors, the B bootstrapped Kriging
predictions of the mean for a given Q = Qi (i = 1, . . . , p) pass Lilliefors test; i.e., the null hypothesis of a normal
distribution is not rejected, meaning that the actual distribution is “close” to normal. Therefore we compute the
parametric CIs for the mean through (15). For the standard deviation we do not expect normality, so we use (19)
to derive the non-parametric CI.

Figures 3 and 4 show that both Kriging variants provide comparable CIs, always covering the true values.

4.2 EOQ with uncertain cost parameters and demand rate

Inspired by Borgonovo and Peccati (2007), we extend our EOQ model accounting for fixed but uncertain cost
parameters. So the number of environmental factors increases from one (namely, the demand rate) to three (namely,
the holding and set-up costs besides the demand rate). We assume that all these environmental factors are independent,
and follow normal distributions, with mean equal to the nominal value; i.e., the value when no uncertainty is assumed.
More specifically, we choose µh = 0.3 for the holding cost, µK = 12000 for the set-up cost, and µa = 8000 for the
demand rate (as before); the standard deviation of each factor is 10% of its nominal value.

Figure 5 shows that in the regression-based approach the CI for the mean cost never covers the true value,
while the CI for the standard deviation covers the true value in one case only. So the regression metamodel appears
a bad approximation of the simulation model’s I/O function.

Figure 6 shows that in the first Kriging variant the CIs for both the mean and the standard deviation of the
inventory cost do cover the true values for all the selected optimal Qi values. So Kriging is flexible enough to
provide a valid metamodel, and the distribution-free bootstrap gives CIs with proper coverage.
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Figure 4: CIs for non-parametric bootstrapping of Kriging metamodels through variant 2 for the EOQ model with
uncertain demand rate; true values are displayed in black.
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Figure 5: CIs for parametric bootstrapping of regression metamodels for the EOQ model with uncertain demand
rate and costs; true values are displayed in black.
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Figure 6: CIs for distribution-free bootstrapping of Kriging metamodels through variant 1 approach for the EOQ
model with uncertain demand rate and costs; true values are displayed in black.

Figure 7 shows that in the second Kriging variant the CIs computed through (18) and (19) always cover the true
values for both the mean and the standard deviation of the cost. The t-statistic (not displayed) gives much tighter
CIs for the standard deviation than the order statistics do, but sometimes the former CIs miss the true standard
deviations. A smaller type-I error rate would give longer CIs that do cover the true values.

5 CONCLUSIONS

We presented a framework for robust optimization of simulated systems based on three metamodeling approaches;
namely, one regression and two Kriging models. To further analyze the effects of the uncertainty in the environmental
variables, we proposed to use bootstrapping; more specifically, we compared parametric and distribution-free
bootstrapping and derived confidence intervals for the optimal solutions belonging to the Pareto frontier.

We tested our new methodology through a popular inventory model; namely the EOQ model. We introduced
a robust formulation of the EOQ model when the demand rate and the cost coefficients are uncertain. Because we
can derive the true expected cost and its standard deviation, we could verify the performance of our heuristic.

The EOQ example gives encouraging results, so in future research we might apply the methodology to more
complex and realistic models.
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Figure 7: CIs for distribution-free bootstrapping of Kriging metamodels through variant 2 for the EOQ model with
uncertain demand rate and costs; true values are displayed in black.
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