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ABSTRACT

In this paper, we propose sequential Monte Carlo simulated annealing (SMC-SA), a population-
based simulated annealing algorithm, for continuous global optimization. SMC-SA incorporates
the sequential Monte Carlo method to track the converging sequence of Boltzmann distributions
in simulated annealing, such that the empirical distribution will converge weakly to the uniform
distribution on the set of global optima. Numerical results show that SMC-SA is a great improvement
of the standard simulated annealing on all test problems and outperforms the popular cross-entropy
method on badly-scaled objective functions.

1 INTRODUCTION

In this paper, we introduce a sequential Monte Carlo simulated annealing (SMC-SA) algorithm for
continuous global optimization. It is well known that the Boltzmann distribution converges weakly to
the uniform distribution concentrated on the set of global optima as the temperature decreases to zero
(Romeijn and Smith 1994). At each iteration, simulated annealing essentially simulates an ergodic
Markov chain whose stationary distribution is the Boltzmann distribution at current temperature, and
the current state becomes the initial state for a new chain at the next iteration. Hence, the temperature
has to decrease slowly enough such that the chain does not vary too much from iteration to iteration,
which ensures the overall convergence for simulated annealing. Our idea is to track the sequence
of Boltzmann distributions using a number of samples via sequential Monte Carlo method (SMC)
(Doucet, de Freitas, and Gordon 2001), such that the empirical distribution yielded by our algorithm
will also converge weakly to the uniform distribution concentrated on the set of global optima. One
thing we should note is that our method does not have to be restricted to the Boltzmann distribution; it
can be used to track any sequence of distributions as long as it converges to a degenerate distribution
on one or more global optima and satisfies certain regularity conditions.

Simulated annealing (SA) is an attractive algorithm for optimization, due to its theoretical guarantee
of convergence, good performance on many practical problems, and ease of implementation. It was
first proposed by Kirkpatrick, Gelatt, and Vecchi (1983) through an analogy between optimization and
the physical process of annealing. The early study of simulated annealing focused on combinatorial
optimization, and some fundamental theoretical work include Geman and Geman (1984), Gidas (1985),
Anily and Federgruen (1987), and Hajek (1988). Later, simulated annealing was extended to continuous
global optimization, and rigorous convergence results were proved under various conditions, such
as Dekkers and Aarts (1991), Belisle (1992), Romeijn and Smith (1994), Locatelli (1996), Locatelli
(2000), and Yang (2000). Meanwhile, connections were exploited between simulated annealing and
some other optimization algorithms, and many variations of simulated annealing were developed.
The book of van Laarhoven and Aarts (1987) has a complete summary on simulated annealing
for combinatorial optimization, and the survey paper of Henderson, Jacobson, and Johnson (2003)
provides a good overview of the theoretical development of simulated annealing in both combinatorial
and continuous optimization.
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The standard SA generates one sample, or in other words candidate solution, at each iteration, and
the sequence of candidate solutions converge asymptotically to the optima in probability. To speed up
simulated annealing, many variations of simulated annealing were proposed to generate a population
of samples or candidate solutions at each iteration. For example, Ruppeiner, Pedersen, and Salamon
(1991) present an implementation of simulated annealing with an ensemble of random walkers
searching the configuration space in parallel; Mahfoud and Goldberg (1995) propose an effective
combination of simulated annealing and genetic algorithms, by incorporating the population approach
and recombinative power of genetic algorithms into simulated annealing; Chu, Deng, and Reinitzy
(1999) propose a parallel simulated annealing by monitoring and pooling performance statistics
simultaneously on all processors and mixing states at intervals to ensure a Boltzmann distribution;
Onbaşoğlu and Özdamar (2001) develop and compares five different parallel simulated annealing using
different approaches for information exchange among processors; van Hentenryck and Vergados (2007)
propose a population-based simulated annealing with intensification and diversification. Most recently,
Molvalioglu, Zabinsky, and Kohn (2007) and Molvalioglu, Zabinsky, and Kohn (2009) introduce a
multi-particle version of simulated annealing which consists of N-particle exploration and N-particle
selection steps with a meta-control of the temperature. This method bears some similarity with
SMC-SA in the sense that the exploration step can be viewed as a variation of the resampling step in
SMC-SA and the selection step is essentially the SA move step in SMC-SA; however, SMC-SA has an
importance updating step which plays an important role that will be explained later. The combination
of the resampling and SA move steps in SMC-SA is also similar to that in the resample-move particle
filter introduced in Gilks and Berzuini (2001), which is however developed for filtering (i.e. sequential
state estimation).

Compared with the above algorithms, the main distinction of SMC-SA is in its motivation to
closely track the sequence of Boltzmann distributions at each iteration through the use of sequential
Monte Carlo method. Viewing each iteration of simulated annealing as trying to reach stationarity of
a Markov chain whose stationary distribution is the current Boltzmann distribution, the importance
updating step in SMC-SA brings a head start to each iteration in the sense that it updates the previous
empirical distribution to a new one “close” to the current Boltzmann distribution, and the SA move
step takes the new empirical distribution even “closer” to the stationary distribution. The resampling
step in SMC-SA introduces additional approximation error, but it is necessary to keep the diversity of
the samples. The goal of SMC-SA is to achieve faster convergence in time than the standard simulated
annealing through the trade-off between the sample size (i.e., the number of samples or candidate
solutions generated at each iteration) and the rate of temperature change: by generating more samples
at each iteration we can reduce the time to reach the same accuracy of the solution. In fact, as the
numerical results show, SMC-SA not only converges faster in time, but also achieves better solutions
than the standard SA using the same total number of samples.

The rest of the paper is organized as follows: Section 2 revisits simulated annealing and motivates
the development of SMC-SA; Section 3 introduces SMC-SA with explanations of the rationale behind
it; Section 4 presents the numerical results of SMC-SA compared with the standard SA, multi-start
SA, and the cross-entropy method; Section 5 concludes the paper.

2 REVISITING SIMULATED ANNEALING

We consider a maximization problem

max
x∈X

H(x), (1)

where the solution space X is a nonempty continuous set in Rn, and H : X → R is a deterministic
function that is bounded, i.e., ∃Hl > −∞, Hu < ∞ s.t. Hl ≤ H(x) ≤ Hu, ∀x ∈ X . We denote the
optimal function value as H∗, i.e., there exists an maximum x∗ ∈ X such that H(x) ≤ H∗ , H(x∗),
∀x ∈ X .

Simulated annealing can be viewed as a Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller 1953), which simulates the density proportional to exp{H(x)/T} by simulating an
ergodic Markov chain whose stationary distribution is the Boltzmann distribution (Robert and Casella
2004). Hence, theoretically we have to simulate the chain for an infinite number of transitions before a
sample is truly drawn from this Boltzmann distribution. Once the stationarity of the chain is achieved,
we decrease the temperature, and then again have to simulate the new chain for an infinite number
of transitions to achieve the stationary distribution which is the Boltzmann distribution at the new
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temperature. This type of SA is conceptually simple and easier to analyze, but is clearly impractical.
In practice, the most often used SA iteratively decreases the temperature and draws one sample. This is
equivalent to simulating each Markov chain for only one transition, and hence, the chain almost never
achieves stationarity before the temperature changes. Obviously, there could be some algorithms in
between these two extremes, such as iteratively decreasing the temperature and drawing a few finite
number of samples, which is equivalent to simulating each Markov chain for a few number of times
at each temperature. The two extreme cases described above are summarized as follows:

• Infinite-Transition SA (ITSA): It can be viewed as a sequence of Markov chains. Each
Markov chain is of infinite length, and converges to the Boltzmann distribution at the current
temperature. The temperature is decreased in between subsequent Markov chains.

• Single-Transition SA (STSA): It can be viewed as a sequence of Markov chains. Each Markov
chain has only one transition. The temperature is decreased in between subsequent Markov
chains.

ITSA and STSA can be also viewed as “homogeneous SA” and “inhomogeneous SA” respec-
tively (van Laarhoven and Aarts 1987), since ITSA can be viewed as a sequence of homogeneous
Markov chains, and STSA as one single inhomogeneous Markov chain of infinite length, where the
temperature is decreased in between subsequent transitions. “Homogeneous” means the transition
probabilities/densities are fixed at all times, and “inhomogeneous” means that probabilities/densities
are changing with time in a Markov chain. For the algorithm to converge to the global optima in
probability, STSA requires the temperature to decrease slowly enough whereas there is no such re-
quirement on ITSA (van Laarhoven and Aarts 1987). That can be intuitively explained as a result that
the Markov chain corresponding to each temperature almost never achieves stationarity in STSA. If
the temperature decreases slowly enough, then the subsequent Markov chains do not differ too much,
such that when the current state becomes the initial state for the next Markov chain, it is not too far
away from the stationary distribution.

In summary, the ITSA achieves stationarity of each subsequent chain perfectly, but it requires an
infinite number of simulations of each chain; whereas the STSA only simulates each chain once but
almost none of the chains achieve stationarity, and hence it requires a slow enough cooling speed.
Motivated by this observation, we ask the question: Can we follow the stationary distribution of each
subsequent chain as close as possible in one step? Our idea is to use sequential Monte Carlo (SMC)
methods to follow the Boltzmann distribution at each temperature and use the Metropolis algorithm
to rejuvenate new samples.

3 SEQUENTIAL MONTE CARLO SIMULATED ANNEALING

In this section, we propose the sequential Monte Carlo simulated annealing (SMC-SA) algorithm. The
idea is to incorporate sequential Monte Carlo method to track the sequence of Boltzmann distributions
in simulated annealing. It has three main steps: importance updating, resampling, and SA move. The
importance updating step is based on the principle of importance sampling, and it essentially updates
the empirical distribution from last iteration to a new one that is close to the target distribution of this
iteration. More specifically, it takes the current Boltzmann distribution fk as the target distribution, and
the previous Boltzmann distribution fk−1 as the proposal distribution. Thus, given the previous samples
are already distributed approximately according to fk−1 and the weights of these samples are updated
in proportion to fk(·)/ fk−1(·), the new empirical distribution formed by these weighted samples will
closely follow fk. The resampling step redistributes the samples such that they all have equal weights.
The SA move step performs one iteration of simulated annealing on each sample to generate a new
sample or candidate solution. This step essentially takes the current empirical distribution as the initial
distribution, and simulates one transition of the Markov chain whose stationary distribution is the
current Boltzmann distribution fk. Hence, the resultant empirical distribution will be brought even
closer to fk. The resampling step together with the SA move step prevents sample degeneracy, or in
other words, keeps the sample diversity and thus the exploration of the solution space. We explain
the main steps in more detail in the following.

3.1 Importance Updating

The importance updating step is based on importance sampling (Robert and Casella 2004), which
essentially performs a change of measure. Thus, the expectation under one distribution can be estimated
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using the samples drawn from another distribution with appropriate weighting. Specifically, let f and
g denote two probability density functions. For any integrable function φ , its integration with respect
to f equals to

Iφ =
∫

φ(x) f (x)dx =
∫

φ(x)
f (x)
g(x)

g(x)dx. (2)

If we draw independent and identically distributed (i.i.d.) samples {xi}N
i=1 from g and set their weights

{wi}N
i=1 according to

W i =
f (xi)

g(xi)
, wi =

W i

∑N
j=1W j

,

then in view of (2), an estimate of Iφ is

Îφ =
1
N

N

∑
i=1

W iφ(xi), xi iid∼ g,

and an approximation of f is

f̂ (x) =
N

∑
i=1

wiδxi(x), (3)

where δ denotes the Dirac delta function, which satisfies
∫

φ(x)δy(x)dx = φ(y).

In other words, {xi,wi}N
i=1 is a weighted sample from f , and f̂ defined in (3) is an empirical distribution

of f .
In simulated annealing, suppose we already have i.i.d. samples {xi

k−1}N
i=1 from the last Boltzmann

distribution, using the importance sampling principle described above we can obtain weighted samples
{xi

k,w
i
k}N

i=1 that are distributed to the current Boltzmann distribution. More specifically, the Boltzmann
density at time k is

fk(x) =
1
Zk

exp

{

H(x)
Tk

}

,

where Zk =
∫

exp{H(x)/Tk}dx is the normalization constant, H(x) is the objective function in (1),
and Tk is often referred to as the temperature at time k. Noticing that

fk(x)
fk−1(x)

=
exp

{

H(x)
(

1
Tk
− 1

Tk−1

)}

Zk/Zk−1
, k = 2, . . . ,

an approximation of fk is

f̂k(x) =
N

∑
i=1

wi
kδxi

k−1
(x), xi

k−1
iid∼ fk−1,

where

wi
k ∝ exp

{

H(xi
k−1)

(

1
Tk

− 1
Tk−1

)}

,
N

∑
i=1

wi
k = 1, k = 2, . . . .
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Assuming that we do not have any prior knowledge about the optima, we draw the initial samples
from a uniform distribution over the solution space, i.e.,

f0(x) ∝ 1, ∀x ∈ X .

Since

f1(x)
f0(x)

∝ exp

{

H(x)
T1

}

,

the weights at time 1 should satisfy

wi
1 ∝ exp

{

H(xi
0)

T1

}

,
N

∑
i=1

wi
1 = 1.

In the following, we refer to N as the sample size, i.e., the number of samples or candidate solutions
generated at each iteration. We assume N is constant for every iteration.

3.2 Resampling

The importance updating step gives us f̂k = ∑N
i=1 wi

kδxi
k−1

, an approximation of fk. However, the

weighted samples {xi
k−1,w

i
k}N

i=1 will suffer from the problem of degeneracy that will be explained
shortly. Therefore, the resampling step is needed to sample from the weighted samples {xi

k−1,w
i
k}N

i=1 in
order to generate N i.i.d. new samples {x̃i

k}N
i=1, which are still approximately distributed according to

fk. In SMC-SA, we use sampling with replacement scheme for the resampling step. There are several
other resampling schemes mainly for the purpose of variance reduction, such as stratified resampling,
residual resampling (Liu and Chen 1998), and multinomial resampling (Gordon, Salmond, and Smith
1993), and their effects on the algorithm performance will be studied in the future.

The purpose of resampling can be explained from different perspectives. From sampling perspec-
tive, the resampling step together with the SA move step help to overcome sample degeneracy. Without
resampling, after a few iterations, only few samples would have dominating weights and most others
have weights close to 0. These negligible samples waste future computation effort, since they do not
contribute much to the updating of the empirical distribution. In contrast, with resampling, samples
with large weights would have multiple copies, and these identical copies lead to different samples
because of the SA move step next. Hence, resampling keeps the diversity of samples and ensure that
every sample is useful. From the optimization perspective, resampling brings more exploration to the
neighborhood of good solutions. It is similar to the selection step in genetic algorithms, where the
elite parents would have more offsprings.

3.3 SA Move

At iteration k, the SA move is one step of the Metropolis algorithm with the target distribution being
the Boltzmann distribution with density fk. As {x̃i

k}N
i=1 are the initial states of the Markov chain and

are distributed “closely” according to fk, new samples {xi
k} generated from {x̃i

k} by the SA move step
are even “closer” to the stationary distribution fk. The SA move step is essentially the same as the
SA algorithm, and is described below for clarity.

Algorithm 1. SA Move at iteration k in SMC-SA

• Choose a symmetric proposal distribution gk(·|x), such as uniform or normal distributions
with mean x.

• Generate yi
k ∼ gk(y|x̃i

k), i = 1, . . . ,N.
• Calculate acceptance probability

ρ i
k = min{exp

(

H(yi
k)−H(x̃i

k)

Tk

)

,1}.
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• Accept/Reject

xi
k =

{

yi
k, w.p. ρ i

k;
x̃i

k, w.p. 1−ρ i
k.

In summary, for the maximization problem (1), our proposed algorithm is as follows.

Algorithm 2. Sequential Monte Carlo Simulated Annealing (SMC-SA)

• Input: sample size N, cooling schedule for {Tk}.

• Initialization: generate xi
0

iid∼ Unif(X ), and compute normalized weights wi
1 ∝ exp

{

H(xi
0)

T1

}

,

i = 1,2, . . . ,N. Generate i.i.d. samples {xi
1}N

i=1 from {xi
0,w

i
1}N

i=1. Set k = 2.
• At iteration k:

– Importance Updating: compute normalized weights wi
k ∝ exp

{

H(xi
k−1)

(

1
Tk
− 1

Tk−1

)}

.

– Resampling: draw i.i.d. samples {x̃i
k}N

i=1 from {xi
k−1,w

i
k}N

i=1.

– SA Move: generate xi
k from x̃i

k for each i, i = 1, . . . ,N, according to Algorithm 1.

– Stopping: if a stopping criterion is satisfied, return maxi H(xi
k); otherwise, k := k+1 and

continue.

4 NUMERICAL EXPERIMENTS

In this section, we present the numerical results of the proposed SMC-SA algorithm compared with
the standard SA, multi-start SA, and the cross-entropy (CE) method (Rubinstein 1999) on several
well-known unconstrained and continuous benchmark optimization problems.

4.1 Selected Benchmark Problems

The six selected benchmark problems (Corana, Marchesi, Martini, and Ridella 1987, Yao and Liu
1996, Kroese, Porotsky, and Rubinstein 2006, Pintér 1996) are listed below. The original problems
are all minimization problems. The SMC-SA method is presented in maximization form, so we take
the negative value of the objective function, and convert them to maximization problems. The plots
of these objective functions in two dimensions are shown in Figure. 1.

(a) Dejong’s 5th function (n=2)

Ha(x) = −
[

0.002+
25

∑
j=1

1

j +∑2
i=1(xi −a ji)6

]−1

,

where a j1 = (−32,−16,0,16,32,−32,−16,0,16,32,−32,−16,0,16,32,
−32,−16,0,16,32,−32,−16,0,16,32)
and
a j2 = (−32,−32,−32,−32,−32,−16,−16,−16,−16,−16,0,0,0,0,0,
16,16,16,16,16,32,32,32,32,32). The global maximum is at x∗ = (−32,−32)T , and H∗

a ≈
−0.998.

(b) Powel singular function (n=20)

Hb(x) = −
n−2

∑
i=2

[

(xi−1 +10xi)
2 +5(xi+1 − xi+2)

2 +(xi −2xi+1)
4 +10(xi−1 − xi+2)

4] ,

where x∗ = (0, · · · ,0)T , H∗
b = 0.
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(c) Rosenbrock function (n=20)

Hc(x) = −
n−1

∑
i=1

[

100(xi+1 − x2
i )

2 +(xi −1)2] ,

where x∗ = (1, · · · ,1)T , H∗
c = 0.

(d) Griewank function (n=20)

Hd(x) = −
[

1
4000

n

∑
i=1

x2
i −

n

∏
i=1

cos

(

xi√
i

)

+1

]

,

where x∗ = (0, · · · ,0)T , H∗
d = 0.

(e) Trigonometric function (n=10)

He(x) = −1−
n

∑
i=1

[

8sin2(7(xi −0.9)2)+6sin2(14(xi −0.9)2)+(xi −0.9)2] ,

where x∗ = (0.9, · · · ,0.9)T , H∗
e = −1.

(f) Pintér’s function (n=10)

Hf (x) = −
[

n

∑
i=1

ix2
i +

n

∑
i=1

20isin2(xi−1 sinxi − xi + sinxi+1)

+
n

∑
i=1

i log10(1+ i(x2
i−1 −2xi +3xi+1 − cosxi +1)2)

]

,

where x∗ = (0, · · · ,0)T , H∗
f = 0.

4.2 Comparison of SMC-SA, standard SA, multi-start SA and CE

As a comparison of the proposed SMC-SA method, we also solved the above benchmark problems using
the standard SA algorithm, multi-start SA, and CE method, and compared the average performance
based on 100 independent runs.

For SMC-SA, standard SA, and multi-start SA, we use the logarithm temperature reduction form,
i.e., the temperature at the kth iteration is Tk = |H∗(xk−1)|/ log(k+1), where H∗(xk−1) is the optimal
sample function value at the (k−1)th iteration. The reason for using |H∗(xk−1)| is because the weights

wi
k are calculated in proportion to the exponential function exp

{

H(xi
k−1)

(

1
Tk
− 1

Tk−1

)}

, which may

get exploded if the argument of the exponential function is large, and may become identical values
if the argument is in the flat tail of the exponential function. By using |H∗(xk−1)| in the temperature,
the weights will not depend too much on the value of H(xi

k−1).
In these four methods, the initial candidate solutions are all chosen randomly according to the

uniform distribution on [−50,50]n. For SMC-SA, the proposed distribution in the SA move step is the
normal distribution with standard deviation αβ k at iteration k, where α = 10, β = 0.995 for objective
functions Ha and Hb, and β = 0.998 for Hc, Hd , He, and Hf ; the sample size is N = 200 for Ha, Hb,
Hd and Hf , and N = 1000 for the high-dimensional problems Hc and He. For the standard SA and
the multi-start SA, the parameter settings are the same as in SMC-SA for each problem, i.e, the same
temperature function, proposal distributions, and the same sample size N in multi-start SA. For the
CE method, we use the normal distributions as the parameterized family; the initial mean µ0 is chosen
randomly according to the uniform distribution on [−50,50]n, and the initial standard deviation is set
to be Σ0 = 500In×n; the quantile parameter ρ is set be 0.01; the sample size N is 400 for Ha, 500
for Hb, and 5000 for Hc −Hf . The standard CE method suffers from the “freezing” problem due
to fast convergence of the parameterized family p.d.f. f (·,θk) to a degenerated distribution, and the
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(a) Dejong’s 5th function (b) Powel function

(c) Rosenbrock function (d) Griewank function

(e) Trigonometric function (f) Pinter’s function

Figure 1: Test problems in two dimensions

solution will converge to a local optimum quickly. In the algorithm, we apply the smoothing parameter
updating procedure to solve the “freezing” problem (DeBoer, Kroese, Mannor, and Rubinstein 2005).
At iteration k, the parameter is updated smoothly by a weighted average of θ̂k−1 and θk, i.e.,

θ̂k = νθk +(1−ν)θ̂k−1, ν ∈ (0,1) (4)

The smoothing parameter is set to be ν = 0.2, which is found to work best by trial and error in our
experiments.

Table 1 shows the average performance based on 100 independent runs, where H∗ is the true
optimal value of H(·), H̄∗ is the average optimal value computed by each of the methods, std err is
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the standard error of the optimal values, and Mε is the number of ε-optimal solutions out of 100 runs.
In this numerical experiment, we consider ε = 10−5 for problem Ha, Hd , He, and Hf , and ε = 0.01
for problems Hb and Hc. Fig. 2 shows the average value of H(·) v.s. the total number of samples for
these four methods.

SMC-SA multi-start SA standard SA CE (ν = 0.2)
H∗ H̄∗(std err) Mε H̄∗(std err) Mε H̄∗(std err) Mε H̄∗(std err) Mε

Ha -0.998 -0.998(1.34E-7) 100 -1.0024(0.0014) 19 -3.999(0.2117) 4 -1.544(0.0695) 51
Hb 0 -0.0064(4.95E-4) 81 -20.45(4.26) 0 -89.62(1.277) 0 -113.3(66.39) 69
Hc 0 -4.673(0.249) 5 -5.623(0.313) 4 -377.8(5.478) 0 -17.35(0.0113) 0
Hd 0 -1.80E-7(2.81E-9) 100 -2.44E-7(4.25E-9) 100 -0.274(0.0029) 0 -7.44E-12(3.09E-13) 100
He -1 -1.225(0.0275) 56 -1.407(0.035) 2 -41.61(3.25) 0 -1(0.0E00) 100
Hf 0 -6.16E-16(1.86E-17) 100 -6.13E-6(4.87E-6) 98 -1.00E+3(85.91) 0 -0.1777(0.0037) 0

Table 1: Average Performance of SMC-SA, multi-start SA, standard SA and CE on Benchmark Problems

From the results, we may see that for all of these six benchmark problems, SMC-SA outperforms
the standard SA. SMC-SA provides much more accurate solutions with smaller standard error, and
it also converges faster than standard SA on problems Ha, Hd −Hf . SMC-SA performs better than
multi-start SA on problems Ha, Hb, He and Hf in both accuracy and convergence rate, and performs
slightly better than multi-start SA on problems Hc and Hd . In all the problems except Hd and He,
SMC-SA performs better than CE in accuracy. SMC-SA converges faster than CE on the first two
problems; on the last four problems, it converges faster than CE at the very beginning, and then slower.

Dejong’s 5th function Ha has low dimension (n = 2) and limited number of local optima, and the
optima are scattered as shown in Fig. 1(a). SMC-SA outperforms the other three methods in both
accuracy and convergence rate. All the solutions by SMC-SA of the 100 replications are 10−5-optimal
solutions, whereas there are only 19 by multi-start SA and near half of the solutions by CE. SMC-SA
is a population-based algorithm, and it explores the candidate solutions around several promising
samples in each iteration. This avoids the candidate solution being trapped in one local optimum,
and also concentrates the searching area around several promising candidate solutions. The better
the performance of the solution is, the more samples it will generate around it. Moreover, in the low
dimensional problem with limited number of local optima, using large enough sample size N, the
candidate solutions are more likely to be guided to the global optimum. Multi-start SA takes the best
solution among N independent standard SA solutions. The N candidate solutions at each iteration do
not interact each other, and hence the new solutions will not concentrate around the elite samples.
Standard SA stops producing better solution very early, since it is difficult to escape from a local
optimum. CE performs better than standard SA, since it is also a population-based algorithm, and
may not be easily trapped in the local optima, especially when using small smoothing parameter ν .
But with small smoothing parameter, the convergence is slow and it needs more function evaluations
to get good enough solutions.

Powel singular Hb and Rosenbrock Hc functions are high-dimensional (n = 20) badly-scaled
functions. For Powel singular function Hb, SMC-SA performs much better than multi-start SA,
standard SA, and CE. For Rosenbrock function Hc, none of four methods provide good enough
solutions. SMC-SA converges slowly, but gives the best average optimal value −4.673; multi-start
SA performs slightly worse than SMC-SA; standard SA provides the worst solution. For these two
benchmark problems, there are a small number of local optima, but the functions are badly-scaled.
SMC-SA improves the solution slightly during the iterations by exploring more around the promising
samples. The objective function is smooth and has a small number of local optima, and thus, even
with high dimensions, SMC-SA has a low chance to mislead all the sample to concentrate on certain
local optimum. SMC-SA outperforms multi-start SA on the Powel singular function, but performs
similarly as multi-start SA on the Rosenbrock function.

Griewank Hd (n = 20), Trigonometric He (n = 10), and Pinter Hf (n = 10) are high-dimensional
problems with a large number of local optima, and the number of local optima increases exponentially
with the problem dimension. Pinter Hf is also a badly-scaled function. In these three examples, the
performance of SMC-SA, multi-start SA and CE is much better than standard SA, since population-
based methods may not easily get trapped in local optima. SMC-SA converges very fast to a good
solution at the very beginning, and then slowly improves the solution. For Griewank Hd , CE provides
slightly more accurate solution than SMC-SA and multi-start SA; all the best solutions by SMC-SA,
multi-start SA and CE are 10−5-optimal solutions. For Trigonometric function He, CE performs better
than SMC-SA and multi-start SA in both accuracy and convergence rate; all the 100 best solutions by
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(a) Dejong’s 5th function (b) Powel function

(c) Rosenbrock function (d) Griewank function

(e) Trigonometric function (f) Pinter’s function

Figure 2: Average Performance of SMC-SA, multi-start SA, standard SA and CE

CE are 10−5-optimal solutions, and M10−5 is only 56 by SMC-SA and 2 by multi-start SA; SMC-SA
provides highly accurate solutions but with lower probability. For Pinter’s function Hf , SMC-SA
and multi-start SA provide more accurate solutions than CE, and all the solutions are within 10−5

difference between the true optimal value 0, whereas CE has 0 solutions that are 0.01-optimal. For
high-dimensional well-scaled problems with a large number of local optima, such as Hd and He, CE
outperforms SMC-SA, and SMC-SA performs slightly better than multi-start SA. That is because
with large number of local optima, SMC-SA may mislead to explore around local optima. To improve
the performance of SMC-SA, we use a large exploration reduction rate β = 0.998, which allows
more exploration without trapped in certain local optimum. For the badly-scaled and with large local
optima problem Hf , SMC-SA performs better than multi-start SA and CE. Even when the number
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of optima is large, we sacrifice the convergence rate to explore a larger area in order to improve the
accuracy.

In summary, SMC-SA is a great improvement of the standard SA on all the test problems; SMC-SA
works better than multi-start SA and CE on badly-scaled problems and problems with a small number
of local optima; the CE method works better on well-scaled problems with a large number of local
optima.

5 CONCLUSION

In this paper, we have proposed the sequential Monte Carlo simulated annealing (SMC-SA) algorithm
for continuous global optimization. The main idea is to track the converging sequence of Boltzmann
distribution using a population of samples via sequential Monte Carlo method. The numerical results
show that SMC-SA is a great improvement of the standard SA on all the test problems and that
SMC-SA works better than multi-start SA and CE on badly-scaled problems and problems with a
small number of local optima.
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