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ABSTRACT

We study the combination of two efficient rare event Monte Carlo simulation techniques for the estimation of the
connectivity probability of a given set of nodes in a graph when links can fail: approximate zero-variance importance
sampling and a conditional Monte Carlo method which conditions on the event that a prespecified set of disjoint
minpaths linking the set of nodes fails. Those two methods have been applied separately. Here we show how their
combination can be defined and implemented, we derive asymptotic robustness properties of the resulting estimator
when reliabilities of individual links go arbitrarily close to one, and we illustrate numerically the efficiency gain
that can be obtained.

1 INTRODUCTION

In the design of telecommunication networks, an historically important topic from the reliability point of view has
been the study of connectivity properties of the network topology. This study can be accomplished by building a
probabilistic model of the network focusing on the possible failure of its components, from which we can compute
the probability of still supporting the specified communications when taking these failures into account. Today, these
problems are of high importance with the technological arrival of different types of wireless architectures. In these
contexts, network components (and particularly, links) are more prone to fail because of changes in the environment,
changes which are difficult to control. Network reliability is the branch of Operations Research where these problems
are studied. In this area, exact computations are usually hard (i.e., highly computationally expensive), and Monte
Carlo techniques provide the most powerful tools for quantitative evaluations of the systems under consideration.

In this paper, we consider the most representative model in network reliability. One can think of the system as
a communication network, but there are several other applications of that same model. The model is represented
by a non-oriented graph G = (N ,L ) where N is the set of m nodes, and L = {1, . . . , ℓ} is the set of links
connecting nodes. Nodes are assumed perfect, in the sense that they never fail. On the other hand, links may fail,
with probability qi for link i (1 ≤ i ≤ ℓ), and failures are assumed to occur independently across links. Our goal is
to compute the probability q(G ) that a given subset K of the set of nodes is not connected, that is, that these nodes
are not in the same connected component of G after removing the failed links. In this context, the graph together
with the probabilistic model is often called a network, and q(G ) is the network unreliability. The most frequent case
is when estimating the two-terminal or source-to-terminal unreliability, where K is comprised of only two nodes.

Formally, define Xi = 1 if link i works, and Xi = 0 otherwise. The random configuration of the graph is the
vector X = (X1, . . . ,Xℓ). Let us denote by φ(·) the following structure function of the network: φ(·) is defined
on the set of all configurations {0,1}ℓ and takes values in {0,1}; for each configuration x = (x1, . . . ,xℓ), we have
φ(x) = 1 if the set K is not included in the same connected component in the graph that contains only the links i
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for which xi = 1, and the value 0 otherwise. .Observe that, for convenience, our definition of φ(·) differs from the
structure function that is commonly adopted, and which corresponds to 1−φ(·).

The network unreliability is then

q(G ) = E[φ(X)] = ∑
x∈{0,1}ℓ

φ(x)P[X = x] = ∑
x∈{0,1}ℓ

φ(x)
ℓ

∏
i=1

(qi(1− xi)+ (1−qi)xi).

The number of terms to be considered for computing this probability has 2ℓ elements, that is, its size increases
exponentially with the number of links. Actually, the K -connectivity problem is know to be NP-hard in general
(Ball 1986). As a consequence Monte Carlo simulation becomes a relevant tool when looking at large graphs.

Standard Monte Carlo consists in generating n independent copies of X (that is of the random graph), say
X (1), . . . ,X (n), and to take as an (unbiased) approximation of q(G ) the average value ∑n

j=1 φ(X ( j))/n. From the law
of large numbers, this approximation converges almost surely to q(G ) as n → ∞. One can compute a confidence
interval with confidence 1−α , centered at the approximation, of half-width cα σ/

√
n, where cα is the 1−α/2

quantile of the standard normal distribution (with mean 0 and variance 1) and σ is the standard deviation of φ(X).
From the Central Limit Theorem, this confidence interval is approximately valid when nq(G ) is large enough
(Asmussen and Glynn 2007).

The standard Monte Carlo is based on the direct use of φ(X), which is a Bernoulli random variable, and therefore
σ2 = q(G )(1− q(G )). Then one can note that the relative half-width of the confidence interval, given by this
half-width divided by the expected value we are computing, i.e., n−1/2cα σ/q(G ), is cα

√
1−q(G )/

√
nq(G ) → ∞

as q(G ) → 0. In other words, the rarer the event, the larger the sample size required to get a confidence interval
with a fixed relative accuracy.

This highlights the need for designing more subtle simulation techniques dealing with rare events. For more
about rare event simulation, the reader can look at Rubino and Tuffin (2009). The goal is to use another estimator
Y of q(G ) with variance Var[Y ] for which a relative accuracy is not (or at least less) sensitive to rarity. In general,
define the relative error as RE[Y ] = (Var[Y ])1/2/E[Y ]. An estimator Y will be said to verify bounded relative error
(BRE) if RE[Y ] remains bounded as q(G ) → 0. In that case, the sample size needed to get a specified relative
accuracy is bounded whatever the rarity of the event. An even better property is the so-called vanishing relative
error (VRE), meaning that RE[Y ] → 0 when ε → 0 (L’Ecuyer et al. 2010a).

A well-known variance reduction technique is importance sampling (IS) (Asmussen and Glynn 2007). It consists
in changing the probability law P (and expectation E) driving the system to a new one P̃ (and associated expectation
Ẽ), but simulating a new random variable φ(X)L(X) instead of φ(X) to keep an unbiased estimator, with L(x) =

dP(x)/dP̃(x) is the associated likelihood ratio. Indeed, E[φ(X)] =
∫

φ(x)dP(x) =
∫

φ(x)L(x)dP̃(x) = Ẽ[φ(X)L(X)].
By an appropriate change of probability law, the variance Ṽar[φ(X)L(X)] can be significantly reduced with respect
to Var[φ(X)].

The rest of the paper is organized as follows. Section 2 details the simulation method studied in this paper.
It combines conditional Monte Carlo and importance sampling. Section 3 analyzes its robustness properties as the
reliability of individual links goes to 1. Section 4 illustrates the gain that can be obtained on benchmark examples,
compared with standard Monte Carlo, and also compared with conditional Monte Carlo or importance sampling
alone.

2 DESCRIPTION OF THE METHOD

The method we are going to describe and study is based on the use of minpaths. A minpath is a minimal set of links
whose correct operation ensures that the global system is operational, i.e, that all terminals in K are connected.
In the general K -terminal network reliability case, a minpath will topologically correspond to a K -tree (a tree
included in the given graph, whose terminal set is K ). In the case of source-to-terminal network reliability, that
is, when |K |= 2, a minpath topologically corresponds to an elementary path between the terminals. Although the
numerical ilustrations will be given in the case of the source-to-terminal network reliability, the general description
given below corresponds to the general case.

Given the graph G and the terminal set K , select a set of h disjoint minpaths P = {P1, . . . ,Ph} connecting
each the set K . For the selection of the set P , different methods for finding trees in graphs can be used. For the
source-to-terminal case, see Remark 1 below or Cancela et al. (2009). Define by p j (1 ≤ j ≤ h) the probability
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that all links of minpath Pj work. Due the to the independence of failures, p j = ∏i∈Pj
(1−qi). Let also m j be the

number of links in Pj.
Remark now that obtaining a configuration where the set K of nodes is not connected requires that at least one

link on each minpath Pj is failed. Let C be the event “every minpath in P has at least one link that does not work.”
This event has probability p = ∏h

j=1(1− p j). Instead of generating independent copies of the configuration X of
the graph under its original distribution, we will generate them conditional on C, and then multiply the estimator
by p = P[C] to recover an unbiased estimator. Let Y denote the Bernoulli random variable φ(X) conditional on C.
We have

E[φ(X)] = E[φ(X) |C]P[C] = pE[Y ].

We can estimate q(G ) by the average of n independent copies of pY , This kind of conditional Monte Carlo procedure
is known to always reduce the variance with respect to the standard estimator (Asmussen and Glynn 2007).

It remains to see how we can efficiently generate X conditional on C. Suppose that the links on each minpath
are ordered (in any way), and let i j,1, . . . , i j,mj be the ordered list of links on minpath Pj. Define the random variable
Wj as the index of the first failed link in this list, for each Pj. The idea is to first sample these Wj directly, and
then sample the other links. Note that P[Wj = w] is simply the probability that links numbered 1 to w−1 on Pj are
working and link w is not, conditionally on the fact that at least one link in the minpath is failed. We then have,
∀w ∈ {1, . . . ,m j} (Cancela et al. 2009),

P[Wj = w] =
(1−qi j,1)(1−qi j,2) · · · (1−qi j,w−1)qi j,w

1− (1−qi j,1)(1−qi j,2) · · · (1−qi j,m j
)

.

All other links i 6∈ ∪h
j=1{i j,1, . . . , i j,Wj} (i.e., that belong to none of the paths Pj) can then be sampled from their a

priori original Bernoulli distribution, with a probability qi to be failed, since no additional information is available
from the event C. This gives a (conditional) configuration from which one can check if the nodes in K are connected
or not (i.e., compute Y ).

This describes the conditional Monte Carlo procedure, which we will now combine with IS. To do that, instead
of sampling the links with the probabilities just described, we will use modified probabilities prescribed by an IS
procedure that mimics the zero-variance change of measure. A general description of zero-variance IS estimators
can be found in L’Ecuyer and Tuffin (2008), and a specific description for the static reliability problem (but not
using the conditional expectation that minpaths are failed) in L’Ecuyer et al. (2010b).

Recall that minpaths in P are indexed (ordered) from 1 to h. Each minpath Pj also has its links ordered from
1 to m j. Finally, the rest of the links are also indexed in some order. Define G j;w1,...,w j as the graph such for each
minpath Pk (1≤ k ≤ j) the first failed link is the wk-th, that is, all links 1 to wk−1 on every minpath Pk are considered
as working while the wkth is failed, the status of all other links of G being still considered random. The principle
of our IS procedure is the following:

• First sample the first broken link on each minpath Pj knowing the status of the first broken link of minpaths
P1, . . . ,Pj−1 according to

P̃[Wj = w] = P[Wj = w]
q(G j;w1,...,w j−1,w)

∑
mj
k=1 P[Wj = k]q(G j;w1,...,w j−1,k)

. (1)

• Second, the link states not sampled yet are determined successively with the following IS rule, according
to the predefined order of links (but where link states already sampled on minpaths are considered fixed).
Define Gi,0,hist (respectively Gi,1,hist) as the graph for which all the states of each minpath Pj up to Wj have
been sampled as described just above, as well as all links k 6∈ ∪h

j=1{i j,1, . . . , i j,Wj} such that k < i, and link
i is selected as failed (respectively as working). Here “hist” stands for “history” (to simplify the notation).
Link i is sampled as failed with probability

q̃i =
qi q(Gi,0,hist)

qi q(Gi,0,hist)+ (1−qi)q(Gi,1,hist)
. (2)

1265



Cancela, L’Ecuyer, Rubino and Tuffin

The corresponding likelihood ratio is given by

L(X) =
h

∏
j=1

P[Wj = wj]

P̃[Wj = wj]
∏

1≤i≤ℓ, i6∈∪h
j=1{i j,1,...,i j,w j }

qi(1−Xi)+ (1−qi)Xi

q̃i(1−Xi)+ (1− q̃i)Xi
. (3)

Define

Y ′ = φ(X)L(X).

Theorem 1. The estimator Y ′ of E[Y ] is unbiased and has variance Var[Y ′] = 0.

Proof. We are going to show that Y ′ always produces the value E[Y ] = q(G ). As a consequence, we will have
Ẽ[Y ′] = E[Y ] and Var[Y ′] = 0. For all j ∈ {0, . . . ,h}, define Y ′(w1, . . . ,wj) as a random variable having the same
distribution as Y conditional on W1 = w1, . . . ,Wj = wj. Observe that Y ′(w1, . . . ,wh) is the estimator obtained by
applying the IS scheme (2) to sample successively the states of the links of the graph Gh;w1,...,wh . From the results
of L’Ecuyer et al. (2010b), we always have Y ′(w1, . . . ,wh) = q(Gh;w1,...,wh). From (1), for j ≤ h,

Y ′(w1, . . . ,wj−1) = Y ′(w1, . . . ,wj)
P[Wj = wj]

P̃[Wj = wj]

= Y ′(w1, . . . ,wj)
1

q(G j;w1,...,w j−1,w j )

mj

∑
k=1

P[Wj = k]q(G j;w1,...,w j−1,k).

But by induction (starting from j = k down to j = 1), if Y ′(w1, . . . ,wj) = q(G j;w1,...,w j ), using also that, by conditioning
over the value of Wj,

mj

∑
k=1

P[Wj = k]q(G j;w1,...,w j−1,k) = q(G j−1;w1,...,w j−1), (4)

we get Y ′(w1, . . . ,wj−1) = q(G j−1;w1,...,w j−1) ∀ j, and therefore Y ′ = q(G ).

Unfortunately, this estimator cannot be implemented exactly,because it requires the knowledge of q(G j;w1,...,w j−1,w),
q(Gi,0,hist) and q(Gi,1,hist). If those values were known, there would be no need to use simulation, because q(G )
could be computed immediately. Instead, we propose here to use an approximation q̂(·) of q(·), and to plug this
approximation in expressions (1) and (2) in place of q(·). Our approximation follows the same principle as in
L’Ecuyer et al. (2010b): we define it as the maximal probability of a mincut of the graph, and refer to it as a
mincut-maxprob approximation. Recall that a cut (or K -cut) in the graph G is a set of links such that if we remove
them from G , the nodes in K are not in the same connected component of the resulting graph, and that a mincut
(minimal cut) is a cut that contains no other cut than itself. The probability of a cut is defined as the probability
that all links of the cut fail. This approximation of q(·) has the advantage of being relatively easy to compute, in
polynomial time, using for instance the basic Ford-Fulkerson algorithm (Sedgewick and Schidlowsky 2003).

Remark 1. In Cancela et al. (2009), we have shown that for the conditional Monte Carlo approach, in the source-
to-terminal homogeneous case (that is when all links have the same reliability), there always exists a construction
of the set of minpaths (actually in this case paths) P yielding an “efficient” estimator, but that this is not possible
in general in the heterogeneous case. The idea is to also use here the Ford-Fulkerson algorithm which runs in
polynomial time in terms of the number of nodes and links. We prove in the next section that thanks to the IS
change of measure, when sampling the first failed link on a minpath, robustness properties can be obtained in
general (when reliabilities of individual links go to one).

3 ROBUSTNESS ANALYSIS

The goal being to design a method that provides accurate results in the case of rare events, we are interested in
how our algorithms behave in asymptotic regimes where the links have failure probabilities that converge to 0.
To define such a regime, we introduce a rarity parameter ε ≪ 1, as done for example in L’Ecuyer et al. (2010a),
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Nakayama (1996), Shahabuddin (1994), and we assume that for each link i, there are positive constants ai and bi

(independent of ε) such that

qi = aiεbi . (5)

Thus we are investigating situations where the failure probabilities qi of the individual links are very close to 0.
Under this assumption, it is easy to verify (because the configuration space is finite and the probability of any
configuration is a polynomial in ε) that the system unreliability (which depends on ε) is

q(G ) = q(G ,ε) = Θ(εc) (6)

for some constant c > 0 (see Colbourn (1987), for instance) and q(G ) → 0 as ε → 0. The BRE and VRE properties
can then be reformulated in terms of the relative error as ε → 0 instead of as q(G ) → 0.

We have the following robustness property for our combined scheme.

Proposition 1. If q̂(G ′) = Θ(q(G ′)) as ε → 0 whatever the graph G ′, then our method yields BRE.

Proof. The proof is similar to that in L’Ecuyer et al. (2010b), except that we need to separate the following two
steps: (i) sampling the first failed link on each minpath and (ii) sampling the state of the remaining links one after
the other. Let a j;w1,...,w j be the constant independent of ε (and strictly larger than 0) such that

q̂(G j;w1,...,w j ) = a j;w1,...,w j q(G j;w1,...,w j )+ o(q(G j;w1,...,w j )).

From (4), all the terms P[Wj = k]q(G j;w1,...,w j−1,k) are O(q(G j−1;w1,...,w j−1)), with at least one term Θ(q(G j−1;w1,...,w j−1));
this means that there exists a constant b j−1;w1,...,w j−1 > 0 independent of ε verifying

mj

∑
k=1

P[Wj = k]q̂(G j;w1,...,w j−1,k) = b j−1;w1,...,w j−1q(G j−1;w1,...,w j−1)+ o(q(G j−1;w1,...,w j−1));

similar arguments were developed in the proof of Theorem 2 of L’Ecuyer et al. (2010b). When sampling the first
failed link on the j-th minpath (1 ≤ j ≤ h), the likelihood ratio is

Lj(Wj) =
∑

mj
k=1 P[Wj = k]q̂(G j;W1,...,Wj−1,k)

q̂(G j;W1,...,Wj−1,Wj )

≤
b j−1;W1,...,Wj−1 q(G j−1;W1,...,Wj−1)

a j;W1,...,Wj q(G j;W1,...,Wj )
+ o(1)

≤ d1
q(G j−1;W1,...,Wj−1)

q(G j;W1,...,Wj )
+ o(1)

with d1 = maxb j−1;w1,...,w j−1/a j;w1,...,w j , the maximum being taken over all j and the whole (finite) set of values
(w1, . . . ,wh) (note that as the a j;w1,...,w j are larger than 0, d1 is well-defined).

Similarly, from the proof of Theorem 2 of L’Ecuyer et al. (2010b), there exists a constant d2 independent of
ε such that the likelihood ratio, when sampling the state of link i given that all the states of each minpath Pj up to
Wj have already been sampled, as well as all links k 6∈ ∪h

j=1{i j,1, . . . , i j,Wj}, k < i, verifies

Li(Xi) ≤ d2
q(Gi,Xi,hist)

q(Gi−1,Xi−1,hist)
+ o(1).

We then have from (3),

L(X) ≤
h

∏
j=1

(
d1

q(G j−1;W1,...,Wj−1)

q(G j;W1,...,Wj )
+ o(1)

)

∏
1≤i≤ℓ, i6∈∪h

j=1{i j,1,...,i j,Wj }

(
d2

q(Gi,Xi,hist)

q(Gi−1,Xi−1,hist)
+ o(1)

)
≤ dℓq(G )+ o(q(G ))
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with d = max(d1,d2,1).
Due to the finite number of terms in the sum (in the expectation formula), we have

Ẽ[(Y ′)2] ≤ Ẽ[(L(X))2] ≤ d2ℓ(q(G ))2 + o((q(G ))2),

meaning that BRE property is verified.

Corollary 2. With the mincut-maxprob approximation, q̂(G ′) = Θ(q(G ′)) as ε → 0 whatever be the graph G ′. As
a consequence, we always get the BRE property with our method.

Proof. This corollary is a direct consequence of Proposition 1. The fact that q̂(G ′) = Θ(q(G ′)) is proved in
L’Ecuyer et al. (2010b). It basically comes from the fact that if q(G ′) = Θ(εc′) for some c′ > 0, the mincut-maxprob
approximation is also Θ(εc′) otherwise, there would be a contradiction with its definition).

There are situations where not only the BRE property but also the VRE property is verified using the mincut-
maxprob approximation. The next proposition provides sufficient (but unnecessary) conditions for that. Define
S1 = {x ∈ {0,1}ℓ : φ(x) = 1 and P̃[X = x] = Θ(1)} and S0 = {x ∈ {0,1}ℓ : φ(x) = 1 and P̃[X = x] = o(1)}, the
sets of configurations under which the system fails and which are no longer rare and still rare, respectively, under
IS.

Proposition 2. Suppose that the assumptions of Proposition 1 hold and that for each configuration of S1, we have:

(i) When sampling the first failed link Wj on minpath Pj, for every j and every w such that

P[Wj = w]q̂(G j;w1,...,w j−1,w) = Θ(
mj

∑
k=1

P[Wj = k]q̂(G j;w1,...,w j−1,k)),

we have

q̂(G j;w1,...,w j−1,w)/q(G j;w1,...,w j−1,w) → c j(w1, . . . ,wj−1)

as ε → 0, where c j(w1, . . . ,wj−1) is independent of w, and c j(w1, . . . ,wj−1) = 1 if there is only one such w.
(ii) When sampling the remaining links, for all x = (x1, . . . ,xℓ) ∈ S1, one of the following three conditions of

Theorem 5 of L’Ecuyer et al. (2010b) is verified:

either

q̂(Gi,1,hist)

q(Gi,1,hist)
=

q̂(Gi,0,hist)

q(Gi,0,hist)
+ o(1),

or xi = 0, q̂(Gi,0,hist) = q(Gi,0,hist)+ (q(Gi,0,hist)), and (1−qi)q̂(Gi,1,hist) = o(qiq̂(Gi,0,hist))

or xi = 1, q̂(Gi,1,hist) = q(Gi,1,hist)+ (q(Gi,1,hist)), and qiq̂(Gi,0,hist) = o((1−qi)q̂(Gi,1,hist)).

Then, the VRE property is verified.

Proof. The second moment is decomposed in two terms using the sets of configurations S1 and S0:

Ẽ[φ(X)L2(X)] = ∑
x∈S1

φ(x)L2(x)P̃[X = x]+ ∑
x∈S0

φ(x)L2(x)P̃[X = x]. (7)

As in the proof of Proposition 1, there exists a constant d > 0, independent of ε , such that L2(x) ≤ d2m(q(G ))2 +
o((q(G ))2), and, because S0 is finite,

∑
x∈S0

φ(x)L2(x)P̃[X = x] ≤ (d2m(q(G ))2 + o((q(G ))2)) ∑
x∈S0

φ(x)P̃[X = x],

1268



Cancela, L’Ecuyer, Rubino and Tuffin

with this last sum being o(1), as a finite sum of terms that are all o(1). Consequently,

∑
x∈S0

φ(x)L2(x)P̃[X = x] = o((q(G ))2).

For the first term on the right side of (7), on S1 it has been proved in L’Ecuyer et al. (2010b) that d2 = 1 in the proof
of Proposition 1, under our assumption (ii). For x ∈ S1, it is easy to check that the corresponding value w of Wj is
necessarily such that P[Wj = w]q̂(G j;w1,...,w j−1,w)= Θ(∑

mj
k=1 P[Wj = k]q̂(G j;w1,...,w j−1,k)), otherwise P̃[Wj = k] = o(1) and

so would be P̃[X = x]. Let M j = {w∈ {1, . . .mj} : P[Wj = w]q̂(G j;w1,...,w j−1,w) = Θ(∑
mj
k=1 P[Wj = k]q̂(G j;w1,...,w j−1,k))}

be the set of indices for which [Wj = k] is not rare under IS. We then have from the first bullet

Lj(Wj) =
∑

mj
k=1 P[Wj = k]q̂(G j;W1,...,Wj−1,k)

q̂(G j;W1,...,Wj−1,Wj )

=
∑k∈M j

P[Wj = k]q̂(G j;W1,...,Wj−1,k)+ o(1)

q̂(G j;W1,...,Wj−1,Wj )

=
∑k∈M j

P[Wj = k]c j(W1, . . . ,Wj−1)q(G j;W1,...,Wj−1,k)+ o(1)

c j(W1, . . . ,Wj−1)q(G j;W1,...,Wj−1,Wj )+ o(1)

=
∑k∈M j

P[Wj = k]q(G j;W1,...,Wj−1,k)+ o(1)

q(G j;W1,...,Wj−1,Wj )+ o(1)

=
q(G j−1;W1,...,Wj−1)

q(G j;W1,...,Wj )
+ o(1).

This gives d1 = 1 in the proof of Proposition 1 and

∑
x∈S1

φ(x)L2(x)P̃[X = x] = (q(G ))2 + o((q(G ))2). (8)

Combining the results for the two terms, we have that Ṽar[φ(X)L(X)] ≤ Ẽ[L2(X)]− (q(G ))2 = o((q(G ))2).

Remark 2. Sufficient conditions for getting the BRE property for the above conditional Monte Carlo method were
derived in Cancela, Rubino, and Tuffin (2005). When additionally using zero-variance approximation, we obtain
the stronger property that BRE is always verified, and even VRE can be obtained in some cases.

4 NUMERICAL ILLUSTRATIONS

Example 1. Consider the small example of Figure 1, where we want to compute the probability that the gray nodes
A and D are disconnected. The links are assumed homogeneous, with unreliabilities qi = ε for i = 1, . . . ,5. We
consider P = {{1,4},{2,5}}. Here p = (1−(1−ε)2)2 = (2ε −ε2)2. For this small model, one can easily list the 32
possible configurations, identify those that lead to disconnected nodes A and D (there are 16), compute their original
probabilities and their probabilities under IS, compute their contribution to the second moment of random variable
Y , and then compute the exact unreliability and exact variances. The exact value is q(G ) = 2ε2 +2ε3 −5ε4 +2ε5.
For the conditional Monte Carlo (CMC) method, σ2 = 4ε4 − 8ε5 − 10ε6 + 42ε7 − 46ε8 + 22ε9 − 4ε10, while for
the combination method, σ̂2 = 4ε5 − 15ε6 + 20ε7 − 9ε8 − 3ε9 + 4ε10 − ε11. We see that VRE is verified for the
Combination method, whereas only BRE is verified for CMC. One can check from L’Ecuyer et al. (2010b) that the
Combination method and ZVA give exactly the same IS probability whatever the configuration. As a consequence,
the variance is also exactly the same.

Example 2. We now consider an example with the topology depicted in Figure 2, where the source s and the
terminal node t are connected through h disjoint paths P1 · · · ,Ph, having no node in common excepted s and t. In
such a model, it is immediate that p = P(C) = q, since, if every path in P = {P1 · · · ,Ph} has at least one link
down, there is no way to joint t from s, and reciprocally, if s and t are unconnected, then necessarily at least
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C

D

q1 = ε

q2 = ε

q4 = ε

q5 = ε

q3 = ε

Figure 1: Graph topology with five links and two nodes requiring to be connected

one link in any of the h paths has a failed link. This means that using the CMC method, by definition, the sum
of the probabilities of the failing configurations under the CMC sampling procedure is 1 (remember that we are
conditioning with respect to the event C), and then, the variance of the CMC estimator is

σ2 = p2 ∑
x∈{0,1}5

φ(x)P[X = x]− (q(G ))2 = p2 − (q(G ))2 = 0.

In this type of topology, the combination method will sample exactly as the CMC one, leading to a zero-variance
estimator as well.

s t

q1 = ε

q2 = ε q3 = ε q4 = ε

q5 = ε

q6 = ε q7 = ε q8 = ε q9 = ε q10 = ε

q11 = ε

q12 = ε q13 = ε q14 = ε

q15 = ε

Figure 2: Graph topology made of three direct and independent paths

Let us now illustrate numerically the power of the method on three examples. The first two, the Arpanet and the
dodecahedron topologies, are benchmark topologies used in the literature (Cancela, El Khadiri, and Rubino 2009).
The third one is a topology made of direct paths with few arcs connecting the paths. In the tables, the methods
are abbreviated by CMC for the conditional Monte Carlo method based on minpaths but without IS, ZVA for the
zero-variance IS approximation of L’Ecuyer et al. (2010b) where no conditional expectation is used, i.e., the method
for which (2) is used successively for all links, and “Combination” when both methods are combined as described
earlier. This will help weighting the relative importance of IS and conditioning. In all illustrations, we consider
the homogeneous case, where all links have the same unreliability ε , and we want to compute the probability that
nodes s and t are disconnected. In the general non-homogeneous case, ZVA and “Combination” are known to yield
at least BRE, which is not the case for CMC; we focus on the homogeneous case to illustrate the potential gain in
the less advantageous situation.

Example 3. The first topology, presented in Figure 3, is the topology of a version of the Arpanet (“Advanced
Research Projects Agency Network”), the first packet-based network in the USA, at the beginning of its life-time.
Links are ordered as displayed in Figure 3. We compare in Table 1 the results obtained for our method with the
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Figure 3: A version of the Arpanet topology.

cases where only zero-variance approximation is used and only conditional Monte Carlo based on the selected paths
is used, this for various values of ε . We consider two disjoint paths, the first one made of links {1,3,6,9,11,12},
and the second one made of links {2,20,19,21,22,23,24,25,26}.

Table 1: Empirical results for the Arpanet topology, for n = 104 and four values of ε .

Method ε Estimate 95% Confidence interval Std deviation Relative error

CMC 10−1 9.406×10−2 (9.142×10−2, 9.670×10−2) 1.347×10−1 1.43
CMC 10−3 5.875×10−6 (5.546×10−6, 6.203×10−6) 1.675×10−5 2.85
CMC 10−5 5.837×10−10 (5.508×10−10, 6.166×10−10) 1.677×10−9 2.87
CMC 10−6 5.837×10−12 (5.509×10−12, 6.166×10−12) 1.677×10−11 2.87

ZVA 10−1 9.295×10−2 (8.469×10−2, 1.0121×10−1) 4.214×10−1 4.53
ZVA 10−3 5.956×10−6 (5.794×10−6, 6.118×10−6) 8.260×10−6 1.39
ZVA 10−5 5.897×10−10 (5.748×10−10, 6.045×10−10) 7.575×10−10 1.28
ZVA 10−6 5.897×10−12 (5.748×10−12, 6.045×10−12) 7.575×10−12 1.28

Combination 10−1 9.245×10−2 (8.780×10−2, 9.710×10−2) 2.372×10−1 2.57
Combination 10−3 6.093×10−6 (6.007×10−6, 6.180×10−6) 4.408×10−6 0.723
Combination 10−5 6.065×10−10 (5.987×10−10, 6.144×10−10) 4.000×10−10 0.659
Combination 10−6 6.065×10−12 (5.986×10−12, 6.143×10−12) 4.000×10−12 0.659
The results shown are based on a sample size of n = 104. The first column of the table indicates the methods

employed. The second one shows the values of ε considered. The third one gives the estimates of the network
unreliability computed by the different methods. The fourth column gives a 95% confidence interval, and the fifth
and sixth ones give the standard deviation and the relative error for a single random variate. The results show a large
degree of agreement in the estimations computed by all the methods. The CMC method results are consistent with
a BRE situation, as the relative error first grows but then gets stable when ε approaches zero. Both the ZVA and
the combined methods have higher relative error than CMC for the less reliable network (ε = 10−1), but improve
substantially for smaller values of this parameter. Their behavior is also consistent with a BRE situation. The
combined method has the best results, attaining a relative error almost half of the ZVA one.

Example 4. We now look at another classical topopology, made of 20 nodes and 30 links, the dodecahedron
topology as shown in Figure 4. Links are ordered arbitrarily, according to their numbering in the figure. The set
P is made of three paths, {3,9,18,25,26,30}, {1,5,12,19,20,28} and {2,7,15,23,22,29}. The empirical results
appear in Table 2.

The results for ZVA algorithm are taken from L’Ecuyer et al. (2010b). The confidence intervals show again
good agreement between the different estimations. As in the previous case, CMC provides a relative error which
first grows and then seems to approach an upper bound, as could be expected in a BRE situation. On the other
hand, the ZVA and the combined method yield similar results, both with much smaller relative errors than CMC.
The relative errors moreover diminish substantially when ε gets smaller, as would be expected in a VRE situation.
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Figure 4: Dodecahedron topology

Table 2: Empirical results for the dodecahedron topology, for n = 104 and four values of ε .

Method ε Estimate 95% Confidence interval Std deviation Relative error

CMC 10−1 2.531×10−3 (2.218×10−3, 2.843×10−3) 1.594×10−2 6.30
CMC 10−2 1.864×10−6 1.487×10−6, 2.241×10−6) 1.924×10−5 10.3
CMC 10−3 1.844×10−9 (1.456×10−9, 2.232×10−9) 1.980×10−8 10.7
CMC 10−4 1.856×10−12 (1.466×10−12, 2.247×10−12) 1.993×10−11 10.7

ZVA 10−1 2.896×10−3 (2.8276×10−3, 2.9645×10−3) 3.491×10−3 1.2
ZVA 10−2 2.0678×10−6 (2.0611×10−6, 2.0744×10−6) 3.425×10−7 0.17
ZVA 10−3 2.0076×10−9 (2.0053×10−9, 2.0099×10−9) 1.145×10−10 0.057
ZVA 10−4 2.0007×10−12 (2.0000×10−12, 2.0014×10−12) 3.464×10−14 0.017

Combination 10−1 2.901×10−3 (2.839×10−3, 2.963×10−3) 3.147×10−3 1.08
Combination 10−2 2.063×10−6 (2.054×10−6, 2.072×10−6) 4.607×10−7 0.223
Combination 10−3 2.008×10−9 (2.0053×10−9, 2.0111×10−9) 1.486×10−10 0.0740
Combination 10−4 2.0019×10−12 (1.9996×10−12, 2.00096×10−12) 3.466×10−14 0.0173

Example 5. Consider finally the topology of Figure 2 where we add an arc from the third node on the highest path
(between links 2 and 3) to the node just below it, and another one connecting the node between links 8 and 9 and
the node just below it. We will refer to this topology as the “almost direct” one. Table 3 displays the results. BRE
is actually verified in each case, but the smallest variance is obtained for the combined method. The improvement
in the relative error is already significant for the less reliable case (ε = 10−2), and attains an order of magnitude in
the most reliable case considered (ε = 10−4).

We have compared the accuracy of estimators for fixed values of sample sizes. On the other hand, computational
times are also different due for instance to the time required to find mincuts with maximal probability at each step
of the sampling process. Table 4 displays the relative time for the ZVA and combination techniques, compared with
CMC, for all the above examples. We see that the additional CPU time is non-negligible when using importance
sampling, but the BRE property is ensured, and even VRE can be obtained in some cases.
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Table 3: Empirical results for the topology of Figure 2 with two additional links between direct paths, for n = 104

and two values of ε .

Method ε Estimate 95% Confidence interval Std deviation Relative error

CMC 10−2 3.271×10−5 (3.168×10−5, 3.375×10−5) 5.273×10−5 1.61
CMC 10−4 3.273×10−11 (3.165×10−11, 3.381×10−11) 5.494×10−11 1.69

ZVA 10−2 3.300×10−5 (3.220×10−5, 3.380×10−5) 4.073×10−5 0.81
ZVA 10−4 3.255×10−11 (3.191×10−11, 3.319×10−11) 3.259×10−11 1.02

Comb 10−2 3.317×10−5 (3.289×10−5, 3.344×10−5) 1.411×10−5 0.42
Comb 10−4 3.306×10−11 (3.293×10−11, 3.317×10−11) 6.153×10−12 0.185

Table 4: Empirical relative CPU times for ZVA and the combined methods with respect to CMC, when n = 104

and for various values of ε .

Topology ε ZVA Combination

Arpanet 10−1 57.5 100
Arpanet 10−3 63.5 90.4
Arpanet 10−5 63.9 91.1
Arpanet 10−6 66.3 90.5

Dodecahedron 10−1 71.8 110
Dodecahedron 10−2 70.7 93.5
Dodecahedron 10−3 70.6 91.2
Dodecahedron 10−4 70.5 90.5

Almost direct 10−2 35.6 60.2
Almost direct 10−4 36.2 61.2

ACKNOWLEDGMENTS

This work has been supported by INRIA’s associated team MOCQUASIN to all authors, and NSERC-Canada and
a Canada Research Chair to the second author.

REFERENCES

Asmussen, S., and P. W. Glynn. 2007. Stochastic simulation. New York: Springer-Verlag.
Ball, M. O. 1986, Aug.. Computational complexity of network reliability analysis: An overview. IEEE Transactions

on Reliability 35 (3): 230–239.
Cancela, H., M. El Khadiri, and G. Rubino. 2009. Rare event analysis by monte carlo techniques in static models.

In Rare Event Simulation Using Monte Carlo Methods, ed. G. Rubino and B. Tuffin, 145–170. Wiley. Chapter
7.

Cancela, H., P. L’Ecuyer, M. Lee, G. Rubino, and B. Tuffin. 2009. Analysis and improvements of path-based methods
for Monte Carlo reliability evaluation of static models. In Simulation Methods for Reliability and Availability
of Complex Systems, ed. S. M. J. Faulin, A. A. Juan and E. Ramirez-Marquez. Springer Verlag.

Cancela, H., G. Rubino, and B. Tuffin. 2005. New measures of robustness in rare event simulation. In Proceedings
of the 2005 Winter Simulation Conference, ed. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines,
519–527: IEEE Press.

Colbourn, C. J. 1987. The combinatorics of network reliability. New York: Oxford University Press.
L’Ecuyer, P., J. H. Blanchet, B. Tuffin, and P. W. Glynn. 2010a. Asymptotic robustness of estimators in rare-event

simulation. ACM Transactions on Modeling and Computer Simulation 20 (1): Article 6.
L’Ecuyer, P., G. Rubino, S. Saggadi, and B. Tuffin. 2010b. Approximate zero-variance

importance sampling for static network reliability estimation. Submitted. Available at
http://www.irisa.fr/dionysos/pages_perso/tuffin/Publis/static-IS.pdf.

1273



Cancela, L’Ecuyer, Rubino and Tuffin

L’Ecuyer, P., and B. Tuffin. 2008. Approximate zero-variance simulation. In Proceedings of the 2008 Winter
Simulation Conference, 170–181: IEEE Press.

Nakayama, M. K. 1996. General conditions for bounded relative error in simulations of highly reliable Markovian
systems. Advances in Applied Probability 28:687–727.

Rubino, G., and B. Tuffin. (Eds.) 2009. Rare event simulation using Monte Carlo methods. John Wiley & Sons.
Sedgewick, R., and M. Schidlowsky. 2003. Algorithms in java, part 5: Graph algorithms. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc.
Shahabuddin, P. 1994. Importance sampling for the simulation of highly reliable Markovian systems. Management

Science 40 (3): 333–352.

AUTHOR BIOGRAPHIES

HECTOR CANCELA holds a PhD. degree in Computer Science from the University of Rennes 1, INRIA Rennes,
France (1996), and a Computer Systems Engineer degree from the Universidad de la República, Uruguay (1990). He
is currently Full Professor and Director of the Computer Science Institute at the Engineering School of the Universidad
de la República (Uruguay). He is also a Researcher at the National Program for the Development of Basic Sciences
(PEDECIBA), Uruguay. His research interests are in Operations Research techniques, especially in stochastic
process models and graph and network models, and in their application jointly with combinatorial optimization
metaheuristics to solve different practical problems. He has published more than 40 papers in international journals
and proceedings of refereed conferences. Prof. Cancela has participated as academic delegate at the National
Committee for the Information Society hosted by the Presidency of the Republic of Uruguay. He has also been a
national delegate at the Committee on Accreditation Standards for Engineering Studies at the MERCOSUR. He is
currently President of ALIO, the Latin American Operations Research Association, and member of IFIP System
Modeling and Optimization technical committee (TC7) . His email address is <cancela@fing.edu.uy>.
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