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ABSTRACT

The traditional approach in ranking and selection procedures is to compare simulated systems based on the mean
performance of a metric of interest. The system with the largest (or smallest) mean performance is deemed as the
best system. However, the system with the best mean performance may be an undesirable choice because of its large
variance. Variance is a measure of risk. A highly variable system performance shows that the system is not under
control. Both mean and variance of a performance metric need to be compared to determine the best system. We
present a statistically valid selection procedure for comparing simulated systems based on a mean-variance dominance
relationship. The system with the best mean and smallest variance is deemed as the best system. If there is not a
unique best system, the procedure identifies a set of nondominant systems. In both cases, a prespecified probability of
correct selection is guaranteed.

1 INTRODUCTION

Computer simulation is often used to estimate the performance of complex stochastic systems. In practical applications
decision makers are often interested in choosing the best system from a set of alternative systems. For example,
automated guided vehicle systems are compared based on their throughput. When simulations are expensive to run,
determining the number of simulation replications needed for each alternative to make a statistically valid selection
decision becomes a challenge. Sequential ranking and selection (R&S) procedures are statistical procedures developed
to simulate each alternative system until a valid statistical selection decision can be made.

In the simulation literature the interest has often been on selecting the best system based on the mean performance
of a metric of interest. The system with the largest (or smallest) mean is deemed as the best system. Refer to
Kim and Nelson (2006) for a comprehensive review of the R&S procedures in simulation. However, mean is only
a measure of the average behavior, and the system with the best mean may have the largest variance. A common
misconception is to confuse estimation error with risk (Henderson and Nelson 2006). The confidence interval of a
mean performance metric is only a measure of the estimation error. It is not related to the risk associated with the
system’s performance. As the simulation run length or the number of simulation replications increases, the estimation
error decreases; however, the risk associated with the system’s performance remains the same. A system with large
risk is unpredictable and hard to control. One way of measuring risk is through the variance. Hence, a selection
criterion more comprehensive than the mean measure is the mean-variance dominance selection criterion. In the
mean-variance dominance criterion, systems are compared based on both mean and variance measures. Refer to
Batur and Choobineh (2009) for a discussion of different selection criteria in ranking and selection.

In the mean-variance based comparison approach, the system with the best (largest or smallest) mean and the
smallest variance is deemed as the best system. Suppose EA(X) and EB(X) are the mean values and VarA(X) and
VarB(X) are the variance values of the performance metric of interest for Systems A and B, respectively. System A has
mean-variance dominance over System B if EA(X) ≥ (or ≤)EB(X) and VarA(X) ≤ VarB(X) in the case of larger (or
smaller) is better and at least one inequality holds strictly. If there is not a unique best system, a set of nondominant
systems exists. Here we develop a sequential R&S procedure where comparison of the simulated systems is based on
the mean-variance dominance relationship.

Studies in the mean-variance based comparison in the ranking and selection literature is limited. The authors in
Santner and Tamhane (1984) propose to specify two integers a and b satisfying 1 ≤ a,b ≤ p, where p is the number
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of alternative systems. A system with a mean value among the a largest ones and variance among the b smallest ones
is defined as a good system. The objective is to select the system with the largest mean from the set of good systems
if the set is nonempty.

In the proposed mean-variance dominance R&S procedure, the mean and variance comparison tests are performed
simultaneously, and sampling is sequential. When a system is detected to be inferior to another system based on both
mean and variance measures, that system is eliminated. However, if one system is detected to be better based on the
mean but worse based on the variance to another system, then the two systems are declared nondominant.

Although there are many single-objective R&S procedures in the literature for mere mean-based or variance-based
comparison, they cannot be simply combined to rank systems based on the mean-variance dominance relationship. In
those single-objective procedures if two systems have close performance, one is randomly selected as the best one.
However, in the mean-variance dominance approach if two systems have close performance (are in the indifference
zone) based on the mean (or variance) measure, they are declared indifferent based on that measure, and the selection
decision is made based on the variance (or mean) measure.

The proposed mean-variance R&S procedure compares K systems. The procedure recommends a set of systems
which may include one or more systems. If the number of systems in the resulting set is one, then that system is
declared the best system based on the mean and variance measures with a prespecified probability of correct selection
(PCS). However, if there are more than one system in the set, then those systems are declared nondominant based on
both measures, again with a prespecified PCS.

In the proposed procedure it is assumed that the simulation output from each system are independent and identically
distributed (IID) and normal. This assumption does not hold in general; however, approximately IID normal data can
be obtained through appropriately batched output data or sample averages of independent replications.

In Section 2 the mean-variance based selection (MVS) procedure is presented followed by experiments in Section 3
and conclusion in Section 4.

2 METHODOLOGY

The problem is to compare K systems through simulation. The focus is on the comparison of the simulated systems
based on both the mean and variance of the performance metric of interest. Let the unknown mean and variance
values of the performance metric of the K systems be µ1,µ2, . . . ,µK and σ2

1 ,σ2
2 , . . . ,σ2

K , respectively. Without loss of
generality it is assumed that a larger mean performance value is better. Under the mean-variance dominance criterion
if two systems have the same variance values but different mean values, then the system with the larger mean is better
than the other. Similarly if two systems have the same mean values but different variance values, then the system with
the smaller variance is better than the other. Two systems are nondominant if they have the same mean and variance
values or one system has a larger mean while the other has a smaller variance. Finally, a system that has larger mean
but smaller variance than all the other systems is the best system.

Let Xiℓ, i = 1,2, . . . ,K, ℓ = 1,2, . . . be the ℓth observation from the simulation of system i. We assume that the
simulation output data of each system are IID normal with mean µi and variance σ2

i , for i = 1,2, . . . ,K,

{Xiℓ : ℓ = 1,2, . . .}
IID
∼ Normal(µi,σ2

i ).

Also, it is assumed that systems are simulated independently.
Since it is not possible to establish dominance with complete certainty with a finite number of simulated observations,

indifference-zone parameters are introduced for both the mean and variance measures. The mean indifference-zone
parameter is denoted by δ ; it is the smallest practical difference worth detecting between the mean measures of two
systems. The mean indifference-zone parameter used here has a slightly different functionality than the indifference-zone
parameter used in mean-based R&S procedures in the literature. In a mean-based R&S procedure the decision maker
wants to decide if the mean measure of one system is larger than that of another system, i.e., µ1 > µ2 or µ1 < µ2. If
the mean values are within the indifference-zone range, i.e., |µ1 −µ2|< δ , then selection of either system is considered
a correct selection. However, in the mean-variance dominance approach presented here, the decision maker wants to
decide if

µ1 > µ2, µ1 = µ2, or µ1 < µ2.

This way if two systems are indifferent based on the mean measure, the dominant system is determined based on the
variance measure.

By utilizing the indifference-zone parameter if 0 < µ1 − µ2 < δ , then both µ1 > µ2 and µ1 = µ2 decisions are
considered correct. Similarly, if −δ < µ1 −µ2 < 0, then µ1 = µ2 and µ1 < µ2 decisions are considered correct. On the
other hand, if µ1 −µ2 ≥ δ , then µ1 > µ2 is the only correct decision. Similarly, if µ1 −µ2 ≤−δ , then µ1 < µ2 is the
only correct decision.
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The indifference-zone parameter for the ratio of variances is denoted by R2 where R > 1. It is the smallest practical
ratio worth detecting in the ratio of the variances of two systems. The decision maker wants to decide if

σ2
1 /σ2

2 > 1, σ2
1 /σ2

2 = 1, or σ2
2 /σ2

1 > 1.

If 1 < σ2
1 /σ2

2 < R2, then both σ2
1 /σ2

2 > 1 and σ2
1 /σ2

2 = 1 decisions are considered correct. However, if 1 < σ2
2 /σ2

1 < R2,
then σ2

2 /σ2
1 > 1 and σ2

1 /σ2
2 = 1 decisions are considered correct. If σ2

1 /σ2
2 ≥ R2, then σ2

1 /σ2
2 > 1 is the only correct

decision. The same holds for the σ2
2 /σ2

1 ratio.
In the proposed selection procedure, comparison of simulated systems based on the mean and variance measures

are performed simultaneously. For each pairwise comparison based on the mean measure, a three-way hypothesis test
is performed. The null hypothesis is the equivalence of the mean measures, i.e., Hµ

0 : µ1 − µ2 = 0. The alternative
hypotheses are one mean measure being strictly greater than the other mean measure, i.e., Hµ

1 : µ1 − µ2 > 0 and
Hµ

2 : µ1 −µ2 < 0. A similar three-way hypothesis test is performed for the ratio of the variances, i.e., Hσ
0 : σ2

1 /σ2
2 = 1,

Hσ
1 : σ2

1 /σ2
2 > 1, and Hσ

2 : σ2
2 /σ2

1 > 1.
Rejection of the null hypothesis when it is true is called a type I error. The three-way hypothesis test is developed

such that the probability of committing a type I error is at least α , and α is distributed between the two alternatives, i.e.,
Pr(Accepting H1|H0 is true) ≤ α/2 and Pr(Accepting H2|H0 is true) ≤ α/2. Nonrejection of the null hypothesis when
it is false is called a type II error. The three-way hypothesis test is developed such that the probability of committing
a type II error is at least β , i.e., Pr(Do not reject H0|H0 is false) ≤ β .

In general, in hypothesis testing the user has control over the type I error; however, the type II error is uncontrollable.
The user can decrease both errors by increasing the number of observations, but it is not possible to control the probability
of committing a type II error unless a specific alternative hypothesis exists. Here in order to be able to control the
probability of committing a type II error, the alternative mean hypotheses are transformed into Hµ

1 : µ1 −µ2 ≥ δ and
Hµ

2 : µ1 − µ2 ≤ −δ , where δ is the mean indifference-zone parameter. According to the transformed three-way test,
if the difference between the mean measures is larger than the indifference-zone value δ , the test detects the true
difference selecting the correct alternative hypothesis with a probability of at least 1−β . For example, if µ1 −µ2 ≥ δ ,
then the decision is Hµ

1 : µ1 −µ2 > 0 with a probability of at least 1−β . However, if the difference between the mean
measures is in the range of 0 to δ , the test detects the true difference selecting the correct alternative hypothesis or
fails to reject the null hypothesis with a total probability of at least 1−α . For example, if 0 < µ1 −µ2 < δ , then the
decision will be Hµ

0 : µ1 = µ2 or Hµ
1 : µ1 −µ2 > 0 with a total probability of at least 1−α .

Similarly the alternative variance hypotheses are transformed into Hσ
1 : σ2

1 /σ2
2 ≥ R2 and Hσ

2 : σ2
2 /σ2

1 ≥ R2 where
R2 > 1 is the variance indifference-zone parameter. Similar to the mean measure if the ratio of the variances is larger than
R2, the test detects the correct alternative hypothesis with a probability of at least 1−β . For example if σ2

1 /σ2
2 ≥ R2,

then the decision is Hσ
1 : σ2

1 /σ2
2 > 1 with a probability of at least 1−β . However, if the ratio of the variances is

in the range of 1 to R2, then the test detects the true ratio selecting the true alternative hypothesis or fails to reject
the null hypothesis with a total probability of at least 1−α . For example, if 1 < σ2

1 /σ2
2 < R2, then the decision is

Hσ
0 : σ2

1 /σ2
2 = 1 or Hσ

1 : σ2
1 /σ2

2 > 1 with a total probability of at least 1−α .
Paulson (1964) presents sequential procedures for testing the three-way mean and variance tests presented above.

These tests are shown to satisfy the prespecified probability of committing type I and II errors, i.e.,

Pr(Do not reject Hµ
0 | |µ1 −µ2| ≥ δ ) ≤ β ,

Pr(Accept Hµ
1 | µ1 −µ2 = 0) ≤ α/2,

Pr(Accept Hµ
2 | µ1 −µ2 = 0) ≤ α/2.

In the comparison of K systems for each measure, K(K−1)/2 pairwise comparisons are performed. The probability
of committing type I or II errors for each pairwise comparison and measure is set to α/[K(K −1)] in the procedure.
This assures that the overall probability of selecting the correct set of nondominant systems is at least 1−α .

The proposed mean-variance based selection (MVS) procedure is presented in Figure 1. In the Setup step, the
parameters of the procedure are specified: i) the probability 1−α of correctly selecting the set of nondominant systems
and ii) the indifference-zone parameter δ for the mean and R2 for the variance. Set I is the set of nondominated
systems; it initially includes all K systems. Set N is the set of pairs of nondominant systems; it is initially an empty
set. The probability of committing type I or II error αK for each test is set to α/[K(K −1)]. The constant parameter
d for the mean test and the constant parameter λ for the variance test are determined based on δ and R, respectively.
Finally, the initial sample size n0 is determined from αK and λ .

In the Initialization step, n0 observations are generated from every system i ∈ I, and the number of replications r is
set to n0. In the Calculation step, the following statistics are calculated. The sample mean and variances are calculated
for every system i ∈ I. The sample variance of the differences are calculated for every pair of systems i, j ∈ I, i 6= j. The
ai j(r) and bi j(r) statistics are calculated for the mean hypothesis tests, and the ui j(r) and νi j(r) statistics are calculated
for the variance hypothesis tests. In the Decision step, decisions of the hypothesis tests for each pair of systems are
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Procedure MVS

Setup: Set the probability of selecting the correct set of nondominant systems to 1−α . Specify the mean
indifference-zone parameter δ and the variance indifference-zone parameter R2. Define I as the set
of initial K systems. Define N as the set of pairs of nondominant systems, and set N = /0. Set the
probability of committing type I or II errors for each three-way hypothesis test to αK = α/[K(K−1)].
Set parameter d for the mean test to 3δ/8 and parameter λ for the variance test to 1+(0.7)(R−1).
Set the initial sample size n0 to ⌊1− ln(αK)/ln(λ )⌋+1.

Initialization: Generate n0 observations from each system i ∈ I. Set the number of replications r to n0.

Calculation: For every i ∈ I calculate the sample means X̄i(r) = (1/r)∑r
ℓ=1 Xiℓ and the sample variances

S2
i (r) = (1/(r−1))∑r

ℓ=1(Xiℓ − X̄i(r))2. For every i, j ∈ I, i 6= j, calculate the sample variance of the
differences

S2
i j(r) =

1
r−1

r

∑
ℓ=1

[Xiℓ −Xjℓ − (X̄i(r)− X̄ j(r))]
2.

For the comparison of the means of system pairs i, j ∈ I, i 6= j, calculate

ai j(r) = rd +
S2

i j(r)
[

(2/αK)
2

r−1 −1
]

(r−1)

4d
and bi j(r) = r(δ −d)−

S2
i j(r)

[

(1/αK)
2

r−1 −1
]

(r−1)

4d
.

For the comparison of the variances of system pairs i, j ∈ I, i 6= j, calculate

ui j(r) =
λ

(

S2
i (r)/S2

j(r)
)(

λ −α
1

r−1
K

)

(

λα
1

r−1
K −1

)

and νi j(r) =

[

S2
i (r)/S2

j(r)
][

λ − (2/αK)
1

r−1

]

λ
[

λ (2/αK)
1

r−1 −1
] .

Decision: For every i, j ∈ I, i 6= j:
If −bi j(r) < ∑r

ℓ=1(Xiℓ −Xjℓ) < bi j(r), decide µi = µ j.
If ∑r

ℓ=1(Xiℓ −Xjℓ) > ai j(r), decide µi > µ j.
If ∑r

ℓ=1(Xiℓ −Xjℓ) < −ai j(r), decide µi < µ j.
If ui j(r) < R2 and u ji(r) < R2, decide σ2

i = σ2
j .

If r > ⌊1− ln(αK/2)/ln(λ )⌋ and νi j(r) > 1, decide σ2
i > σ2

j .
If r > ⌊1− ln(αK/2)/ln(λ )⌋ and ν ji(r) > 1, decide σ2

i < σ2
j .

Elimination: For every i, j ∈ I, i 6= j:
If i) σ2

i > σ2
j and µi = µ j, ii) σ2

i = σ2
j and µi < µ j, or iii) σ2

i > σ2
j and µi < µ j decisions are made,

eliminate system i and set I = I/{i}.
If i) σ2

i < σ2
j and µi = µ j, ii) σ2

i = σ2
j and µi > µ j, or iii) σ2

i < σ2
j and µi > µ j decisions are made,

eliminate system j and set I = I/{ j}.
If i) σ2

i = σ2
j and µi = µ j, ii) σ2

i > σ2
j and µi > µ j, or iii) σ2

i < σ2
j and µi < µ j decisions are made,

declare systems i and j nondominant and set N = N ∪{(i, j)}.

Termination: If |I| = 1, then stop and declare system i ∈ I as the best system. If set N includes every
(i, j) pair where i, j ∈ I, i 6= j, then stop and declare I as the set of nondominant systems.

Otherwise take one more observation from every system i ∈ I, set r = r + 1, and go back to the
Calculation step.

Figure 1: Algorithmic statement for mean-variance based selection.

made using these statistics and the indifference-zone parameters. For a pair of systems, if none of the conditions are
satisfied, it means that the hypothesis test is inconclusive at stage r and more observations are needed.

In the Elimination step, according to the results of the hypothesis tests for the mean and variance, elimination and
nondominance decisions are made. If a system is detected to be worse than another system in I based on both the
mean and variance measures, then that system is eliminated and deleted from I. On the other hand, if two systems are
detected to be nondominant, then that pair is added to the set of nondominant pairs N. In the Termination step, there
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are two stopping rules. The first rule is to stop if set I includes only one system. In this case the system in set I is
declared as the best system with probability 1−α based on both the mean and variance measures. The second rule is
to stop if all pairs of the systems in set I is included in set N. This means that for every pair of systems that have not
been eliminated, a nondominance decision is made. In this case, set I is declared the set of nondominant systems with
probability 1−α based on both the mean and variance measures.

3 EXPERIMENTS

We tested the performance of the MVS procedure on a testbed of systems with different mean and variance configurations.
The testbed consists of five configurations. The performance metric of interest from each system is assumed to be
normally distributed. Also it is assumed that a larger mean is preferred.

The experiment configurations are presented in Table 1. The correct set of nondominant systems for each configuration
is also shown in the table. In Configuration 1, the first system’s mean and variance are both 1. The means and variances
of the other systems are 1−δ and R2, respectively. In this configuration System 1 is the best system because it has
the largest mean and smallest variance. These mean and variance configurations are called slippage configurations
because the differences in the mean values between the best system and the other systems are all equal to the mean
indifference-zone parameter δ . Similarly, the ratios of the variances of the inferior systems to the best system are all
equal to the variance indifference-zone parameter R2.

Table 1: Configurations of the systems tested (δ > 0 and R > 1).

Sys. 1 Sys. 2 · · · Sys. i · · · Sys. K Correct N set
Configuration 1 Mean 1 1−δ · · · 1−δ · · · 1−δ {1}

Variance 1 R2 · · · R2 · · · R2

Configuration 2 Mean 1 1−δ · · · 1−δ · · · 1−δ {1}
Variance 1 1 · · · 1 · · · 1

Configuration 3 Mean 1 1 · · · 1 · · · 1 {1}
Variance 1 R2 · · · R2 · · · R2

Configuration 4 Mean 1 1−δ · · · 1− (i−1)δ · · · 1− (K −1)δ {All systems}
Variance R2(K−1) R2(K−2) · · · R2(K−i) · · · 1

Configuration 5 Mean 1 1−δ · · · 1− (i−1)δ · · · 1− (K −1)δ {1}
Variance 1 R2 · · · R2(i−1) · · · R2(K−1)

In Configuration 2, the mean measures have the slippage configuration and the variances are all ones. In this
configuration system 1 is the best because systems are equivalent based on the variance but system 1 is better based
on the mean. In Configuration 3, the variance measures have the slippage configuration and the means are all ones. In
this configuration system 1 is the best because systems are equivalent based on the mean but system 1 is better based
on the variance.

In Configuration 4, both mean and variance values decrease as the number of systems K increases. Hence, if a
system has larger mean, it also has a larger variance. So all systems are nondominant. In Configuration 5, the mean
values decrease but the variance values increase as K increases. Hence, system 1 is the best system with the largest
mean and smallest variance.

In the experiments the nominal PCS is set to 1−α = 0.95. The mean indifference-zone value is set to δ = 0.1,
and the variance indifference-zone value is set to R2 = (1.1)2. We replicate each experiment 1000 times. The following
statistics are reported: the estimated PCS and the sample average of total number of observations (SATO) that is required
to select the set of nondominant systems. The SATO value provides a measure of the computational efficiency of the
procedure.

In Table 2 the results of the experiments are presented when K = 2. As seen in the experiments all PCS values
are above the prespecified level 1−α = 0.95. The results of the experiments when K = 5 are presented in Table 3.
When we compare the SATO values in Tables 2 and 3, we observe that Configuration 4 requires significantly more
observations when K = 5 compared to K = 2 case. This is due to the fact this configuration includes systems which are
nondominant such that the mean and variance measures of the neighboring systems only differ by the indifference-zone
amount. Hence, as the number of these nondominant systems increases, it becomes more and more difficult for the
procedure to make a decision. On the other hand, we observe that increasing the number of systems in Configuration
5 has a smaller increasing effect in SATO because the new systems with smaller means and larger variances are easier
to eliminate by the best system.

In order to show the performance of the MVS procedure when systems have mean or variance values within
the indifference zone, additional system configurations shown in Table 4 are tested. In Configuration 6 the mean
performance measures are within the indifference zone. So the MVS procedure is expected to make µ1 < µ2 or µ1 = µ2

decisions. Both decisions are considered correct because the mean of system 2 is larger than the mean of system 1;
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Table 2: Results of the experiments when K = 2,δ = 0.1, and R = 1.1.

SATO PCS
Configuration 1 4,135 1.00
Configuration 2 3,877 0.97
Configuration 3 5,055 0.98
Configuration 4 4,127 0.97
Configuration 5 4,243 1.00

Table 3: Results of the experiments when K = 5,δ = 0.1, and R = 1.1.

SATO PCS
Configuration 1 17,226 1.00
Configuration 2 16,068 0.99
Configuration 3 20,464 0.99
Configuration 4 34,569 0.98
Configuration 5 9,484 1.00

however, the difference is so small that the equality decision is also considered correct. When these two decisions are
combined with the fact that the variance of system 2 is larger than the variance of system 1, the selection of system 1
as the best system or the selection of both systems as nondominant are considered correct.

Table 4: Configurations of the systems within the indifference zone (δ > 0 and R > 1).

Sys. 1 Sys. 2 Correct N set
Configuration 6 Mean 1 1+δ/2 {1} or {1, 2}

Variance 1 R2

Configuration 7 Mean 1 1+δ {2} or {1, 2}
Variance 1 R2

s where 1 < Rs < R

In Configuration 7 the variance values are within the indifference zone. So both σ1 < σ2 and σ1 = σ2 decisions
are considered correct. When these two decisions are combined with the fact that the mean of system 2 is larger than
the mean of system 1, the selection of system 2 as the best system or the selection of both systems as nondominant
are considered correct.

The results of the experiments for these configurations are presented in Table 5. The Rs value is set to 1.05 < R.
As seen in the results for both configurations the PCS value is larger than the prespecified PCS of 0.95.

4 CONCLUSION AND FUTURE WORK

The traditional approach in ranking and selection procedures in simulation is to compare systems based on a mean
performance metric of interest. However, mean is only a measure of the average behavior of the system. A system with
the best mean can have a very large variance. Variance is a measure of the risk associated with the system performance.
A system with high variance is generally undesirable. Hence, systems must be compared based on both the mean and
variance measures. In this paper we present a mean-variance dominance based ranking and selection procedure for
comparing K systems based on a performance metric of interest. In this procedure simulated systems are compared
based on both the mean and variance performance measures. The system with the largest (or smallest) mean and the
smallest variance is defined as the best system. If some systems are better in terms mean but worse in terms of the
variance, then the procedure selects a set of nondominant systems with a prespecified probability of correct selection.

As a future work we plan to extend this procedure to the comparison of systems based on multiple performance
metrics, e.g., comparing alternative distribution networks based on the delivery times and unit delivery costs. Also,
comparing systems in the existence of stochastic constraints involving mean or variance measures is a problem that
can be tackled by the selection technique presented in this paper.

1165



Batur and Choobineh

Table 5: Results of the experiments when K = 5.

SATO PCS
Configuration 6 6,430 0.99
Configuration 7 4,493 0.99
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