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ABSTRACT

We consider a stochastic simulation with correlated inputs represented by a multivariate normal distribution.
The objectives are to (i) account for parameter uncertainty (i.e., the uncertainty around the multivariate normal
distribution parameters estimated from finite historical input data) in the mean performance estimate and
the confidence interval of the simulation; and (ii) decompose the total variation of the simulation output
into distinct terms representing stochastic and parameter uncertainties. We describe how to achieve these
objectives using the Bayesian model of Biller and Gunes (2010) for capturing parameter uncertainty and the
Bayesian simulation replication algorithm of Zouaoui and Wilson (2003) for output variance decomposition.
We conclude with the extension of this study to arbitrary marginal distributions and dependence measures
with positive tail dependencies.

1 INTRODUCTION

The common practice in the design of stochastic simulations is to estimate the input distribution parameters
from historical data sets of finite length and drive the simulations with the random variates generated from the
estimated input distributions. This practice, however, ignores the uncertainty around the estimated parameters
(i.e., parameter uncertainty (Raftery et al. 1996)), and accounts only for stochastic uncertainty (i.e., the
uncertainty that arises from the dependence of the output on the simulation’s random input streams (Helton
1997)) in the output analysis. Consequently, the simulation analyst often obtains inaccurate estimates for mean
performance measures and low coverage for confidence intervals. For example, Hayes (1969) discusses the
shortcomings of ignoring demand parameter uncertainty in inventory planning; i.e., plugging the maximum
likelihood estimates of the demand parameters obtained from limited historical demand data into the formulas
of the order-up-to levels. Chick (2001) shows that accounting for parameter uncertainty in the simulation of
an M/M/1 queueing system improves the estimate of the average number in queue and the average percent
availability of the server. In another study, Zouaoui and Wilson (2004) demonstrate that the parameter
uncertainty accounts for 80% of the total uncertainty around the mean waiting time estimate of an M/G/1
queuing system; therefore, ignoring parameter uncertainty leads to erroneous point estimates and confidence
intervals of the mean waiting time. In a more recent paper, Biller and Gunes (2010) illustrate the importance
of accounting for parameter uncertainty in the simulation of a multi-product inventory system with correlated
demands.

There exists a well-established literature about representing parameter uncertainty in discrete-event stochas-
tic simulation outputs; see Cheng and Holland (1997), Barton and Schruben (2001), Chick (1999, 2001),
Zouaoui and Wilson (2003, 2004), Ng and Chick (2006), and Biller and Gunes (2010) for example studies.
Specifically, Chick (1999, 2001) is the first to use the Bayesian Model Averaging (BMA) approach (Cooke
1994) for capturing stochastic and parameter uncertainties. Chick’s formulation leads to the simulation repli-
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cation algorithm that allows the representation of parameter uncertainty by sampling input distributions and
their parameters from Bayesian posterior density functions before each simulation replication. The simulation
replication algorithm has been used recently by Biller and Gunes (2010) to account for stochastic uncertainty
and parameter uncertainty in the confidence intervals of simulations with correlated inputs. Specifically, Biller
and Gunes (2010) let the correlated inputs be represented by the flexible Normal-To-Anything (NORTA)
distribution (Cario and Nelson 1997) and use Sklar’s marginal-copula representation (Nelsen 1999) to develop
a Bayesian model for sampling NORTA parameters (i.e., the marginal-distribution parameters and the corre-
lation matrix) from their Bayesian posterior density functions. Biller and Gunes (2010) further use Cooke’s
copula-vine specification (Kurowicka and Cooke 2006) to construct the correlation matrix using a mix of
unconditional and conditional pairwise correlations instead of using only unconditional pairwise correlations.
This eliminates the need to use constraints for insuring the positive definiteness of the correlation matrix
to be sampled in a system with more than two correlated inputs. In this paper, we represent the correlated
inputs of our simulation with the multivariate normal distribution, which is a special case of the NORTA
distribution obtained by setting each marginal distribution of NORTA to the normal distribution. First, we
use the Bayesian model of Biller and Gunes (2010) to account for parameter uncertainty in the simulation
outputs. Then, we decompose the simulation output variance into variances due to stochastic and parameter
uncertainties. Since the simulation replication algorithm used by Chick (2001) and Biller and Gunes (2010)
does not allow us to obtain such a decomposition of the simulation output variance, we use the Bayesian
simulation replication algorithm (BSRA) introduced by Zouaoui and Wilson (2003) for this purpose.

The rest of the paper is organized as follows. In Section 2, we describe how to use the Bayesian model
developed by Biller and Gunes (2010) for representing parameter uncertainty in a stochastic simulation with
normally distributed, correlated inputs. In Section 3, we incorporate this Bayesian model into the Bayesian
simulation replication algorithm of Zouaoui and Wilson (2003). In Section 4, we describe how to decompose
the variance of the simulation output into terms related to stochastic uncertainty and parameter uncertainty. We
discuss the extension of this study to arbitrary marginal distributions in Section 5.1 and dependence structures
with positive tail dependencies in Section 5.2. We conclude with a summary of results in Section 6.

2 A BAYESIAN MODEL FOR REPRESENTING PARAMETER UNCERTAINTY

We consider a stochastic simulation with two correlated inputs in Section 2.1, and a simulation with three
correlated inputs in Section 2.2. We extend the number of simulation inputs to k > 3 in Section 2.3. In each
section, we assume that the k correlated inputs Xi, i = 1,2, . . . ,k have a k−dimensional normal distribution
with parameters µi, i = 1,2, . . . ,k; σ2

i , i = 1,2, . . . ,k; and Σk = [ρ(i, j); i, j = 1,2, . . . ,k]. Specifically, µi and
σ2

i denote the mean and the variance of the ith simulation input, while Σk is the k−dimensional correlation
matrix with ρ(i, j) denoting the product-moment correlation between random variables Xi and Xj.

2.1 Simulations with Two Correlated Inputs

The objective of this section is to sample the parameter µi and the parameter σi of the normally distributed
random variable Xi for i = 1,2 as well as the product-moment correlation ρ between X1 and X2. Following Biller
and Gunes (2010) and using Sklar’s theorem (Sklar 1959), we write the likelihood function L(x|µ1,σ1,µ2,σ2,ρ)

for the two-dimensional historical input data x = {xi,t ; i = 1,2, t = 1,2, . . . ,n} of length n as a multiplication
of the marginal normal density functions and a two-dimensional copula density function, where φ represents
the probability density function of a standard normal random variable:

L(x|µ1,σ1,µ2,σ2,ρ) =
2

∏
i=1

n

∏
t=1

1
σi

φ
(

xi,t −µi

σi

)

(1)

×
n

∏
t=1

1
√

1−ρ2
exp

{
−ρ2(

x1,t−µ1
σ1

)2−ρ2(
x2,t−µ2

σ2
)2 +2ρ(

x1,t−µ1
σ1

)(
x2,t−µ2

σ2
)

2(1−ρ2)

}

Next, we choose prior density functions for the distribution parameters µ1, σ1, µ2, σ2, and ρ . Following
Biller and Gunes (2010), we use the conjugate inverted Wishart prior density function with zero degrees of
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freedom for the correlation matrix Σ2 = [1 ρ;ρ 1]; i.e., π(Σ2) ∝ |Σ2|−3/2. This is a diffuse prior density
function coinciding with the beta prior density function of Barnard et al. (2000). We also choose conjugate
prior density functions π(µ1,τ1) and π(µ2,τ2) for the marginal-distribution parameters µi and 1/σ2

i ≡ τi for
i = 1,2; they are the normal-gamma density functions given by

π(µi,τi) =
(s0iτi)

1/2
√

2π
exp
{
−(µi−µ0i)

2s0iτi/2
} β α0i

0i

Γ(α0i)
τα0i−1

i exp{−β0iτi} ,

where µ0i, s0i, α0i, and β0i are the prior distribution parameters for i = 1,2 (Bernardo and Smith 1994).
The multiplication of the prior density functions π(µ1,τ1), π(µ2,τ2), and π(Σ2) with the likelihood

function L(x|µ1,σ1,µ2,σ2,ρ) leads to the following joint posterior density function

h(µ1,τ1|x)
︷ ︸︸ ︷

(sn1τ1)
1/2

√
2π

exp
{
−(µ1−µn1)

2sn1τ1/2
} β αn1

n1

Γ(αn1)
ταn1−1

1 exp{−βn1τ1}
×

h(µ2,τ2|x)
︷ ︸︸ ︷

(sn2τ2)
1/2

√
2π

exp
{
−(µ2−µn2)

2sn2τ2/2
} β αn2

n2

Γ(αn2)
ταn2−1

2 exp{−βn2τ2} (2)

×
h(Σ2|µ1,µ2,τ1,τ2,x)

︷ ︸︸ ︷

|Σ2|−(3+n)/2etr

(

−1
2

[
SΣ−1

2 −S
]
)

,

where

S =
n

∑
t=1

( x1,t−µ1
σ1

x2,t−µ2
σ2

)( x1,t−µ1
σ1

x2,t−µ2
σ2

)′

,

etr is the exponent of the trace operator, µni = (s0iµ0i)/(s0i +n)+(∑xi/(s0i +n)), sni = s0i +n, αni = α0i +n/2,
and βni = β0i +∑n

i=1(xi−∑xi/n)2/2+ s0in(µ0i−∑xi/n)/(s0i +n) for i = 1,2. What is important to recognize
in (2) is that Sklar’s marginal-copula representation allows us to write the joint posterior density function
as a product of the marginal posterior density functions and the posterior copula density function, which
are proportional to h(µ1,τ1|x), h(µ2,τ2|x), and h(Σ2|µ1,µ2,τ1,τ2,x) of (2), respectively. Therefore, we first
sample µi and τi from the normal-gamma posterior density function h(µi,τi|x) independently for i = 1,2.
Then, we sample the correlation matrix Σ2 from the inverted Wishart posterior copula density function
h(Σ2|µ1,µ2,τ1,τ2,x). The generation of the parameters µi and τi from the normal-gamma posterior density
function h(µi,τi|x) is easily accomplished by first generating the parameter τi from a gamma distribution
with parameters αni and βni and then generating the parameter µi from a normal distribution with mean µni

and variance 1/(sniτi). The sampling of the correlation matrix from the inverted Wishart posterior copula
density function h(Σ2|µ1,µ2,τ1,τ2,x) with parameters n and S starts with the generation of random variates
a, b, and c from a chi-square distribution with n degrees of freedom, a standard normal density function, and
a chi-square distribution with n−1 degrees of freedom, respectively. We then construct a two-dimensional
matrix T2 = [

√
a 0;b

√
c], determine the matrix W2 that satisfies W2W′

2 = S−1, and construct C2 = T′2W2.
We obtain a value for Σ2 as a result of computing C−1

2 (C−1
2 )′ (Section A.3 of Biller and Gunes (2010)).

2.2 Simulations with Three Correlated Inputs

As a result of extending the discussion in Section 2.1 to a three-dimensional setting, we obtain a model
that independently samples marginal-distribution parameters µi and τi from the normal-gamma posterior
density function h(µi,τi|x) for i = 1,2,3. Then, we sample the three-dimensional correlation matrix Σ3 =

[1 ρ(1,2) ρ(1,3);ρ(2,1) 1 ρ(2,3);ρ(3,1)
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ρ(3,2) 1] from its posterior density function denoted by h(Σ3|µ1,µ2,µ3,τ1,τ2,τ3,x). However, the derivation
of a joint posterior density function for Σ3 is complicated by the need to insure its positive definiteness. To
overcome this particular challenge associated with the positive definiteness of Σ3, Biller and Gunes (2010)
apply the copula-vine specification of Kurowicka and Cooke (2006) to the three-dimensional copula density
function. Specifically, a vine is a graphical model that is used to construct multivariate distributions using two
dimensional conditional and unconditional distributions (Kurowicka and Cooke 2006). Following Biller and
Gunes (2010), we use a C-vine for representing the normal copula density function of the random variables
X1, X2, and X3; we refer the reader to Kurowicka and Cooke (2006) for an illustration of different vines.

The application of the C-vine specification allows us to represent the dependence structure of the
underlying input process, which has been characterized by correlations ρ(1,2), ρ(1,3), and ρ(2,3) in
h(Σ3|µ1,µ2,µ3,τ1,τ2,τ3,x), in terms of (unconditional) correlations ρ(1,2) and ρ(1,3), and conditional cor-
relation ρ(2,3;1). More specifically, ρ(2,3;1) is the correlation between X2 and X3 conditional on X1; i.e.,
X2|X1 and X3|X1. Since we represent the joint distribution of the random variables X1, X2, and X3 by a normal
distribution, the conditional correlation ρ(2,3;1) is also the partial correlation defined as the correlation between
the orthogonal projections of X2 and X3 on the plane orthogonal to the space spanned by X1. Therefore, the
partial correlation ρ(2,3;1) is given by (ρ(1,2)−ρ(1,3)ρ(2,3))/

√

(1−ρ2(1,3))(1−ρ2(2,3)) (Kurowicka
and Cooke 2006).

The joint use of Sklar’s marginal-copula representation and Cooke’s copula-vine specification for the
characterization of our three-dimensional input process suggests that priors for the marginal-distribution pa-
rameters µi and τi, i = 1,2,3, and the two-dimensional correlation matrices Σ2(1,2) = [1 ρ(1,2);ρ(1,2) 1],
Σ2(1,3) = [1 ρ(1,3);ρ(1,3) 1], and Σ2(2,3;1) = [1 ρ(2,3;1);ρ(2,3;1) 1] can be chosen independently.
Specifically, the prior density functions π(µi,τi), i = 1,2,3 are normal-gamma conjugate priors. Assuming the
probabilistic independence of the correlation matrices Σ2(1,2), Σ2(1,3), and Σ2(2,3;1), we choose their prior
density functions as proportional to the inverted Wishart density functions; i.e, π(Σ2(1,2)) ∝ |Σ2(1,2)|−3/2,
π(Σ2(1,3)) ∝ |Σ2(1,3)|−3/2, and π(Σ2(2,3;1)) ∝ |Σ2(2,3;1)|−3/2. The multiplication of these prior den-
sity functions with the likelihood function of the available input data results in a joint posterior density
function which can be written as a multiplication of the marginal normal-gamma posterior density functions
h(µi,τi|x), i = 1,2,3, and the conditional and unconditional inverted Wishart posterior copula density functions
h(Σ2(1,2)|µ1,µ2,τ1,τ2,x), h(Σ2(1,3)|µ1,µ3,τ1,τ3,x), and h(Σ2(2,3;1)|µi,τi, i = 1,2,3,Σ2(1,2),Σ2(1,3),x).
Consequently, we sample the marginal-distribution parameters µi and τi from h(µi,τi|x), i = 1,2,3 as dis-
cussed in Section 2.1, and the two-dimensional correlation matrices Σ2(1,2), Σ2(1,3), and Σ2(2,3;1) from
h(Σ2(1,2)|µ1,µ2,τ1,τ2,x), h(Σ2(1,3)|µ1,µ3,τ1,τ3,x), and h(Σ2(2,3;1)|µi,τi, i = 1,2,3,Σ2(1,2),Σ2(1,3),x),
respectively. More specifically, we first sample Σ2(1,2) and Σ2(1,3) independently from their inverted Wishart
posterior density functions with parameters n and S(1, i), i=2,3 where

S(1, i) =
n

∑
t=1

( x1,t−µ1
σ1

xi,t−µi
σi

)( x1,t−µ1
σ1

xi,t−µi
σi

)′

.

Then, we use the sampled values of ρ(1,2) and ρ(1,3) (i.e., ρ̃(1,2) and ρ̃(1,3)) to sample Σ2(2,3;1). More
specifically, we sample Σ2(2,3;1) from an inverted Wishart density function with parameters n and S(2,3;1),
where

S(2,3;1) =
n

∑
t=1







x2,t−µ2
σ2

−µ2|1
σ2|1

x3,t−µ3
σ3

−µ3|1
σ3|1













x2,t−µ2
σ2

−µ2|1
σ2|1

x3,t−µ3
σ3

−µ3|1
σ3|1







′

and µi|1 = ρ̃(1, i)(x1,t −µ1)/σ1, σ2
i|1 = 1− ρ̃2(1, i) for i = 2,3.
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2.3 Simulations with k > 3 Correlated Inputs

In the case of a stochastic simulation with k > 3 correlated inputs, we select a normal-gamma prior density
function for the marginal-distribution parameters of each component, extend the copula-vine specification
used for the three-dimensional input process to the k−dimensional input process as described in Kurowicka
and Cooke (2006), and assume inverted Wishart priors for all two-dimensional unconditional and conditional
correlation matrices associated with the C-vine. Specifically, the C-vine for the k−dimensional input process
is composed of (k− 1) different trees. The first tree contains correlations ρ(1, i), i = 2,3, . . . ,k, while the
second tree is composed of partial correlations ρ(2, i;1), i = 3,4, . . . ,k. Finally, the (k− 1)th tree includes
the partial correlation ρ(k−1,k;1,2, . . . ,k−2). This allows us to write the joint posterior density function
as the product of the k normal-gamma marginal posterior density functions and k(k−1)/2 two-dimensional
unconditional and conditional inverted Wishart posterior copula density functions. Therefore, we first sample
the marginal-distribution parameters of each component from its normal-gamma posterior density functions
as described in Section 2.1. Then, we sample each of the (unconditional and conditional) two-dimensional
correlation matrices from the inverted Wishart posterior density functions as described in Section 2.2. A
detailed sampling algorithm for a five-dimensional NORTA distribution can be found in Biller and Gunes
(2010).

3 BAYESIAN SIMULATION REPLICATION ALGORITHM

Zouaoui and Wilson (2003) use the Bayesian simulation replication algorithm (BSRA) for representing the
stochastic uncertainty and the parameter uncertainty in the confidence intervals of the stochastic simulations
with independent inputs. The structure of the Bayesian model in Section 2 allows us to use the BSRA in a
similar manner to represent the stochastic and parameter uncertainties in the confidence intervals of stochastic
simulations with correlated inputs. Letting Y be a figure of merit whose mean is relevant to the decision
making process, we incorporate the Bayesian model of Section 2 into the Bayesian simulation replication
algorithm with the purpose of obtaining a point estimate and a confidence interval of the mean posterior
response EY |x(Y |x).

We provide the Bayesian simulation replication algorithm for our k−dimensional input process in Figure
1. We use Ψi, i = 1,2, . . . ,k to represent the vectors of the marginal distribution parameters; i.e., Ψi ≡ (µi,τi),
and Ψmi

i to denote the marginal-distribution parameters sampled in the mth
i replication. Similarly, Λ represents

all (conditional and unconditional) two-dimensional correlation matrices of the C-vine specification; i.e., Λ
is composed of Σ2(1, i), i = 2,3, . . . ,k, and Σ2( j−1, i;1,2, . . . , j−2), i = j, j +1, . . . ,k, j = 3,4, . . . ,k. Λd , on
the other hand, denotes all (conditional and unconditional) correlation matrices sampled in the dth replication.
Furthermore, we use notation x = {xi,t ; i = 1,2, . . . ,k, t = 1,2, . . . ,n} for the k−dimensional historical input data
of length n, and ym1,m2,...,mk,d,r for the output response from the rth simulation run using the random-number
input ur and the sampled input parameters Ψmi

i , i = 1,2, . . . ,k, and Λd .
The first (i.e., the most outer) loop estimates the uncertainty around the parameters µ1 and τ1 of the

marginal distribution of the first component, while the second loop estimates the uncertainty around the
parameters µ2 and τ2 of the marginal distribution of the second component. Similarly, the kth loop estimates
the uncertainty around the parameters µk and σk of the marginal distribution of the kth component. The
(k + 1)th loop, on the other hand, estimates the uncertainty around the dependence parameters, while the
(k + 2)th (i.e., the most inner) loop estimates the stochastic uncertainty. Due to the use of the copula-vine
specification to represent the uncertainty around the dependence parameter Λ, it is possible to decompose this
uncertainty into parts associated with individual correlations and partial correlations. However, for ease of
presentation, we represent the uncertainty around Λ in a single loop in Figure 1.

The analysis of the next section assumes the independence of the simulation output data ym1,m2,...,mk,d,r,

mi = 1,2, . . . ,Mi, i = 1,2, . . . ,k, d = 1,2, . . . ,D, and r = 1,2, . . . ,R; therefore, we need to check whether output
data satisfies this assumption. If we conclude dependency, then a number of methods including the batching
method can be used to analyze the dependent output data (Law 2007). We refer the reader to Biller and Gunes
(2010) for a detailed discussion on the independent sampling of the NORTA parameters and the analysis of
the possibly dependent simulation output data for the proper execution of the simulation replication algorithm.
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for m1 = 1,2, . . . ,M1 replications do

generate the mth
1 sample parameter vector Ψm1

1 from h(Ψ1|x1);

set the parameter vector Ψ1←Ψm1
1 ;

for m2 = 1,2, . . . ,M2 replications do

generate the mth
2 sample parameter vector Ψm2

2 from h(Ψ2|x2);

set the parameter vector Ψ2←Ψm2
2 ;

...
...

...

for mk = 1,2, . . . ,Mk replications do

generate the mth
k sample parameter vector Ψmk

k from h(Ψk|xk);

set the parameter vector Ψk←Ψmk
k ;

for d = 1,2, . . . ,D replications do

generate the dth sample dependence vector Λd from h(Λ|Ψi, i = 1,2, . . . ,k,x);

set the dependence vector Λ← Λd ;

for r = 1, . . . ,R do

set the random number input u← ur;

perform the rth simulation run using u, Ψi, i = 1,2, . . . ,k, and Λ;

calculate the output response ym1,m2,...,mk,d,r = y(u,Ψ1,Ψ2, . . . ,Ψk,Λ);

end for

compute ym1,m2,...,mk,d = 1
R ∑R

r=1 ym1,m2,...,mk,d,r;

end for

compute ym1,m2,...,mk = 1
D ∑D

d=1 ym1,m2,...,mk,d ;

end for

...
...

...

compute ym1,m2 = 1
M3

∑M3
m3=1 ym1,m2,m3 ;

end for

compute ym1 = 1
M2

∑M2
m2=1 ym1,m2 ;

end for

compute ȳ = 1
M1

∑M1
m1=1 ym1 , which is an unbiased estimate of EY |x(Y | x)

Figure 1: Bayesian simulation replication algorithm for the k−dimensional input process.

4 OUTPUT VARIANCE DECOMPOSITION

In this section, we use the output data obtained from the execution of the BSRA, and estimate both a
point estimate for the mean posterior response EY |x(Y |x) and a posterior response variance as a function of
stochastic uncertainty (λ 2), dependence-parameter uncertainty (θ 2

Λ), and marginal-distribution uncertainty for
each simulation input (θ 2

Ψi
, i = 1,2, . . . ,k). Following Zouaoui and Wilson (2003), we express the output

response from the rth simulation run as follows:

ym1,m2,...,mk,d,r = y
(

ur,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

= η
(

Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

+ er

(

ur,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

(3)
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The error er(ur,Ψm1
1 ,Ψm2

2 ,. . .,Ψmk
k , Λd) is the deviation of the simulation output ym1,m2,...,mk,d,r from the response-

surface η(Ψm1
1 ,Ψm2

2 ,. . .,Ψmk
k , Λd) due to the stochastic uncertainty whose source is the random-number input

ur for that run. Under the assumptions of

Eur

[

er

(

ur,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

| x,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

]

= 0 (4)

and

Varur

[

er

(

ur,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

| x,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

]

= λ 2, (5)

it holds that

Eur

[

ym1,m2,...,mk,d,r | x,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

]

= η
(

Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

and

Varur

[

ym1,m2,...,mk,d,r | x,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

]

= λ 2

for mi = 1,2, . . . ,Mi, i = 1,2, . . . ,k, d = 1,2, . . . ,D, and r = 1, . . . ,R, where λ 2 represents the stochastic
uncertainty. This response surface model is known as the classical random effects model in the statistics
literature (Rao 1997). Although its use allows us to estimate stochastic uncertainty λ 2, one shortcoming of
this response-surface representation is that it assumes constant error variance; i.e., λ 2 does not depend on
the parameters of the multivariate input distribution. The relaxation of this assumption is the subject of our
ongoing research.

Next, we assume that

η
(

Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

= ω
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k

)
+ϖd

(

Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

(6)

for mi = 1,2, . . . ,Mi, i = 1,2, . . . ,k, and d = 1,2, . . . ,D, where ϖd
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)

is the deviation of
η
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)

from the response surface ω
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k

)
due to the uncertainty associated

with the underlying dependence structure captured in Λd . Under the assumptions of

EΛd

[

ϖd

(

Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

| x,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k

]

= 0 (7)

and

VarΛd

[

ϖd

(

Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

| x,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k

]

= θ 2
Λ, (8)

it holds that

EΛd

[

η
(

Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

| x,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k

]

= ω
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k

)

and

VarΛd

[

η
(

Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ,Λd

)

| x,Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k

]

= θ 2
Λ

for mi = 1,2, . . . ,Mi, i = 1,2, . . . ,k, and d = 1,2, . . . ,D, where θ 2
Λ represents the uncertainty in the dependence

structure of the multivariate input process.
Finally, we express the output variability due to the uncertainty associated with the marginal distribution

of the ith simulation input using

ϕ i (Ψm1
1 ,Ψm2

2 , . . . ,Ψmi
i

)
= ϕ i−1 (Ψm1

1 ,Ψm2
2 , . . . ,Ψmi−1

i−1

)
+κ i

mi

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmi

i

)
(9)
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for mi = 1,2, . . . ,Mi. Specifically, κ i
mi

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmi

i

)
is the deviation of ϕ i

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmi

i

)
from the

response surface ϕ i−1
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmi−1

i−1

)
due to the uncertainty in the ith marginal distribution parameters.

Under the assumptions of

EΨi

[
κ i

mi

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmi

i

)
| x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmi−1

i−1

]
= 0 (10)

and

VarΨi

[
κ i

mi

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmi

i

)
| x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmi−1

i−1

]
= θ 2

Ψi
, (11)

where β = EΨ1

[
ϕ1 (Ψ1) |x

]
is an unbiased estimator of the mean posterior response EY |x (Y | x), it holds that

EΨi

[
ϕ i (Ψm1

1 ,Ψm2
2 , . . . ,Ψmi

i

)
| x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmi−1

i−1

]
= ϕ i−1 (Ψm1

1 ,Ψm2
2 , . . . ,Ψmi−1

i−1

)

and

VarΨi

[
ϕ i (Ψm1

1 ,Ψm2
2 , . . . ,Ψmi

i

)
| x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmi−1

i−1

]
= θ 2

Ψi
,

where σ2
Ψi

stands for the uncertainty associated with the marginal distribution parameters of the ith input.
Based on the assumptions (3)-(11), the posterior response variance can be written as Var(y|x) = λ 2 +θ 2

Λ +

∑k
i=1 θ 2

Ψi
; i.e., the sum of the three variance components that quantify, respectively, the stochastic uncertainty,

the uncertainty in the parameters of the dependence structure, and the uncertainty in the marginal distribution
parameters.

Using the simulation output data obtained from the BSRA of Figure 1 and the well-established theory on
the classical random-effects model (Rao 1997), we estimate β , λ 2, θ 2

Λ, and θ 2
Ψi

, i = 1,2, . . . ,k as follows:

β̂ = ȳ

λ̂ 2 =
1

∏k
ℓ=1 MℓD(R−1)

M1

∑
m1=1

M2

∑
m2=1

. . .
Mk

∑
mk=1

D

∑
d=1

R

∑
r=1

(
ym1,m2,...,mk,d,r− ym1,m2,...,mk,d

)2

θ̂ 2
Λ =

1
D−1

D

∑
d=1

(
ym1,m2,...,mk,d− ym1,m2,...,mk

)2− λ̂ 2

R

θ̂ 2
Ψk

=
1

Mk

Mk

∑
mk=1

(
ym1,m2,...,mk − ym1,m2,...,mk−1

)2− θ̂ 2
Λ

D
− λ̂ 2

DR

θ̂ 2
Ψi

=
1

Mi−1

Mi

∑
mi=1

(
ym1,m2,...,mi− ym1,m2,...,mi−1

)2

−
k

∑
ℓ=i+1

θ̂ 2
Ψℓ

∏k
s=i+1 Ms

− θ̂ 2
Λ

∏k
s=i+1 MsD

− λ̂ 2

∏k
s=i+1 MsDR

, i = k−1,k−2, . . . ,1

Following Zouaoui and Wilson (2003), we construct the 100(1−ϕ)% confidence interval for β as [y(⌈M1ϕ/2⌉),
y(⌈M1(1−ϕ/2)⌉)], where the quantities y(1) ≤ y(2) ≤ ·· · ≤ y(M1) denote the order statistics of the output data
{ym1 ;m1 = 1,2, . . . ,M1} defined in Figure 1.

5 EXTENSIONS

In Section 5.1, we describe how the Bayesian model of Section 2 can be generalized to work for arbitrary
marginal distributions, while we discuss the generalization of the model to dependence structures with positive
tail dependencies in Section 5.2.

1174



Biller and Gunes

5.1 Arbitrary Marginals

In this paper, we represent the correlated inputs with a multivariate normal distribution. Despite being widely
used, multivariate normal distribution is restrictive as it forces the simulation analyst to assume a normal
density function for each simulation input. Although we can choose different means and variances for each
marginal normal density function, the normal distribution sets the coefficient of skewness to zero and the
coefficient of kurtosis to three; thus, it cannot represent inputs with asymmetric probability density functions.
However, we can easily extend the presentation in this paper to arbitrary marginal distributions by representing
the simulation inputs with the NORTA distribution introduced by Cario and Nelson (1997) for random-vector
modeling. The idea is to transform a standard normal base random vector Z = (Z1,Z2, . . . ,Zk)

′ into the input
random vector X = (X1,X2, . . . ,Xk)

′ with the transformation Xi = F−1
i [Φ(Zi);Ψi] for i = 1,2, . . . ,k. In this

characterization, Fi is the marginal cumulative distribution function of input i with parameter vector Ψi and Φ
is the cumulative distribution function of the standard normal random variable. The resulting random vector
X = (X1,X2, . . . ,Xk)

′ is said to have a NORTA distribution. This approach works for any marginal distribution;
i.e., we may choose Fi from any continuous and discrete distribution functions reviewed in Johnson et al.
(1994, 2004) and Johnson et al. (2005).

A highly flexible distribution that can be used for modeling the components of the NORTA distribution is
the Johnson translation system (Johnson 1949). Recently, Biller and Gunes (2010a) have developed a Bayesian
model for estimating the parameters of Johnson’s SB and SL distributions. Specifically, they derive Jeffreys’
noninformative prior density function for each of the SB and SL distributions, and obtain the posterior density
functions of the distribution parameters as a multiplication of the prior density functions and the likelihood
functions. The resulting posterior density functions do not belong to well-known distribution functions;
therefore, Biller and Gunes (2010a) resort to Markov Chain Monte Carlo techniques for sampling Johnson
parameters from their posterior density functions. These sampling algorithms can be employed in the first k
steps of the Bayesian simulation replication algorithm of Figure 1 to sample the Johnson parameters from
their marginal posterior density functions.

5.2 Dependence Structures with Positive Tail Dependencies

The widely used product-moment correlation ρ(i, j) between random variables Xi and Xj is a measure of linear
dependence. Another measure of dependence that has been of interest in recent years is tail dependence; i.e.,
the dependence in the tails of the joint distributions (Joe 1997). However, many multivariate input models,
including the multivariate normal distribution and the NORTA distribution, cannot represent dependence
structures with positive tail dependencies because of using a normal copula as the dependence function. A
solution for the problem of capturing dependence structures with positive tail dependencies is to replace
the (unconditional and conditional) two-dimensional normal copulas of the C-vine specification with two-
dimensional copulas with the ability to represent any pair of lower-tail and upper-tail dependencies. We refer
the reader to Joe (1997) and Nelsen (1999) for the class of two-dimensional Archimedean copulas that can be
used for this purpose. The development of a Bayesian model that samples dependence parameters from such
copulas is the subject of ongoing work. The resulting sampling algorithm can be used in the (k + 1)th step
of the BSRA of Figure 1 to sample the tail dependence parameters from their posterior density functions.

6 CONCLUSION

In this paper, we consider a stochastic simulation with correlated inputs that are represented by a multivariate
normal distribution. We use the Bayesian model of Biller and Gunes (2010) for capturing the uncertainty
around the parameters of the multivariate normal distribution (i.e., parameter uncertainty) in this simulation.
We then incorporate the Bayesian model into the Bayesian simulation replication algorithm of Zouaoui and
Wilson (2003) and decompose the variance of the simulation output into distinct terms representing stochastic
uncertainty and parameter uncertainty.

We perform this study under the constant error variance assumption. Ng and Chick (2006) propose a
different framework for decomposing the variance of the simulation output into terms related to stochastic
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uncertainty and parameter uncertainty. Their approach is an extension of the frequentist approach of Cheng
and Holland (1997) to the Bayesian world; it is based on the asymptotic normality of the confidence intervals
of the simulation output. Although their framework assumes that the variance due to stochastic uncertainty
does not depend on the system parameters, authors note that the extension of the analysis to the case where
the stochastic uncertainty is dependent on the system parameters can be achieved by using the maximum a
posteriori estimator of the variance. We are currently investigating how to use the framework of Ng and Chick
(2006) for reducing demand parameter uncertainty in multi-product inventory simulations with correlated
demands.
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