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ABSTRACT 

Qualitative Discrete Event Simulation (QDES) is an event scheduling approach that uses the Qualitative 
Event Graphs (QEGs) and the Event Graphs (EGs) as a general framework to discrete event simulation 
modeling.  In QDES, the uncertainty in event execution times is represented in a closed time interval in 
�. When two or more event execution times overlap, it results in multiple event execution sequences or 
threads in the QDES output. In this paper, we introduce a methodology to estimate the probability of an 
event execution from QDES model. 

1 INTRODUCTION 

QDES extends the concept of qualitative simulation to be applied particularly in discrete event systems. It 
uses the next event time advance approach to advance the simulation clock to the occurrence of the next 
event. The concepts that are involved in developing the QDES model and algorithm are discussed in 
Leow-Sehwail and Ingalls (2005).  
 As a result of the interval time representation in QDES, the future event calendar is also represented 
in time intervals. Even though the future event calendar in QDES is sorted according to event times, it is 
not a strongly ordered list. Events are sorted according to interval mathematics outlined in Allen (1983). It 
is likely that there would be ties on the future event calendar because of the uncertain order of events. If 
there is a tie, QDES would not assume a tie breaking strategy. Instead, it creates threads that make up all 
of the possible ordering of ties. Thus, the future event calendar in QDES collects all the event notices 
whose execution order is uncertain and group them in a set, called the non-deterministically ordered set 
(NOS). Each of these event notices will be executed in turns and results in a set of threads that will in-
clude all of the possible ordering of event sequences. The capability of generating all possible scenarios is 
achieved with the thread generation algorithm. This distinctive characteristic of QDES of generating all 
possible ordering of event sequences is known as coverage (Ingalls, Morrice and Whinston 2000). The 
coverage property ensures that all outcomes of QDES are characterized and no outcome will be missed 
out.  
 In general, the number of threads can explode exponentially making output difficult to analyze. In-
galls and Morrice (2007) propose scoring methods to rank the threads according to the relative likelihood 
�����������	
����������������������������������	������
���������������	������������	�����������	�������
of an event execution for all events that are generated from the output of a QDES model. In relevance to 
���	����	�
�������������!"��������
#�$��	�����������	����	�����������	����������	���%�������������$�����
�	����	
�����	����	�������������	
�������	����ty. The threads can then be ranked according to their proba-
bility of occurrence and this will assist in the analysis of the QDES output by eliminating threads that are 
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of low probabilities. However, this paper addresses the process of obtaining the probability of sequential 
events QDES model which will not include the discussion of obtaining thread probabilities.  
 In the next section, we will present a QDES model of a simple queuing model to illustrate our metho-
dology of estimating the event execution probability and the thread probability. The simple queuing 
QDES model will be discussed in Section 2. The methodology for estimating the probability of all events 
executed in the simple queuing QDES model will be discussed in the following sections. Section 3 is fo-
����
���������	����	������������������&'*��%����������	��������*�������+�
��������������	����	�������������
event after the execution of the first NOS event. Section 5 describe the process of generating probability 
distribution for newly scheduled events. Section 6 discusses the calculation for the probability of subse-
quent NOS events. 

2 QDES MODEL OF A SIMPLE QUEUING MODEL 

We consider an example of a simple queuing model with four events, BEGIN, ENTER, START and 
LEAVE as shown in Figure 1. This model can be viewed as bank teller system where the system BEGINs 
at time [0,0], customers ENTER the bank and wait to be served by the bank teller. When the queue is 
empty, the next customer in line will START the service process. When the service is finished, the cus-
tomer LEAVEs the bank. BEGIN is the first event to be executed and it is used to initialize the state va-
riables. The variables in this model are the queue length (Q), status of the bank teller (S) and number of 
customers that have exited the system (E). The status of the server is busy if S=0. If S=1, then the bank 
teller is idle. Changes in the state variables occur when an event occurs. For example, when the START 
event occurs, the queue length is decremented by 1(Q=Q-1) and the status of the bank teller is changed to 
busy (S=0). 

 
Figure 1. Event Graph of a Simple Queuing Model

 The conditions on the edges of the event graph are based on the state of the system. The condition of 
S>0 is to check that the bank teller is available to service the next customer in line. If a customer arrives 
to the bank and the bank teller is not busy, the customer will be serviced immediately. The QDES model 
for this example is set to terminate after two customers exited. So, the terminating condition is reached 
when the number of exits equals two (E=2). A total of five threads are generated as shown in Figure 2.  

3 PROBABILITY OF THE FIRST NOS EVENT EXECUTION 

���������������#�$��$����
�����������������������	����	���������������&'*��%�������������������	�����������
assume that the event delay times are uniformly distributed and the event times can be sectioned into pre-
determined time intervals. Without loss of generality, we assume that the time intervals are sectioned to 
one-���������������%	����/����	����#��������	� that an event A in a QDES model is uniformly distributed 
over time interval [1,10]. The probability of event A executing in any one-unit time interval within [1,10], 
�����:;#�<#�:�#?<#@#:X#;�<������;������ a QDES model is executed, the next possible state is determined. If 
event A is the only next possible state to be executed, then the probability of event A executing in any 
one-unit time interval is still equal to 0.1. On the other hand, if there is more than one possible state, each 
of these states will be executed in turns and result in a set of threads that will include all of the event se-
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quences. In this case, the probability of event A executing in a one-unit time interval within [1,10] de-
pends on several factors. These factors includes the number of other next possible events that can be ex-
ecuted in the same particular time interval, scheduled execution time interval and the execution probabili-
ty of these events.  
 As soon as the simulation starts, the simulation clock is initialized to [0,0]. There are three events 
scheduled to execute at time [0,0] and they are BEGIN[0,0](node 1), ENTER[0,0](node 2) and 
START[0,0](node 3) and in this order. At the instant ENTER[0,0] is executed, it schedules another event 
ENTER to be executed [3,8] time units later. Now, START[0,0] is at the top of the future event calendar, 
so it is executed next. The instant START[0,0] is executed, it schedules an event LEAVE to be executed 
[4,6] time units later. At this time, there are two events in the future event calendar, which are 
ENTER[3,8] and LEAVE[4,6]. 
 If we assume that the delay time intervals are uniformly distributed, it is equally probable for 
LEAVE[4,6] to execute either in [4,5] or [5,6] and this probability equals to 0.5. It is also equally proba-
ble for ENTER[3,8] to execute in any of the one time unit intervals, i.e. [3,4], [4,5],.., [7,8] and this prob-
ability equals to 0.2. 
 

 
 

Figure 2. Event Sequences for each of the five threads generated
  
 QDES will spawn two threads, one assumes that ENTER[3,8] is executed first and the second thread 
assumes that LEAVE[4,6] is executed first. If we assume that ENTER[3,8] executes first, then it must be 
executed in [3,6], so that the next imminent event, LEAVE[4,6] can be executed next in [4,6]. On the oth-
er hand, if LEAVE[4,6] is to be executed first in [4,6], then ENTER[3,8] can be executed next in [4,8]. 
 The probability of LEAVE[4,6] executing first in [4,5] depends on whether ENTER[3,8] is executed 
in the same time interval. Assume that ENTER[3,8] is executed in [4,5] and the probability that this will 
happen equals to 0.2, then both LEAVE[4,6] and ENTER[3,8] are equally probable to be executed in 
[4,5] since these are only two NOS events that can be executed in the [4,5] time interval. In this case, the 
probability of LEAVE executing first in [4,5] equals to 0.5*0.5*0.2=0.05. Now, assume that ENTER is 
executed in other time intervals after [4,5],i.e. [5,8] (the probability that this will happen equals to 0.6) 
and since LEAVE is the only event that can be executed in [4,5], the probability of LEAVE executing in 
[4,5] equals to 0.5*1*0.6=0.3. Thus, combining the two cases, the probability of LEAVE executing first 
in [4,5] equals to 0.3+0.05=0.35. 
 The probability of each event executing first in each one time unit interval is calculated and shown as 
below. Note that the probability of an event executing in interval [i,j] is denoted as P(event_name�[i,j]).  

 
P(LEAVE is executed first in [4,5])= P(LEAVE�[4,5]) (0.5*P(ENTER�[4,5]+P(ENTER�[5,8])) 
= 0.5* 0.5*0.2�0.6� �� 0.35 

1135



Leow-Sehwail and Ingalls 
 
P(LEAVE is executed first in [5,6]) = P(LEAVE�[5,6])* 
(0.5*P(ENTER�[5,6])+P(ENTER�[6,8])) 
= 0.5* 0.5*0.2�0.4� �� 0.25 
P(LEAVE execute first in [4,6])=P(LEAVE is executed first in [4,5])+P(LEAVE is executed first in 
[5,6]) 
= 0.35�0.25� 0.6 
P(ENTER is executed first in [3,4]) = P(ENTER�[3,4]) = 0.2 
P(ENTER is executed first in [4,5]) = P(ENTER�[4,5])*(0.5*P(LEAVE�[4,5]+P(LEAVE�[4,5])) 
= 0.2* 0.5*0.5�0.5� �� 0.15 
P(ENTER is executed first in [5,6]) = P(ENTER�[5,6])*(0.5*P(LEAVE�[5,6])) 
= 0.2 0.5*0.5� �� 0.05 
P(ENTER is executed first in [3,6]) = P(ENTER is executed first [3,4]) + P(ENTER is executed first 
in [4,5])+ P(ENTER is executed first in [5,6])= 0.2�0.15�0.05� 0.4 

 
 The following figure summarizes the above calculations. Overall, the probability of ENTER[3,6] ex-
ecuting first is equal to 0.4, which leads us to the first branch of the event graph at node 4 in Figure 2. The 
probability of LEAVE[4,6] executing first is equal to 0.6 and it forms the second branch of the event 
graph at node 12 in Figure 2. 

 
 

Figure 3. The probability of LEAVE[4,6] and ENTER[3,8] executing first, respectively 

4 PROBABILITY OF THE NEXT EVENT EXECUTION 
If we assume that LEAVE[4,6] is executed first, the probability of event ENTER executing next in [4,5], 
[5,6], [6,7] and [7,8] can be calculated. Based on the condition of when LEAVE[4,6] is executed first, in 
this case, we have two conditions, namely LEAVE is executed first in [4,5] and LEAVE is executed first 
in [5,6],  the probabilities of event ENTER executing next in [5,6], [6,7] and [7,8] are calculated and 
shown as below. 
 

P(ENTER in [4,8]|LEAVE 1st in [4,5])= 

P(ENTER 2nd in [4,5]| LEAVE 1st in [4,5])
�P(ENTER 2nd in [5,6]| LEAVE 1st in [4,5])
�P(ENTER 2nd in [6,7]| LEAVE 1st in [4,5])
�P(ENTER 2nd in [7,8]| LEAVE 1st in [4,5])

	�


�

��
��
��
��

��

�

��
��
��
��

 

P(ENTER in [5,8]|LEAVE 1st in [5,6])�
P(ENTER 2nd in [5,6]| LEAVE 1st in [5,6])
�P(ENTER 2nd in [6,7]| LEAVE 1st in [5,6])
�P(ENTER 2nd in [7,8]| LEAVE 1st in [5,6])

	�


�

��
��
��

��

�

��
��
��
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If LEAVE executes in [4,5], then ENTER can execute next in [4,8]. Without considering the fact that 

LEAVE was executed in [4,5], we can redistribute the probability of ENTER executing in [4,8] by look-
ing at the original probability distribution of ENTER[3,8]. Since it is equally likely for ENTER[3,8] to 
execute in any interval within [3,8] with a probability of 0.2, ENTER will still be equally likely to execute 
anywhere within [4,8] with a probability of 0.25. The probability distribution for ENTER[4,8] is shown in 
the first row of Figure 4. The same reasoning goes for the case if LEAVE executes in [5,6], the probabili-
ty distribution for ENTER[4,8] is shown in the second row of Figure 4.  

 
[4,5] [5,6] [6,7] [7,8]

If LEAVE executes in [4,5] 0.25 0.25 0.25 0.25 
If LEAVE executes in [5,6]  0.333333 0.333333 0.333333 

 
Figure 4. The probability of occurrence for ENTER[4,8] 

 
If LEAVE [4,6] executes in [4,5], then the probability for ENTER to execute in [4,5] is equal to 0.125 

(half of 0.25). Since ENTER has a 0.25 probability to be in [4,5], the probability of ENTER to execute in 
[4,5], given that LEAVE executes in [4,5] is equal to 0.5*0.25 = 0.125. Thus, P{ENTER execute second 
in [4,5]/LEAVE executed in [4,5]}=0.125/(0.125+0.25*3) �  0.14286 

 
P(ENTER execute in [4,5] | LEAVE executed first in [4,5]) 
= P(ENTER in [4,5])  

= 
1

2 *0.2

1
2 *0.2� 3*0.2� �

� 0.14286 

P(ENTER execute in [5,6] | LEAVE executed first in [4,5]) 
= P(ENTER did not execute in [4,5] out of [4,8])*P(ENTER in [5,6] out of [5,8]) 

= 1� 0.14286� �* 0.2
(3*0.2)

� 0.28571 

P(ENTER execute in [6,7] | LEAVE executed first in [4,5]) 
= P(ENTER did not execute in [4,5] out of [4,8] and [5,6] out of [5,8])*P(ENTER in [6,7] out of 
[6,8]) 

= 1� 0.14286� �* 1� 0.2
(3*0.2)

��

��
��

��

��
��*

0.2
(2*0.2)

� 0.28571 

P(ENTER execute in [7,8] |LEAVE executed first in [4,5]) 
= P(ENTER did not execute in [4,5] out of [4,8], [5,6] out of [5,8] and [6,7] out of [6,8])*P(ENTER 
in [7,8] out of [7,8]) 

= 1� 0.14286� �* 1� 0.2
(3*0.2)

��

��
��

��

��
��* 1� 0.2

(2*0.2)
��

��
��

��

��
��*1� 0.28571 

P(ENTER execute in [5,6] |LEAVE execute first in [5,6]) 
=  P(ENTER in [5,6] out of [5,8]) 

= 
1

2 *0.2

1
2 *0.2� 2*0.2� �

� 0.2 

P(ENTER execute in [6,7] / LEAVE execute first in [5,6]) 
= P(ENTER did not execute in [5,6] out of [5,8])* P(ENTER in [6,7] out of [6,8]) 

= 1� 0.2� �* 0.2
2*0.2

� 0.4 

P(ENTER execute in [7,8] / LEAVE execute first in [5,6]) 
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= P(ENTER did not execute in [5,6] out of [5,8] and [6,7] out of [6,8])* P(ENTER in [7,8] out of 
[7,8]) 

= 1� 0.2� �* 1� 0.2
2*0.2

��
����

��
����
*1� 0.4  

 
Figure 5 shows the calculations we have so far. With all the calculation we have so far, we can now 

calculate the probability of ENTER execute next in [4,5], [5,6], [6,7] and [7,8]. The probability distribu-
tion of ENTER [4,8] is given in Figure 6. 

 
P{ENTER [4,8] execute second in interval (i,j) | LEAVE [4,6] execute first in 
(p,q)}
 (i,j)     
(p,q) (4,5) (5,6) (6,7) (7,8) TOTAL
(4,5) 0.14286 0.28571 0.28571 0.28571 1
(5,6) 0 0.2 0.4 0.4 1

 
Figure 5. Probability of occurrence for ENTER[4,8] given that LEAVE[4,6] was executed 

 
P(ENTER execute in [4,5]) 
= P(ENTER execute in [4,5] / LEAVE execute first in [4,5]) * P(LEAVE execute first in [4,5]) 

= 0.142857* 0.35
(0.35� 0.25)

� 0.08333 

P(ENTER execute in [5,6]) 
= {P(ENTER execute in [5,6] / LEAVE execute first in [4,5]) * P(LEAVE execute first in [4,5])} + 
{P(ENTER execute in [5,6] / LEAVE execute first in [5,6]) * P(LEAVE execute first in [5,6])} 

= 0.28571* 0.35
(0.35� 0.25)

	�


�
��

��

�
��� 0.2* 0.25

(0.35� 0.25)
	�


�
��

��

�
��� 0.25 

P(ENTER execute in [6,7]) 
= {P(ENTER execute in [6,7] / LEAVE execute first in [4,5]) * P(LEAVE execute first in [4,5])} + 
{P(ENTER execute in [6,7] / LEAVE execute first in [5,6]) * P(LEAVE execute first in [5,6])} 

= 0.28571* 0.35
(0.35� 0.25)

	�


�
��

��

�
��� 0.4 * 0.25

(0.35�0.25)
	�


�
��

��

�
��� 0.3333 

P(ENTER execute in [7,8]) 
= {P(ENTER execute 2nd in [6,7] / LEAVE execute first in [4,5]) * P(LEAVE execute first in [4,5])} 
+ {P(ENTER execute 2nd in [7,8] / LEAVE execute first in [5,6]) * P(LEAVE execute first in [5,6])} 

= 0.285714* 0.35
(0.35� 0.25)

	�


�
��

��

�
��� 0.4 * 0.25

(0.35�0.25)
	�


�
��

��

�
��� 0.3333 

 
P{ENTER [4,8] execute in interval (i,j)}
(i, j) (4,5) (5,6) (6,7) (7,8) TOTAL
 0.083333 0.25 0.333333 0.333333 1

 
Figure 6. Probability of occurrence for ENTER[4,8] 

5 GENERATING A NEW PROBABILITY DISTRIBUTION 

`�����	��������	�����������	�����������
��$���������������������	���������~�	��:+#�<#��&���:+#�<��	�������
executed. As soon as ENTER [4,8] has executed, it schedules a new event START to happen immediately 
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since the server is available there is no other customer waiting for the server.  START[4,8] could execute 
immediately in [4,8] with the same probability distribution as ENTER[4,8] (refer to node 13 in Figure 2). 
A new event ENTER is also scheduled by ENTER[4,8] to happen [3,8] time units later, which leads to 
ENTER[7,16].  START[4,8] schedules a LEAVE event to execute [4,6] time units after time interval 
[4,8], which then leads to LEAVE[8,14]. Events ENTER[7,16] (refer to node 15 in Figure 2) and 
LEAVE[8,14] (refer to node 17 in Figure 2) are currently on the future event calendar. Because their ex-
ecution times overlap, they create another NOS. 
 ENTER[7,16] is scheduled to occur [3,8] time units after [4,8], which leads to time interval [7,16]. 
The delay of [3,8] is assumed to follow uniform distribution, but the time interval [4,8] from ENTER[4,8] 
is not uniform. Table 1 shows the probability distribution for ENTER[4,8] and the uniform distribution 
[3,8]. The ����	������� 
������������ ���� �&���:!#;�<� �	�� ��� ���	���
� ��� �	

����� ���� 
������������ ���
ENTER[4,8] to the distribution of Uniform[3,8].  
 

Table 1. Probability distributions for events ENTER[4,8] and Uniform[3,8] 
 

  ENTER[4,8]   UNIFORM[3,8]
[4,5] 0.083333333 [3,4] 0.2 
[5,6] 0.25 [4,5] 0.2 
[6,7] 0.333333333 [5,6] 0.2 
[7,8] 0.333333333 [6,7] 0.2 
  [7,8] 0.2 

 
 Adding these two distributions is equivalent to the result of drawing one sample from each distribu-
tion and add the values of the samples together to get the final value, x. The addition of ENTER[4,8] and 
Uniform[3,8] probability distributions creates the probability distribution for this final value, x. 
 To get the probability distribution of (ENTER[4,8]+Uniform[3,8]), we can simply multiply the 
ENTER[4,8] column (refer to Table 1) with the Uniform[3,8] column. For example, P(E[4,5] + U[3,4]) = 
P(ENTER[7,9]) = 0.083333333* 0.2 �0.016666. 
 Table 2 shows the resulting probability distribution. E[4,5]+U column holds the probability values for 
ENTER[7,9], [8,10], [9,11], [10,12], and [11,13], which are the results of adding the probability of 
ENTER[4,5] with Uniform probability of [3,4], [4,5], [5,6], [6,7] and [7,8], respectively.  
In order to get the probability of ENTER executing in a certain interval, the sum of probabilities attributed 
to that interval is computed. For example, P(ENTER[8,10]) = { P(E[4,5]+U[4,5])=[8,10]) } + { 
P(E[5,6]+U[3,4])=[8,10]) } �  0.016666667 + 0.05 �  0.066666667 
 

Table 2. Probability distribution of ENTER[7,16] 
 

E[4,5] +U P{E[4,5]+U} E[5,6]+U P{E[5,6]+U} E[6,7]+U P{E[6,7]+U} E[7,8]+U P{E[7,8]+U}
[7,9] 0.016666667 [8,10] 0.05 [9,11] 0.06666667 [10,12] 0.06666667 
[8,10] 0.016666667 [9,11] 0.05 [10,12] 0.06666667 [11,13] 0.06666667 
[9,11] 0.016666667 [10,12] 0.05 [11,13] 0.06666667 [12,14] 0.06666667 
[10,12] 0.016666667 [11,13] 0.05 [12,14] 0.06666667 [13,15] 0.06666667 
[11,13] 0.016666667 [12,14] 0.05 [13,15] 0.06666667 [14,16] 0.06666667 

 
 The resulting interval will be of length 2, which are [7,9], [8,10], [9,11], [10,12] and [11,13] with the 
same probability of 0.016666 , respectively. If we leave the interval length as it is, as the simulation con-
tinues the length of the interval will keep increasing every time we add probability distributions. Howev-
er, we can reduce the interval to one time unit by assuming that the each of these resulting intervals of 
[7,9], [8,10], [9,11], [10,12] and [11,13] follows a uniform distribution. If we assume that the probability 
of ENTER[8,10] which equals to 0.06666 is evenly distributed throughout [8,10], then ENTER could be 
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executed in [8,9] and [9,10] each with the probability of  0333333.0
2

0.06666666
� . The same assump-

tion is applied to all other intervals, including ENTER[7,9] (which has a probability of 0.0166666), then 
we can find the probability of ENTER[8,9] by adding half of the probability from [8,10] and half of the 
probability from [7,9], as shown below. Table 3 shows the probability distribution of ENTER[7,16], after 
the reduction of the interval length to one time unit. The probability distribution of LEAVE[8,14] can be 
obtained using similar approach.  

 
Table 3. Probability distribution for ENTER[7,16] with interval width of one time unit 

 
ENTER[7,16] Calculated Probability
[7,8] 0.008333333 
[8,9] 0.041666667 
[9,10] 0.1 
[10,11] 0.166666667 
[11,12] 0.2 
[12,13] 0.191666667 
[13,14] 0.158333333 
[14,15] 0.1 
[15,16] 0.033333333 

6 PROBABILITY OF AN EVENT EXECUTION 

The probability of ENTER[7,16] executing in any given ����������%	������������������:!#�<#@#�:;�#;�<"�
e-
pends on the condition of two things: 
a) ���$���������������%	������$������&���:!#;�<�������
�������%�������������
�� 

If given that its scheduling event, ENTER[4,8] is executed in [4,5], then ENTER[7,16] can be ex-
ecuted in [7,9], [8,10], [9,11], [10,12] and [11,13] with probability of 0.2, respectively. This distribution 
with overlapping time interval represents the probability distribution of ENTER[7,11], given the time in-
terval of ENTER[4,5]. Note that it has the same shape as the delay distribution of [3,8]. Recall that the de-
lay distribution of [3,8] has a uniform probability distribution of 0.2 in each of its one-unit time interval. 
We know that P(ENTER[7,16] is in [7,9]) = P(E[4,5] + U[3,4]) = P(ENTER[7,9]) �  0.083333333* 0.2 = 
0.�;����@�	�
����&���:+#�<�������:+#�<"��  0.083333333 (refer to Figure 6).  

Since P(ENTER[7,16] is in [7,9]) = P([ENTER[7,16] is in [7,9]/ENTER[4,8] is in [4,5])* 
P(ENTER[4,8] is in [4,5]). Thus, P([ENTER[7,16] is in [7,9]/ENTER[4,8] is in [4,5])= P(ENTER[7,16] 
is in [7,9])/ P(ENTER[4,8] is in [4,5])�  (0.083333333* 0.2)/ 0.083333333= 0.2. 
 If we assume that the probability of all the two-unit time intervals are evenly distributed within their 
time intervals, using the same reasoning as above, the probability distribution of ENTER[7,16] executing 
in [7,8], [8,9], [9,10], [10,11], [11,12] and [12,13] given that its scheduling event ENTER[4,8] was ex-
ecuted in [4,5] is equal to 0.1, 0.2, 0.2, 0.2, 0.2 and 0.1 respectively. 
b) Whether ENTER[7,16] intersects with its immediate preceding event.  

The probability distribution that was obtained earlier only takes into account the effect of 
ENTER[4,8]'s execution time on the probability of occurrence for ENTER[7,16]. If the immediate pre-
ceding event for ENTER[7,16] is ENTER[4,8], there will not be any intersection of time intervals when 
calculating the conditional probability. Meanwhile, the probability for ENTER[7,16] will be lesser than 
the amount that has been calculated for the case if there is an intersection with the immediate preceding 
event. This is likely to be the case if ENTER[7,16] is one of the NOS events in the NOS set. 
 Even though the immediate preceding event for ENTER[7,16] is not its scheduling event, 
ENTER[4,8], but START[4,8] inherits the same probability distribution from ENTER[4,8]. This means 
that there will not be any intersection of time intervals when calculating the probability for ENTER[7,16]. 
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Thus, the probability for ENTER[7,16] that is calculated earlier will not be affected. Figure 7 shows the 
probability distribution for ENTER[7,16]. 
 

 
 

Figure 7. The probability distribution of ENTER[7,16] 
 
 For all the events that are to be executed after the first non-zero execution time event, they will carry 
information about the timing of all preceding events. Each combination of the timing of these preceding 
events forms a condition for the probability distribution of the event that we are evaluating. 
 The conditions for the probability of ENTER[7,16] are shown in the left column of Figure 9. The in-
terval [5,6] ������
�������[4,5]-[5,6]����������������������������%	��:�#�<������������
�	��������
�����%����
of ENTER[7,16] (i.e. START[4,8] and ENTER[4,8]), since they both have exactly the same probability 
distribution. If START is executed in [4,5], ENTER will also be executed in [4,5]. The interval [4,5] of 
���
�������[4,5]-[5,6]���������������������������%	��:+#�<�������������
��	����%���#�$����� ���`����:+#�<��
The same conditions are generated for LEAVE[8,14]. The probability for LEAVE[8,16] is shown in Fig-
ure 9. 

 
 

Figure 8.The probability of ENTER[7,16] under all possible combinations of conditions
 

 
 

Figure 9. The probability of LEAVE[8,14] under all possible combinations of conditions
 
 As can be seen from Figures 8 and 9, the probability for ENTER[7,16] and LEAVE[8,14] is not af-
fected by what happens before its scheduling event, ENTER[4,8]. The delay distribution and the schedul-
ing event's probability distribution determine the timing of the newly scheduled event and its probability 
distribution. The probability of occurrence that is obtained for the new event is lesser for the case when 
there is an intersection of time intervals with the immediate preceding event. If the immediate preceding 
event for the new event happens to be its scheduling event, there will not be any intersection of time in-
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tervals. In this case, the probability of occurrence that is obtained from the delay distribution and schedul-
ing event's distribution will remain the same.  

The probability of each condition occurring could be obtained by normalizing the conditional proba-
bility in Figure 5. The result is show  in Table 4. The probability of each condition occurring is needed 
when calculating the probability of a NOS event executing first.  

 
Table 4. Probability of the conditions 

 

 
 

 The probability of ENTER[7,16] executing first and LEAVE[8,14] executing first are computed and 
are given in Figure 10 and Figure 11, respectively. ENTER[7,16] has a probability of 0.00833 to execute 
first in the time interval [7,8], 0.03958 to execute first in [8,9], 0.08542 to execute first in [9,10] and so 
on. These probabilities are obtained from the sum product of the probability of the condition in Table 4 
with the probability of ENTER[7,14] in each time interval. Combining the probabilities from all these 
time intervals, ENTER[7,14] has a probability of 0.4 to execute first in [7,14]. On the other hand, 
LEAVE[8,14] has a probability of 0.6 to execute first in [8,14]. Notice that the addition of ENTER[7,14] 
and LEAVE[8,14]'s probability equals to one, as they are exclusive events.   

 

 
 

Figure 10: The probability of ENTER[7,16] executing first 
 

 
 

Figure 11: The probability of LEAVE[8,14] executing first 
 
The probability distribution for the timing of an event can be obtained from normalizing the proba-

bility of an NOS event executing first. For the case where there is one event in the NOS set, the probabili-
ty distribution for the timing of an event is already in the normalized form. The "Normalized p" rows in 
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Figures 10 and 11 are the probability distributions for the timing of ENTER[7,16] and LEAVE[8,14], re-
spectively, as the result of normalization from the probability in the "P(Execute 1st)" row. 

7 RESULT 

In order to compare the event execution probabilities that are calculated using the method discussed in the 
previous sections, a simulation model of the Simple Queuing System was created using Microsoft Excel. 
10,000 timings of all the scheduled events are randomly generated. Figure 12 shows the event probability 
distribution for the events from thread 4. It shows that the calculated probabilities are very close to the 
simulated probabilities as the simulation progresses. It also exhibits the ability of the proposed calculation 
to capture the shape of the event timing probability distribution. 
 

 
Figure 12: Simulated vs. Calculated Probabilities 

  
The approach in this paper is repeatable for all the events that are generated from the QDES output. 

Thus it can be extended and developed into an algorithm.   

8 CONCLUSION AND FUTURE RESEARCH 
This work is significant in the area of qualitative discrete event simulation because it gives a probabilistic 
map of the output space of the simulation.  The work was started with a uniform distribution assumption 
because of the ease of calculating probabilities.  Even though the work was done under that assumption, 
the resulting structure will allow any discrete distribution as an input for the delay and time between crea-
tion delays. 

Also, this work has the problem of computational effort, in that it the combinations explode with 
time.  However, since this method gives the complete probabilistic view of the output space, there is no 
need for iterations as you would have to do in a traditional discrete-event simulation. 
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The research team continues to look for algorithms and approaches that exploit this work.  The re-

search lies in two primary areas: (1) improving the computational efficiency of the algorithm and (2) ex-
ploiting the output space information for the purpose of simulation optimization. 
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