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ABSTRACT

We propose a new framework for global optimization by building a connection between global
optimization problems and evolutionary games. Based on this connection, we propose a Model-
based Evolutionary Optimization (MEO) algorithm, which uses probabilistic models to generate new
candidate solutions and uses various dynamics from evolutionary game theory to govern the evolution
of the probabilistic models. The MEO algorithm also gives new insight into the mechanism of model
updating in model-based global optimization algorithms. Based on the MEO algorithm, a novel
Population Model-based Evolutionary Optimization (PMEO) algorithm is proposed, which better
captures the multimodal property of global optimization problems and gives better simulation results.

1 INTRODUCTION

In the literature of global optimization, there is a class of optimization methods called model-based
methods that generate new candidate solutions based on probabilistic models, and the probabilistic
models are updated by using the previously generated solutions. Some of the well known model-based
methods include estimation of distribution algorithms (EDAs) (Mühlenbein and Paaß 1996), cross-
entropy (CE) method (Boer et al. 2005, Mannor et al. 2003), and model reference adaptive search
(MRAS) (Hu, Fu, and Marcus 2007). EDAs were first proposed by Mühlenbein and Paaß (1996),
who introduced probabilistic models to generate new candidate solutions. How to construct high-
dimensional models to represent the interdependencies between decision variables is the most crucial
and difficult part of the method. CE was first designed as an adaptive algorithm to estimate the
probabilities of rare events in stochastic networks (Rubinstein 1997) and then it was modified to solve
combinatorial and continuous optimization problems (Rubinstein 1999). One of the critical steps in
CE is to minimize the distance between the optimal importance sampling density and a family of
parameterized densities that are used to generate new candidate solutions. The threshold parameter
that is used to choose elite solutions is adaptively changed and the parameterized probability densities
are also updated accordingly. MRAS, introduced by Hu, Fu, and Marcus (2007), incorporates the
ideas of EDAs and CE, and guides the updating of the parameterized densities by constructing a
series of reference models. Recently, Zhou, Fu, and Marcus (2008) formulate the global optimization
problem as a filtering problem and present a new particle filtering-based framework to solve global
optimization problems. Bayes updating is used to guide the evolution of the probability models that
are used to generate new candidate solutions.

The way of interpreting and updating the probabilistic models makes EDAs, CE, MRAS, and
algorithms based on particle filtering different from each other. In the aforementioned model-based
global optimization algorithms, candidate solutions are generated from probabilistic models, which
are updated by these candidate solutions such that better solutions will have a higher chance to be
sampled at the next iteration. On the other hand, in evolutionary games, better strategies will spread in
the population, and this is somewhat similar to the improvement of models in model-based algorithms.
This similarity motivates us to connect global optimization problems with evolutionary game theory.
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The dynamics that are used to study the evolution of strategies in evolutionary games provides us a
powerful tool to investigate the model updating in model-based algorithms.

Game theory studies the strategic interaction of players using different strategies; it has been
applied in many areas such as economics, engineering, and biology (Fudenberg and Levine 1998,
Shoham, Powers, and Grenager 2004). Recently, authors suchasLambert, Epelman, and Smith (2005)
and Garcia, Patek, and Sinha (2007) have applied game theory to solve discrete optimization problems,
where they model the optimization problem as a potential game. Fictitious play and joint fictitious play
are adopted to obtain the Nash equilibrium and two sampled version of fictitious and joint fictitious
play are also proposed in Lambert, Epelman, and Smith (2005) and Garcia, Patek, and Sinha (2007).
For a potential game, although fictitious play has been proven to converge to a mixed strategy Nash
equilibrium, the mixed strategy equilibrium might not be a feasible solution for the optimization prob-
lem. The algorithms in Garcia, Patek, and Sinha (2007) and Lambert, Epelman, and Smith (2005)
only work for discrete optimization problems with a finite solution space, and moreover the Nash
equilibrium obtained by fictitious play might only be a locally optimal solution.

Evolutionary game theory applies game theory to study the evolution of the number of players
playing different strategies in a population setting. After being introduced by the biologist (Smith 1982),
evolutionary game theory has become popular in biology and increasingly attracts interest from
researchers in other areas. Different from static games, evolutionary games introduce replicator
dynamics, which shows that the growth rate of the proportion of players using a certain strategy is
equal to the difference between the average payoff of that strategy and the average payoff of the whole
population. Replicator dynamics can also be used as a learning algorithm to study the behavior of
multiple agents (Tuyls and Parsons 2007).

As in EDAs, MRAS, and CE, we maintain a population of solutions. The main idea of our method
is to formulate the global optimization problem as an evolutionary game and to use dynamics in
evolutionary game theory to study the evolution of the candidate solutions. The process of searching
for the optimal solution is carried out through the procedure of reaching the evolutionary stable strategy
(ESS). Specifically, we establish a connection between evolutionary game theory and optimization
problems by dividing the solution region of the global optimization problem and letting different players
play strategies in different subsets. Differential dynamics such as replicator dynamics is used to govern
the evolution of the candidate solutions for the optimization problem. Furthermore, we introduce
probabilistic models to generate candidate solutions and formulate the global optimization problem as
an evolutionary game with continuous strategy spaces, based on which, a Model-based Evolutionary
Optimization (MEO) algorithm is developed. Moreover, to better capture the multimodal property of
global optimization problems, we propose to use a population of models to generate candidate solutions
and a new Population Model-based Evolutionary Optimization (PMEO) algorithm is proposed, in
which evolutionary game theory is used to study the evolution of these models and models with best
performances will survive eventually. In preliminary numerical experiments, PMEO outperformed
the standard CE method.

The way we formulate global optimization problems as evolutionary games provides new insights
into the mechanism for generating new candidate solutions and the mechanism of model updating for
model-based global optimization algorithms. For example, one special case of the MEO algorithm
gives a new explanation for the CE method. This evolutionary game setting for global optimization
problems makes it possible to study the convergence property of model-based algorithms by using
analytical tools in the evolutionary game theory literature and it also provides new possibilities to
develop new algorithms, for example, the PMEO algorithm developed in this paper.

2 EVOLUTIONARY GAME THEORY

Before presenting the main algorithm, we give a brief introduction to game theory and evolutionary
game theory. Consider a two player game. A is the payoff matrix for player I and B is the payoff
matrix for player II. Player I has the pure strategy set S1 = {1, · · · ,n} and S2 = {1, · · · ,n} is the pure
strategy set for player II. The mixed strategy of player I is a probability vector x = (x1, · · · ,xn)

T and
xi is the probability of choosing strategy i ∈ S1. Similarly, B is the payoff matrix for player II with
mixed strategy y = (y1, · · · ,yn)

T . If the game is symmetric, we have BT = A. The expected payoff
for player I and player II will be xT Ay and xT By, respectively.

Evolutionary game theory studies the game in a population setting. Assume there is a population
of agents which are programmed to play n different pure strategies in the set {1, · · · ,n} and let xi be
the percentage of agents playing pure strategies i for i ∈ {1, · · · ,n} in the population. We assume that
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xi is a differentiable function of time t. If individuals meet randomly and then engage in a symmetric
game with a payoff matrix A, then (Ax)i is the expected payoff for an individual playing strategy i
and xT Ax is the payoff of an agent that is randomly selected from the population. Let us assume that
the per capita rate of growth, i.e. the logarithmic derivative ˙(lnxi) := ẋi/xi, is given by the difference
between the payoff for type i and the average payoff in the population. This yields the replicator
equation (Weibull 1995)

ẋi = xi((Ax)i − xT Ax) ∀i ∈ {1,2, · · · ,n}.

Replicator dynamics is a selection process, according to which, more successful strategies will spread
in the population.

2.1 Other Dynamics

Besides replicator dynamics, there are some other dynamics (Hofbauer and Sigmund 2003) and we
introduce two as follows.

2.1.1 Imitation Dynamics

The imitation dynamics is given by ẋi = xi ∑ j[φi j(x)−φ ji(x)]x j, where φi j is the rate at which an agent
playing the strategy j adopts the strategy i. One plausible assumption is that this rate depends only
on the payoffs achieved by the two agents, i.e φi j(x) = φ( fi, f j), where fi, f j are payoff functions and
φ(u,v) defines the imitation rule (the same for all players). The simplest rule is to imitate the better,
i.e

φ(u,v) =

{

0 if u ≤ v
1 if u > v .

In this case, the percentage of agents playing a strategy increases if and only if its payoff is larger
than the median of the payoffs of all the strategies.

2.1.2 The Brown-von Neumann-Nash Dynamics

The other dynamics is the Brown-von Neumann Nash dynamics (BNN), which is defined as ẋi =
ki(x)− xi ∑M

j=1 k j(x), where ki(x) = max(0, fi −∑M
j=1 x j f j) denotes the positive part of the excess

payoff for the strategy i. The discrete time version of the above dynamics is given by the following
Nash map

xi(t +1) =
xi(t)+ ki(x(t))

1+∑M
j=1 k j(x(t))

.

3 CONNECTING OPTIMIZATION AND EVOLUTIONARY GAME THEORY

Consider the following continuous optimization problem:

y⋆ ∈ argmax
y∈Y

H(y) (1)

where the solution space Y ∈ R
n is a nonempty set. The objective function H(·) : Y → R is a

deterministic function bounded from above, i.e ∃M such that H(y) ≤ M ∀y ∈ Y . y⋆ is the global
optimal solution if H(y⋆) ≥ H(y) ∀y 6= y⋆, y ∈ Y .

Assume that the solution space Y can be divided into M disjoint subsets G1, ...,GM. At each
iteration, we plan to generate N1, · · · ,NM candidate solutions using some random sampling algorithm in
the corresponding subsets G1, ...,GM, where ∑M

i=1 Ni = N. Here we implicitly assume that the sampling
in subsets {Gi} can be done by some sampling algorithm. Our goal is to sample more around the
optimal solution y⋆, and thus increase the chance of finding the optimal solution. In other words,
we want most of our samples concentrated around the optimal solution as we run our optimization
algorithm. From an evolutionary game theory perspective, we view the samples (candidate solutions)
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as agents, which are programmed to play M different pure strategies {1, · · · ,M}. Here by playing
the pure strategy i, we mean that an agent can sample a candidate solution in the subset Gi. Assume
that there are Ni agents playing the pure strategy i. An agent playing a pure strategy i will receive a
payoff fi no matter whom this agent is playing against.

The payoff fi is defined as

fi =
1
Ni

Ni

∑
j=1

H(yi j),

where {yi j, j = 1, · · · ,Ni} are candidate solutions generated from the subset Gi. Define xi =
Ni
N , which

is the percentage of agents playing the pure strategy i for all i ∈ {1, · · · ,M}. The evolution of the
number of agents playing different strategies is governed by the replicator dynamics

ẋi = xi( fi −
M

∑
j=1

x j f j). (2)

From (2), it is easy to see that if the payoff of the strategy i is bigger than the average payoff, i.e
fi > ∑M

j=1 x j f j, the number of agents playing i will increase. From the viewpoint of simulation-based
optimization, more samples will be assigned to the more promising area - the subset Gi.

Note that replicator dynamics (2) is a differential equation. However our optimization algorithm
is simulation-based; therefore we need a discretized version of replicator dynamics, which is given
as follows. In matrix games, the discrete replicator dynamics is given by

xi(t +1) = xi(t)
(Ax(t))i + c

x(t)T Ax(t)+ c
,

where c is some constant to make sure that the denominator is not zero. In our setting for the global
optimization problem, the corresponding replicator dynamics is

xi(t +1) = xi(t)
f t
i + c

∑M
j=1 x j(t) f t

j + c
, (3)

where f t
j is the payoff if the strategy j is adopted at time t. We can see from (3) that the percentage

of agents playing each strategy changes by a fraction proportional to the averaged payoff of the
corresponding strategy at each iteration. The percentage of the number of agents playing a strategy
increases only if its payoff is greater than the average payoff and the amount of increase depends on
the difference of the payoff of the particular strategy and the average payoff.

4 MODEL-BASED EVOLUTIONARY OPTIMIZATION

In Section 3, we partition the solution region into several subsets, and in the corresponding evolutionary
game, there is only a finite number of strategies. The approach to partitioning the solution region
and to generating candidate solutions in the resulting subsets can be critical to solving the global
optimization problem and requires further investigation.

We take a step further and consider the partition in which each subset contains a single point in
the solution region. Assume that there is a probabilistic model defined on the solution region, from
which candidate solutions are generated. From the viewpoint of an evolutionary game, consider an
evolutionary game with a continuous strategy space. Denote Pt a probability measure defined on the
solution region Y ⊆ R

n, which is also the strategy space of the game. Every single point y ∈ Y

can be viewed as an agent that plays the pure strategy y. The percentage of the number of agents
playing the pure strategy y at time t is Pt(dy). An agent playing the pure strategy y always obtains
a fitness H(y) no matter who else is playing the game. Different from evolutionary games with a
finite number of pure strategies, the percentage of the number of agents adopting different strategies
in the continuous game is described by the probability measure Pt defined on the strategy space Y .
By evolutionary game theory (Oechssler and Riedel 2002), the evolution of this probability measure
is governed by some dynamics such as replicator dynamics. Let A be a measurable set in Y . If the
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replicator dynamics with a continuous strategy space is adopted, we have

Ṗt(A ) =
∫

A

(H(y)−EPt [H(Y )])Pt(dy), (4)

where EPt [H(Y )] is the expectation of H(Y ) under the measure Pt . From (4), we can see that if
H(y) outperforms EPt [H(Y )] at y, the probability measure around y will increase. However since the
probability measure doesn’t have a specific form, it would be very difficult to use (4) directly. If we
assume that there is a probability density function pt , such that Pt(dy) = ptdy, then (4) becomes

ṗt(y) = (H(y)−EPt [H(Y )])pt(y), (5)

which governs the evolution of the probability density function on the continuous strategy space.
If we use pt(y) as our model to generate candidate solutions for the global optimization problem

(1), the differential equation (5) can be used to update the model pt(y), with the final goal of making the
probability density function pt(y) concentrated on a small set containing the global optimal solution.
Then the global optimization problem can be easily solved by sampling according to the obtained
probability density function.

4.1 General Model-based Evolutionary Optimization Algorithm

There are many dynamics in evolutionary game theory that can be used to govern the evolution of the
probabilistic model pt(y). We use the following general representation to describe these dynamics,

ṗt(y) = D(H(y),Ept [H], pt(y)), (6)

where D is a function of H(y),Ept [H], and pt(y). The corresponding discretized version is

pk+1(y) = Dd(H(y),Epk [H], pk(y)).

Based on the above analysis, we give the following Model-based Evolutionary Optimization (MEO)
algorithm.

Model-based Evolutionary Optimization Algorithm

0. Initialization. Choose ρ ∈ (0,1] and an initial p.d.f /p.m.f p0 defined on Y . Let k = 0.
1. Quantile calculation. Calculate the 1−ρ quantile γk,

γk = sup
l
{l : Pk(H(y) ≥ l) ≥ ρ}.

If γk < γk−1 and k > 1, let γk = γk−1. Let k = k +1 and go to step 2.
2. Updating the probabilistic model.

pk(y) = Dd(H(y)I{H(y)≥γk−1},Ept [HI{H≥γk−1}], pk−1(y)).

3. Stop if some stop criterion is satisfied; otherwise go to step 1.

The MEO algorithm requires the specification of a parameter ρ , which is the proportion of samples
that will be used to update the probabilistic model; ρ also defines a sequence of 1− ρ quantiles
{γk,k = 1,2, · · ·}. These quantiles are used to obtain a sequence of nondecreasing thresholds that are
used to select samples for model updating. In MEO, the form of the density pk is not specified and
it might be hard to generate candidate solutions from a general density pk. The choice pk is crucial
to the MEO algorithm. Assume that we have a group of candidate solutions {yi

t}
N
i=1 generated from

pt ; then the probability density function pt can be approximated as

p̂t(y) =
N

∑
i=1

wi
tδ (y− yi

t),
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where δ denotes the Dirac function, and {wi
t}

N
i=1 are weights satisfying ∑N

i=1 wi
t = 1. If we use this

approximation p̂t as our probabilistic model, we can rewrite (6) as

N

∑
i=1

∂wi
t

∂ t
δ (y− yi

t) = D
(

H(y),
N

∑
i=1

wi
tH(yi

t),
N

∑
i=1

wi
tδ (y− yi

t)
)

,

which is equivalent to

∂wi
t

∂ t
= D

(

H(yi
t),

N

∑
i=1

wi
tH(yi

t),w
i
t

)

. (7)

The discrete time version of (7) is

wi
k+1 = Dd

(

H(yi
k),

N

∑
i=1

wi
kH(yi

k),w
i
k

)

.

In particular, for replicator dynamics, we have

wi
k+1 =

H(yi
k)

∑N
i=1 wi

kH(yi
k)

wi
k.

Although we have an updated density approximation p̂k+1 = ∑N
i=1 wi

k+1δ (y− yi
k), it cannot be

used to generate new candidate solutions directly. Hence we construct a new continuous density to
approximate p̂k+1, which is done by projecting p̂k+1 onto some parameterized family of distributions
gθ . Specifically, we try to minimize the Kullback-Leibler (KL) distance between the parameterized
distribution gθ and p̂k+1:

θk+1 = argmin
θ∈Θ

DKL
(

p̂k+1‖gθ
)

, (8)

where Θ is the domain of θ , and the KL distance is defined as

DKL
(

p̂k+1,gθ
)

=
∫

y∈Y

ln
p̂k+1

gθ
p̂k+1dy =

∫

y∈Y

ln p̂k+1 p̂k+1dy−
∫

y∈Y

lngθ p̂k+1dy.

Since the first term does not depend on the parameter θ , the minimization problem (8) is equivalent
to

max
θ∈Θ

∫

y∈Y

lngθ p̂k+1dy,

which can be rewritten as

max
θ∈Θ

N

∑
i=1

wi
k+1 lngθ (yi

k).

Based on the above analysis, a Monte Carlo simulation version of the MEO algorithm is given as follows.

Simulated Model-based Evolutionary Optimization Algorithm

0. Initialization. Let N be the total number of candidate solutions generated at each iteration.
Choose ρ ∈ (0,1] and an initial p.d.f /p.m.f p0 defined on Y . Let k = 0.

1. Quantile Calculation. Generate N candidate solutions {yi
k}

N
i=1 from pk. Calculate the 1−ρ

quantile γk of {yi
k}

N
i=1. If γk < γk−1 and k > 1, let γk = γk−1. Let k = k +1 and go to step 2.
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2. Updating the probabilistic model. The discrete approximation of the model is p̂k(y) =

∑N
i=1 wi

kδ (y− yi
k), where

wi
k = Dd

(

H(yi
k−1)I{H(yi

k−1)≥γk−1}
,

N

∑
i=1

1
N

H(yi
k−1)I{H(yi

k−1)≥γk−1}
,1/N

)

.

3. Density projection. Construct gθ by projecting the density p̂k = ∑N
i=1 wi

kδ (y− yi
k−1) onto gθ ,

where

θ = argmax
θ∈Θ

N

∑
i=1

wi
k lngθ (yi

k−1),

4. Stop if some stop criterion is satisfied; otherwise go to step 1.

Generally it is not easy to solve the optimization problem (8), which depends on the choice of
gθ . However for gθ in the exponential family, analytical solutions exist.

Remark 1. If replicator dynamics is used in step 2 in the Simulated Model-based Evolutionary
Optimization Algorithm above, then in step 2, we have

wi
k =

1
N H(yi

k−1)I{H(yi
k−1)≥γk−1}

∑N
i=1

1
N H(yi

k−1)I{H(yi
k−1)≥γk−1}

.

In step 3, we have

θ = argmax
θ∈Θ

1
N H(yi

k−1)I{H(yi
k−1)≥γk−1}

∑N
i=1

1
N H(yi

k−1)I{H(yi
k−1)≥γk−1}

lngθ (yi
k−1).

Now the MEO algorithm becomes the same as the extended CE algorithm in Boer et al. (2005). In
CE, the parameterized density function is chosen at the beginning and then the parameter is adaptively
updated by an adaptively updated group of elite solutions. In MEO, the probabilistic model is estimated
by some weighted Dirac functions and the evolution of the estimated density function is governed by
replicator dynamics. Projecting the estimated density function onto a parameterized family of density
functions is the final step in MEO. The Dirac function only gives a coarse approximation of the density
function. One direction to improve MEO is to explore effective approximations of the density function
based on generated samples.

5 POPULATION MODEL-BASED EVOLUTIONARY OPTIMIZATION

In the MEO algorithms given in Section 4, the density approximation p̂k is inherently multimodal for
global optimization problems with many local maxima. The projection of p̂k onto a family of single
mode density functions gθ , for example, the exponential family, cannot fully capture this multimodal
property. Motivated by the work of Hu et al. (2010), which generates candidate solutions from a
group of models with the emphasis on optimization of budget allocation, we consider generating
candidate solutions from a mixture distribution and focus on studying the evolving behavior of these
models in the mixture distribution. We format the global optimization problem as an evolutionary
game along the same lines as in Section 4.

5.1 Population Model and Evolutionary Game

Let Γ = {gθ1 , · · · ,gθM} be a set of M parameterized probability density/mass functions on Y . We
assume that {gθi , i = 1, · · · ,M} belong to some common parameterized distribution family{gθ ,θ ∈Θ},
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where Θ is the parameter space. We propose to generate N samples from the following distribution:

g(y) =
M

∑
i=1

wigθi(y), (9)

where wi ≥ 0 and ∑M
i=1 wi = 1, which is equivalent to generate ⌈wiN⌉ samples from gθi for i = 1, · · · ,M

respectively. From an evolutionary game theory point of view, the action of playing the pure strategy
i can be viewed as generating samples from gθi; wi is the percentage of the number of the agents
that plays i at each iteration. Assume that the payoff of playing the pure strategy i is Ii. Once we
formulate the global optimization problem as an evolutionary game, we can use evolutionary game
theory to study the evolution of the probability density function g(y) = ∑M

i=1 wigθi(y). The evolution
of {wi, i = 1, · · · ,M} is governed by the replicator dynamics

dwi

dt
= wi(Ii −

M

∑
j=1

w jI j). (10)

It is easy to see from (10) that if Ii, the performance of an agent playing the strategy i, is greater
than the average performance ∑M

j=1 w jI j, more agents will play the strategy i. From the viewpoint
of optimization, we will sample more points from the more promising model. The evolution of the
weights wi can be viewed as an evolution of the balance between exploration and exploitation when
searching for optimal solutions. The discrete time version of (10) is

wk+1
i = wk

i
Ii

∑M
j=1 w jI j

.

5.2 Updating of the Population of Probability Density Functions

From evolutionary game theory, we know how the percentage of agents taking different pure strategies
evolves. We also want to update the probability density functions {gθi, i = 1, · · · ,M}. There are many
different ways to do this (Zhang and Mühlenbein 2004, Boer et al. 2005). Here we will adopt the
one in Hu, Fu, and Marcus (2007). Given the threshold value γ , we define the exact performance
function for probability density function gθi as

Ii(γ) = Eθi[H(y)I{H(y)≥γ}], ∀ i = 1, · · · ,M.

Consider the following reference distributions at step k +1

hk+1
i (y) = (1−λ )

H(y)I{H(y)≥γ}gθ k
i
(y)

Ii(γ)
+λgθ k

i
(y), ∀ i = 1, · · · ,M,

where λ ∈ (0,1) is a smoothing parameter.
However, it is not easy to sample from hk+1

i ; therefore we adopt the following updating procedure:
projecting hk+1

i onto some parameterized distribution family gθ . Specifically, we will try to minimize
the Kullback-Leibler (KL) distance between the parameterized distribution gθ and hk+1

i . Then we
have

θ k+1
i = argmin

θ∈Θ
DKL

(

hk+1
i ‖gθ

)

, ∀ i = 1, · · · ,M. (11)

The KL distance is defined as

DKL
(

hk+1
i ‖gθ

)

=
∫

y∈Y

ln
hk+1

i

gθ
hk+1

i dy.
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5.2.1 Projection of Density Function

The exponential family contains a broad class of distributions, such as the Gaussian and binomial. We
can obtain closed form solutions for θ k+1

i when updating the distributions in the previous step by using
the exponential family. For continuous optimization problems, it is convenient to use multivariate
Gaussian distributions with independent components. At iteration k, assume that the parameterized
distribution has the following form:

gθ k
i
(y) =

n

∏
d=1

1
√

2π(σ k
i,d)

2
exp

(

−
(yd −µk

i,d)
2

2(σ k
i,d)

2

)

,

where n is the problem dimension and yd is the dth element of y.
Note that our algorithm is a simulation-based optimization algorithm, and we use stochastic

counterparts to estimate expectations for random variables. Assume that we generate Nk
i = ⌈wk

i N⌉

samples {yk
i j, j = 1, · · · ,Nk

i } from gθ k
i

for all i = 1, · · · ,M−1, and N −∑M−1
i=1 Nk

i samples from gθ k
M

,

and calculate the performances H(yk
i j). Then Ii(γ) can be estimated by

Î
k

i (γ) =
1

∑
Nk

i
j=1 I{H(yk

i j)≥γ}

Nk
i

∑
j=1

H(yk
i j)I{H(yk

i j)≥γ}. (12)

Define the “elite” sets L k
i = {yk

i j : H(yk
i j)≥ γ}. Use Îi to approximate Ii and solve the optimization

problem (11). We obtain

µk+1
i,d = (1−λ )

∑y∈L k
i

H(y)yd

∑y∈L k
i
(H(y))

+λ µk
i,d (13)

(σ k+1
i,d )2 = (1−λ )

∑y∈L k
i

H(y)(yd −µk+1
i,d )2

∑y∈L k
i
(H(y))

+λ
(

(σ k
i,d)

2 +(µk+1
i,d −µk

i,d)
2)

for all d = 1, · · · ,n and i = 1, · · · ,M.

5.3 PMEO Algorithm

Based on the above analysis, we give the following Population Model-based Evolutionary Optimization
(PMEO) algorithm.

Population Model-based Evolutionary Optimization Algorithm

0. Initialization: Let N be the number of total samples at each iteration. Specify the weights
{w0

i , i = 1, · · · ,M} and the probability density function {gθ 0
i
, i = 1, · · · ,M}. Let ρ0 be the

quantile parameter. Set k = 0 and γ = −∞.
1. Generate Nk

i = ⌈wk
i N⌉ samples {yk

i j, j = 1, · · · ,Nk
i } from gθ k

i
for all i = 1, · · · ,M−1, and N−

∑M−1
i=1 Nk

i samples from gθ k
M

; calculate the performances H(yk
i j). Order the performances from

largest to smallest, H(1) ≥ ·· · ≥ H(N). Let γk be the (1−ρ) sample quantile of performances:
γk = H(⌈(1−ρ)N⌉). If γk > γ , let γ = γk. Generate the “elite” sets L k

i = {yk
i j : H(yk

i j) ≥ γk} for

all i = 1, · · · ,M. Calculate Î k
i by (12).

2. Let

wk+1
i = wk

i
Î k

i

∑M
j=1 w jÎ

k
j

.
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And update the parameter θ k+1
i according to (13) for i = 1, · · · ,M.

3. If a stopping rule is met, then stop; otherwise set k = k +1 and go to step 1.

Note that we consider maximization problems in the above algorithm, which can be easily adjusted
for solving minimization problems.

6 NUMERICAL EXAMPLES

We use some benchmark examples to demonstrate the effectiveness of the PMEO algorithm. We
consider minimizing the following objective functions.

E1. Dejong’s 5th function(n = 2).

H1(y) =
[

0.002+
25

∑
j=1

1

j +∑2
i=1(yi −a j,i)6

]

where
a j,1 = {−32,−16,0,16,32,−32,−16,0,16,32,−32,−16,0,16,32,−32,−16,0,
16,32,−32,−16,0,16,32};
a j,1 = {−32,−32,−32,−32,−32,−16,−16,−16,−16,−16,0,0,0,0,0,16,16,16,
16,16,32,32,32,32,32,}

E2. Rosenbrock function (n = 20).

H2(y) =
n−1

∑
i=1

100(yi+1 − y2
i )

2 +(yi −1)2,

E3. Powell singular function (n = 20).

H3(y) =
n−2

∑
i=1

[

(yi−1 +10yi)
2 +5(yi+1 − yi+2)

2 +(yi −2yi+1)
4 +10(yi−1 − yi+2)

4]

E4. Griewank function (n = 20).

H4(y) = 1+
n

∑
i=1

8sin2(7(yi −0.9)2)+6sin2(14(yi −0.9)2)+(yi −0.9)2.

In this experiment, for the exponential family, we use multivariate normal distributions with independent
components. For CE, each element of the initial mean vector is uniformly selected from [−50,50],
and the covariance matrix is a diagonal matrix with each diagonal element equal to 500. For PMEO,
the initial mean and covariance matrices are chosen the same way as in the CE method. For the
mixture distribution in PMEO, we set M = 5. At each step, we generate N = 200 samples. We run the
algorithm 100 independent times. Figure 1 to Figure 4 show the comparison between the CE method
and the PMEO method. We can see that PMEO has comparably better performance than CE given
the same computational effort.

7 CONCLUSION

We establish a connection between global optimization problems and evolutionary games by formulat-
ing the global optimization problem as an evolutionary game. Based on this connection, we propose a
model-based evolutionary optimization (MEO) algorithm, which includes the extended CE algorithm
as an instantiation. We also propose a population model-based evolutionary optimization algorithm,
which better captures the multimodal property of global optimization problems. Simulation results
show the effectiveness of the proposed method.
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