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ABSTRACT

Simple designs have many advantages compared with complex designs, such as requiring less computing and
memory resources, and easier to interpret and to implement. Therefore, they are usually more preferable than
complex designs in the real world if their performances are within a good enough range. In this paper, we
propose an algorithm OCBA-bSG to identify a best subset of m simplest and good enough designs among K
(K > m) total designs. The numerical results show that our approach allocates the simulation budget efficiently,
and outperforms some other approaches on the test problems.

1 INTRODUCTION

Simple designs are preferred compared to complex ones if they have similar performance. One ex-
ample is the design of node activation rules in the wireless sensor networks (WSNs), as described in
Kar, Krishnamurthy, and Jaggi (2006) and Jia (2009). Consider a solar powered WSN that monitors an area
of interest. Each node needs to collaborate with its neighbors in order to get enough power to do the monitoring.
The problem is to decide which node to active and when to activate such that we can get the highest probability
of correct detection. It is clear that a larger communication radius means a more complex node activation
rule and requires more power. Conversely, a smaller communication radius gives us a simpler node activation
rule and consumes less power. When both large and small communication radii provide close probabilities
of correct detection, we prefer the small radius (i.e., simple rule) to the large radius (i.e., complex rule).

In this paper, we use descriptive complexity to represent the degree of complexity of a design, where a
simpler design has a smaller descriptive complexity. Since sometimes we may need to select more than one
design in practice for robustness of the system, we consider the general problem of selecting the top m (m ≥ 1)
designs that are simplest (with smallest descriptive complexity) and good enough (satisfying a constraint on
the performance measure). If the number of such designs is greater than m, the we select the top m ones with
the best performance among such designs. The descriptive complexity of a design is a deterministic value,
and we know the value once we simulate that design. However, the performance of a design is subject to
system noise, and hence, it can only be estimated from simulation. Our goal is to allocate a given simulation
budget efficiently to the designs so as to maximize the probability of correctly selecting the best m simplest
good enough designs out of a total of K designs.

The above problem is closely related with many known results in the literature on ranking and selection
(R&S). Koenig and Law (1985) developed a two-stage procedure for selecting the top m designs with best per-
formance, following the results in Dudewicz and Dalal (1975). Chen et al. (2000) and Chen and Yücesan (2005)
developed the optimal computing budget allocation (OCBA) procedure for the selection of one best design,
and later Chen et al. (2008) extended that to find m best designs. Development of such a Bayesian approach
for selecting the m best designs has wide applications for the simulation-based global optimization methods
that require a subset of top designs in each iteration of the algorithms. There is also research focusing on
optimizing the primary performance measure subject to the feasibility of a secondary performance measure.
Andradóttir et al. (2005) proposed a two-phase approach which identifies all the feasible systems first and
then selects the best from them. Szechtman and Yücesan (2008) used large deviation theory to deal with
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feasibility determination. Most recently, Lee et al. (2009) developed OCBA further to select one single best
design under multiple constraints of secondary performance measures.

The problem of considering both complexity and performance evaluation has only been considered recently.
Jia (2009) proposed an Adaptive Sampling Algorithm (ASA) for selecting one simplest good enough design
with the goal to minimize the Type II error of the chosen design. ASA is not suitable for extension to select
multiple designs, because it screens the designs sequentially one by one until the goal is achieved. Therefore,
it still remains open how to select multiple best designs that are simplest and good enough. In this paper, we
address this problem by developing a method called OCBA-bSG, abbreviated for optimal computing budget
allocation for m best simplest good enough designs. Numerical results show that OCBA-bSG achieves a
higher probability of correct selection in much less iterations than the Equal Allocation scheme and Levin
Search method.

2 PROBLEM STATEMENT

Let θ denote a design, and Θ denote the finite set of all the designs. The performance of the design θ is
measured by

J(θ) = E[L(θ ,ζ )],

where ζ is a random vector that represents the uncertainty in the system, and L(θ ,ζ ) can only be obtained
through simulation of the complex system. The underlying assumption is that such simulation is expensive.
A design is considered better if its performance measure J(θ) is smaller. A good enough design is one that
satisfies J(θ) < J0, where J0 is a given threshold on the performance. Hence, we define the feasible set (or
good enough set) as

F = {θ |J(θ) < J0,∀θ ∈ Θ}.

The complexity of the design θ is represented by the descriptive complexity C(θ), which is a deterministic
value in the set {0,1, . . . ,n}. The value of C(θ) in known once we simulate the design θ . Therefore, the
optimal set Smb of m simplest good enough designs is defined as

Smb = {θmb1 ,θmb2 , . . . ,θmbm ∈ F |C(θmbi) < C(θ) OR J(θmbi) < J(θ) if C(θmbi) = C(θ),∀θ ∈ F/Smb}.

The objective is to determine an efficient simulation budget allocation to maximize the probability of
correctly selecting the set Smb. The above definition of Smb implies that we start choosing the designs from
the good enough designs in the smallest complexity set until we reach a complexity set that there are more
good enough designs than we need, and then from this complexity set we select the deigns with smaller
performance until the number of selected designs reaches m. To proceed, we introduce the following notations
and assumptions.

P(CS): the probability of correct selection of Smb.
K: the total number of designs, where K = |Θ|.
T : the total simulation budget.
Ci: the set of designs with descriptive complexity i, i.e., C(θ) = i, ∀θ ∈Ci.
|Ci|: the total number of designs in Ci.
θi j: the jth design after ordering the designs in Ci from the smallest sample mean to the largest, j = 1,2, . . . , |Ci|.
J(θi j) or Ji j: the performance measure for design θi j. For simplicity of the notation, we write J(θi j) as Ji j in
the following.
σ2

i j: variance of design θi j. Since the true variance is unknown, we use the sample variance to estimate it.
Ni j: simulation budget for design θi j.
Xk

i j: the kth simulation replication for design θi j, k = 1, . . . ,Ni j. We assume that Xk
i j’s are independent inside

the design (i.e., with respect to k) and across the designs (i.e., with respect to i j).

J̄i j: sample mean of design θi j, J̄i j = (1/Ni j)
Ni j

∑
k=1

Xk
i j.

J̃i j: posterior distribution of Ji j. Using noninformative prior distribution for Ji j and assuming that the Ji j has
a conjugate normal prior distribution, the posterior distribution of Ji j is shown to be

J̃i j ∼ N(J̄i j,
σi j

2

Ni j
).
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Now we propose a procedure to maximize P(CS) with a fixed simulation budget. First, we group the
designs according to the descriptive complexity C(θ). Second, we order the designs according to their
current sample means of performance measure J(θ) within the set Ci, and denote the ordered designs as θi j,
i = 0,1, . . . ,n, j = 1,2, . . . , |Ci|. Suppose that all the designs in the sets C0, C1, . . ., Ct−1 are infeasible and the
first feasible design appears in the set Ct . If the set Ct has m feasible designs, then the optimal set Smb is in
Ct . If there are less than m feasible designs in Ct , then we continue searching the sets Ct+1, Ct+2, . . ., until
we find m feasible designs.

Figure 1: Relationship between subsets and designs.

Figure 1 gives a pictorial view of the above procedure, and also shows that in general there are four
sets we need to consider: optimal subset Smbi , feasible non-simplest subset Sai , infeasible simplest subset Sdi
and infeasible non-simplest subset Sbi . As we have assumed that the first feasible design with the smallest
descriptive complexity appears in the set Ct , all the designs in the sets C0,C1, . . . ,Ct−1 belong to the infeasible
simplest subsets Sdi . The optimal subsets are Smb0 ,Smb1 , . . . ,Smbp , which satisfy

Smb =
p

⋃

i=0

Smbi , m =
p

∑
i=0

|Smbi |.

The sets from Ct to Ct+p−1 do not contain feasible non-simplest sets Sai , since all the feasible designs in
these sets should be included in the optimal sets. However, the set Ct+p may contain both the optimal subset
Smbp and the feasible non-simplest set Sa0 , depending on the number of m. So far we have already selected m
optimal designs, so there is no need to consider the sets Ct+p+1,Ct+p+2, . . . ,Cn. But as the iteration continues,
we may need to reconsider them if we find that the number of optimal designs in the previous sets are less
than m.

After defining and analyzing the subsets, the problem of maximizing the probability of correct selection
can be formulated as follows.

max P(CS) = P{J̃i < J0 & J̃ j 6 J̃k < J0 & J̃s > J0,∀i ∈ ∪
p−1
l=0 Smbl

,∀ j ∈ Smbp
,∀k ∈ Sa0 ,∀s ∈ {∪

p
l=0Sbl

}∪{∪t−1
r=0Sdr

}}

s.t. N1 +N2 + . . .+NK = T, (1)

where Ni is the simulation budget for design θi.
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3 MAIN RESULTS

For the problem of selecting m best simplest good enough designs, it is time-consuming to estimate P(CS) directly
by Monte Carlo simulation. Thus, we simplify the maximization problem by finding a lower bound for P(CS), and
then calculate the answer analytically. This approximation is often referred to as Approximate Probability of Correct
Selection (APCS), such as in Chen et al. (2008).

P(CS) = P{J̃i < J0 & J̃ j 6 J̃k < J0 & J̃s > J0,∀i ∈ ∪
p−1
l=0 Smbl

,∀ j ∈ Smbp
,∀k ∈ Sa0 ,∀s ∈ {∪

p
l=0Sbl

}∪{∪t−1
r=0Sdr

}}

> P{J̃i < J0 & J̃ j 6 µ & µ 6 J̃k < J0 & J̃s > J0,∀i ∈ ∪
p−1
l=0 Smbl

,∀ j ∈ Smbp
,∀k ∈ Sa0 ,∀s ∈ {∪

p
l=0Sbl

}∪{∪t−1
r=0Sdr

}}

= ∏
i∈∪p−1

l=0 Smbl

P{J̃i < J0} ∏
i∈Smbp

P{J̃i 6 µ} ∏
i∈Sa0

P{µ 6 J̃i < J0} ∏
i∈{∪p

l=0Sbl
}∪{∪t−1

r=0Sdr }

P{J̃i > J0}

, APCS

The value of µ will be discussed in Corollary 1. Because of the independence property we assumed before, we
can write APCS into a product form. Hence, problem (1) is approximated by

max APCS = ∏
i∈∪p−1

l=0 Smbl

P{J̃i < J0} ∏
i∈Smbp

P{J̃i 6 µ} ∏
i∈Sa0

P{µ 6 J̃i < J0} ∏
i∈{∪p

l=0Sbl
}∪{∪t−1

r=0Sdr }

P{J̃i > J0}

s.t. N1 +N2 + . . .+NK = T.

The main results are stated in Corollary 1 and Theorem 2. Their detailed proofs are given in (Yan, Zhou, and Chen 2010).

Corollary 1. The µ value introduced in APCS is determined by

µ =
σ̂(t+p)mp+1

J̄(t+p)mp
+ σ̂(t+p)mp

J̄(t+p)mp+1

σ̂(t+p)mp
+ σ̂(t+p)mp+1

, where σ̂(t+p)i
=

σ(t+p)i
√

N(t+p)i

. (2)

Theorem 2. APCS is asymptotically (as T → ∞) maximized by the following allocation scheme.
Case 1: If the number of feasible designs in Ct is less than m and the number of feasible designs in Ct+p is more

than mbp, then we allocate Ni according to the following relationship.

Na

σ2
a /(J̄a − J0)2 =

Nb

σ2
b /(J̄b −µ)2

=
Nc

σ2
c /(J̄c − J0)2 =

Nx

σ2
x /(J̄x −µ)2 =

Ny

σ2
y /(J̄y − J0)2 , (3)

for all a ∈ ∪p−1
l=0 Smbl , b ∈ Smbt , c ∈ {∪p

l=0Sbl}∪{∪t−1
r=0Sdr}, x ∈ Sa0 and J̄x 6 µ+J0

2 , y ∈ Sa0 and J̄y > µ+J0
2 .

Case 2: If the number of feasible designs in Ct is less than m and the number of feasible designs in Ct+p is exactly
mbp, then we allocate Ni according to the following relationship.

Na

σ2
a /(J̄a − J0)2 =

Nc

σ2
c /(J̄c − J0)2 (4)

for all a ∈ ∪p
l=0Smbl and c ∈ {∪p

l=0Sbl}∪{∪t−1
r=0Sdr}.

Case 3: If there are less than m feasible designs in the given K designs, then we allocate Ni according to the
following relationship.

Na

σ2
a /(J̄a − J0)2 =

Nc

σ2
c /(J̄c − J0)2 , (5)

for all a ∈ ∪n−t
l=0Smbl and c ∈ {∪n−t

l=0Sbl}∪{∪t−1
r=0Sdr}.

Theorem 2 provides some very intuitive results. The simulation budget is proportional to the sample variance
for each design. If a design has a larger sample variance, more simulation budget will be allocated to it in order
to find a more accurate estimate of the performance mean. We also notice that at the two critical points µ and
J0: µ is the critical point for the optimality, J0 is the critical point for the feasibility. The designs closer to these
two points will be assigned more simulation budget among all the designs in C0, . . . ,Ct+p, the complexity sets under
consideration. For the subsets ∪p−1

l=0 Smbl and {∪p
l=0Sbl}∪ {∪t−1

r=0Sdr}, we are only interested in determining wether
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the designs are good enough, and indeed more simulation budget is assigned to the designs near J0. Similarly, for
the subset Smbp , we are only interested in comparing the performance of the designs, and more simulation budget is
assigned to the designs around µ . For the subset Sa0 where both µ and J0 are critical points, the last two terms in
(3) imply that we should divide the set into two parts by the midpoint µ+J0

2 : the designs with sample means in the

range µ 6 J̄x 6 µ+J0
2 will be compared with µ , and the ones nearer to µ will get more simulation budget; the de-

signs falling into the range µ > J̄y > µ+J0
2 will be compared with J0, and be assigned more simulation budget if closer to J0.

3.1 Allocation Procedure

Recall the following notations:
K: the total number of the designs.
m: the number of designs we want to choose.
T : the total simulation budget.
∆: the increased simulation budget each iteration.
n0: the initial simulation budget for every design.
J0: the good enough performance constraint.

OCBA-bSG Allocation Procedure

Input: K, m, T , ∆, n0, J0.
Initialize: r = 0.

• Perform n0 simulation replications for all designs and generate samples Xk
i , k = 1,2, . . . ,n0, i = 1,2, . . . ,K.

• Group the designs according to their descriptive complexities C(θ) to obtain the sets Ci, i = 0,1, ...,n.,
and order them according to their sample mean. Denote the jth design in the complexity set Ci as θi j, its
samples as Xk

i j, and its current simulation budget as Nr
i j = n0. Set Nr = Kn0.

Loop: while Nr < T , do

1. Update:

• Calculate sample mean J̄i j = 1
Nr

i j

Nr
i j

∑
k=1

Xk
i j, for i = 0, . . . ,n, j = 1, . . . , |Ci|.

• Calculate sample standard deviation

√

√

√

√

Nr
i j

∑
k=1

(Xk
i j−J̄i j)2

Nr
i j−1 for estimating σi j, i = 0, . . . ,n, j = 1, . . . , |Ci|.

• Calculate µ according to (2) if there exist J̄(t+p)mbp
and J̄(t+p)mbp+1

in the set C(t+p) (c.f. Figure 1).

• Increase the computing budget Nr+1 = min{Nr +∆,T}.

2. Allocate: calculate the new budget allocation Nr+1
i j , i = 0, . . . ,n, j = 1, . . . , |Ci| as follows.

• If the number of feasible designs in Ct is less than m and the number of feasible designs in Ct+p is
more than mbp, then we compute Nr+1

i j according to (3).

• If the number of feasible designs in Ct is less than m and the number of feasible designs in Ct+p is
exactly mbp, then we compute Nr+1

i j according to (4).

• If there are less than m feasible designs in the given K designs, then we compute Nr+1
i j according to

(5).

3. Simulate:

• If Nr+1
i j > 0.1T or Nr+1

i j < Nr
i j, we let Nr+1

i j = Nr
i j (that means not to do additional simulation in this

iteration). Subtract these Nr+1
i j from the current total budget and go back to step 2 to recalculate the

remaining Nr+1
i j .

• If Nr
i j 6 Nr+1

i j < 0.1T , perform additional (Nr+1
i j −Nr

i j) simulations for the jth design in the complexity

set Ci to generate more samples Xk
i j, k = Nr

i j +1,Nr
i j +2, . . . ,Nr+1

i j .

4. Update: r → r +1.

End of Loop

Since we obtain the simulation budget allocation formula under the asymptotic limit T → ∞, the scheme needs
some modifications when the total simulation budget T is not infinity. To avoid that one simulation budget Ni j is too
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large such that other designs are not assigned enough simulation budget, we put a constraint on Ni j: if Ni j > 0.1T , we
stop allocating new simulation budget to that design. The constraint 0.1T works well in our numerical experiments.
However, there is no formal guideline on how to choose that constraint. On the other hand, the simulation budget
cannot be taken back once the simulation is done, so if Nr+1

i j < Nr
i j, then we let Nr+1

i j = Nr
i j and do not do additional

simulations.

4 NUMERICAL EXPERIMENTS

In this section, we will demonstrate OCBA-bSG by some simple examples with comparison to two other methods -
Equal Allocation and Levin Search methods.

Equal Allocation (EA) scheme allocates the simulation budget equally among all the designs and do not use any
information of the mean, the variance or the descriptive complexity of the underlying designs. Levin Search (LS) method
(Levin 1973) allocates simulation budget to designs with smallest descriptive complexity first to obtain an estimate for
the performance with certain accuracy, and then continues to the next simplest design until it finds m simplest good
enough designs.

In the numerical experiments, we use P(CS) as the efficiency measurement to compare the three allocation methods:
Equal Allocation (EA), Levin Search (LS) and our method OCBA-bSG. For a given total simulation budget, the faster
the P(CS) converges, the better the corresponding method is. Here we estimate P(CS) by calculating the ratio of the
number of simulation runs that get correct selection to the total number of simulation runs. In addition, for convenience,
we assume that design θi has descriptive complexity ⌊1+ log2 i⌋, so the descriptive complexity is non-decreasing for i.

4.1 Example 1 (Mean increases as descriptive complexity increases)

There are 20 designs in total, each with the underlying distribution N(i,(0.5i)2), i = 1,2, ...,20. We want to find 5
simplest good enough designs with good enough constraint J0 = 7.3.

In this example, m = 5, K = 20, J0 = 7.3, initial simulation budget n0 = 20, simulation budget increment ∆ = 200,
total simulation budget T = 8000, and the total number of simulation runs is 50000. If we group the designs according
to their descriptive complexity, we get the design sets {θ1}, {θ2,θ3}, {θ4,θ5,θ6,θ7}, {θ8, . . . ,θ15} and {θ16, . . . ,θ20}
with descriptive complexity 1, 2, 3, 4 and 5 respectively. In example 1, the mean increases as the descriptive complexity
increases, and the variance increases as the mean increases. The correct selection is the set {θ1,θ2,θ3,θ4,θ5}. Figure 2
shows the simulation result. OCBA-bSG converges faster than EA and LS. LS searches from the simplest design sets
{θ1}, {θ2,θ3}, . . ., and in this example the correct selections are design set {θ1,θ2,θ3,θ4,θ5}, so LS converges in about
5 iterations.

Figure 2: Selecting 5 best simplest good enough designs from 20 designs with distribution N(i,(0.5i)2) and J0 = 7.3.
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4.2 Example 2 (Mean decreases as descriptive complexity increases)

There are 20 designs, each with the underlying distribution N((21− i),(0.5i)2), i = 1,2, ...,20. We want to find 5
simplest good enough designs with good enough constraint J0 = 7.3.

The parameter setting is the same as Example 1 except that the total number of simulation runs is 5000. If we group
the designs according to their descriptive complexity, we get the design sets {θ1}, {θ2,θ3}, {θ4,θ5,θ6,θ7}, {θ8, . . . ,θ15}
and {θ16, . . . ,θ20} with descriptive complexity 1, 2, 3, 4 and 5 respectively. In example 2, the descriptive complexity is
non-decreasing as the mean decreases, and the variance increases as the mean decreases. Hence, the correct selection
is the set {θ14,θ15,θ18,θ19,θ20}. Figure 3 shows the simulation result. Since in this example designs with smaller
means have larger variances and the correct selections {θ14,θ15,θ18,θ19,θ20} have relatively large variances compared
to other designs, OCBA-bSG converges slower than that of example 1 but still faster than EA and LS. Moreover, since
LS searches from the simplest sets {θ1}, {θ2,θ3}, . . ., it has the worst performance.

Figure 3: Select 5 best simplest good enough designs from 20 designs with distribution N((21− i),(0.5i)2) and J0 = 7.3.

5 CONCLUSION

Motivated by real-world applications, we consider the problem of selecting multiple designs that are both simple and
good enough. We provide an algorithm called OCBA-bSG to allocate the simulation budget for all the designs in
order to maximize the probability of correctly finding the optimal set of m simplest good enough designs out of a total
number of K designs. Numerical results show that OCBA-bSG converges fast in all situations considered here, which
indicates OCBA-bSG indeed allocates simulation budget efficiently.
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