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ABSTRACT

This paper is concerned with characterizing the transient behavior of general queueing systems, which
is widely known to be notoriously difficult. The objective is to develop a statistical methodology,
integrated with extensive offline simulation and preliminary queueing analysis, for the estimation of
a small number of transfer function models (TFMs) that quantify the input-output dynamics of a
general queueing system. The input here is the time-varying release rate of entities to the system;
the time-dependent output performances include the output rate of entities and the mean of the work
in process (i.e., number of entities in the system). The resulting TFMs are difference equations, like
the discrete approximations of the ordinary differential equations provided by an analytical approach,
while possessing the high fidelity of simulation. The proposed method is expected to overcome the
shortcomings of the existing transient analysis approaches, i.e., the computational burden of simulation
and the lack of fidelity of analytical queueing models.

1 INTRODUCTION

This work is concerned with the transient behavior of general queueing systems. The primary motivation
stems from production planning in manufacturing, for which one of the major difficulties encountered
is uncertainty, such as demand-forecast mismatches, unexpected interruptions in production, and
natural disasters (Blackhurst et al. 2005; Datta, Christopher, and Allen 2007; Koh 2004; Pinedo 2007;
Sheffi and Rice 2005; Stadtler and Kilger 2007; Tang 2006). In case of such disruptions, an immediate
reaction is required and a new production plan needs to be generated responsively for the next few
weeks or months. A good plan recognizes the current status of the situation, takes into account future
evolution of the system, which can be treated as a queueing system, and achieves the best overall
performance (e.g., low cost, high customer service level, etc.). The key for responsively generating
such a good plan lies in the ability to capture the evolution of the system, which is the focus of the
proposed research.

Figure 1: Time-dependent input-output dynamics of a system.

This work intends to characterize the input-output dynamics of a general queueing system, which
is illustrated in Figure 1. Specifically, in our work, the input x(t) represents the time-varying arrival
rate of entities to the system, and the dynamic outputs y(t) include two time-dependent performance
metrics: the expected departure rate of entities and the mean of the work in process (number of jobs
in the system). The objective of this paper is to develop a statistical methodology, integrated with

1110978-1-4244-9864-2/10/$26.00 ©2010 IEEE



Yang and Liu

extensive offline simulation and preliminary queueing analysis, for the generation of a number of
transfer function models (TFMs) that quantify the time-dependent (transient) input-output relationships
for general queueing systems. The resulting TFMs have two major advantages. (i) The TFMs embody
the high fidelity of simulation since they are estimated from detailed simulation data representing a
wide range of system operating conditions. (ii) The TFMs are difference equations, like the discrete
approximations of the ordinary differential equations (ODEs) provided by an analytical approach;
supposing that a certain input x(t) is fed to the system under given initial conditions, the TFMs can be
used to recursively compute the system’s future performance y(t) in a timely manner with no need to
run additional simulations. Hence, the TFMs resulting from the proposed work are able to accurately
describe the transient dynamics of systems, as well as provide prompt “what-if” analysis.

It is worth mentioning that the simulation-based transfer function modeling falls into the category
of metamodeling (Chapter 18, Henderson and Nelson 2006), which refers to the techniques that
utilize simulation to generate mathematical approximations quantifying the relationships implied by
the simulation. This work, to the best of our knowledge, is the first attempt to develop a metamodel
that takes the form of difference equations, but nevertheless applies to the context where metamodeling
can realize the maximum potential. Such a context is articulated in Ankenman et al. (2010) as follows:
the time to exercise the simulation model in advance of the decision making is relatively plentiful,
whereas the decision-making or decision-maker time is relatively scarce or expensive. The responsive
production planning mentioned above represents one of such contexts: Simulation models for the
manufacturing system can be developed and kept running for weeks (or even months) as soon as the
system configuration has been established; while in case of production disruptions, a decision needs
to be made quickly–as soon as possible–regarding how to adjust the production plan for that system.
The metamodel, i.e., the TFMs in this paper, fully utilizes the plentiful offline simulation time and
allows for responsive decision making in time of urgency.

2 LITERATURE REVIEW

In the literature, both analytical methods and computer simulation have been used to address the
time-dependent behavior of queueing systems.

For Markov queueing models, time-dependent ODEs can be developed to represent their input-
output dynamics. However, analytical solutions to these ODEs are rare. A few exceptions include
the known solutions for the M(t)/G/∞ and M/M/1 systems (Gross and Harris 1985; Kleinrock 1975),
and the Ph(t)/Ph(t)/∞ systems investigated by Nelson and Taaffe (2004a, 2004b). The mainstay of
the analytical work on transient analysis has been the development of numerical solutions of the
time-dependent ODEs characterizing the transient behavior of the Markov models. Ingolfsson et
al. (2007) provides a fairly complete review of these methods including Rothkopf and Oren (1979),
Clark (1981), Gross and Miller (1984), Taaffe and Ong (1987), Green and Kolesar (1991), Green,
Kolesar, and Svornos (1991), Eick, Massey, and Whitt (1993a, 1993b), Jennings et al. (1996), Massey
and Whitt (1997). Other techniques for approximating the transient behavior of queues include fluid
approximations, which are accurate when there is little variability, and diffusion models, which are
good for heavily loaded systems (Chen and Mandelbaum 1994; Mandelbaum and Massey 1995; Kelly,
Zachary, and Ziedins 1996). The analytical method developed in Riano (2003) can be considered as
a parallel to the fluid and diffusion approximations. Green, Kolesar, and Whitt (2007) also reviews
various queueing methods for approximating the transient performance of service systems such as
call centers. All these methods can be roughly divided into two categories: those that are highly
accurate but computationally intensive (comparable to detailed simulation), and those that are fast
but inaccurate. Nevertheless, a common limitation of these methods is that they rely on analytical
assumptions of one sort or another, and thus are inadequate to capture many features of realistic
manufacturing systems such as non-Markovian interarrival/service times, machine failures, reentrant
flows, etc.

Computer simulation is an alternative approach to address the transient behavior of queueing
systems because of its high fidelity and flexibility, and increasingly also because of its ease of use and
wide acceptance among practitioners. The shortcoming of simulation is that many replication runs
are required to obtain good estimates of time-dependent performance measures, and thus simulation
is frequently too computationally demanding for real-time “what-if” analysis.

The proposed work integrates statistical methods, computer simulation, and queueing theory to
tackle the ever-difficult yet critical research problem of characterizing the transient behavior of general
queueing systems. Such an approach is expected to overcome the computational burden of simulation
and the intractability of analytical methods for realistic systems, and thereby to support responsive
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decision making. The remainder of the paper is organized as follows. Section 3 provides an overview
of the proposed methods. The preliminary queueing analysis is performed in Section 4. The approach
of the simulation-based transfer function modeling is described in Sections 5 and 6. In Section 7, the
proposed methods are applied to a range of general queueing systems including the one that mimics the
features of real semiconductor manufacturing systems; the transient analysis of multi-station systems
is particularly discussed in Section 7.2.

3 OVERVIEW OF THE METHODOLOGY

We consider the system of interest as a queuing system that involves three major time-dependent
processes.

Q(t): the state process representing the number of jobs in the system at time t, with t ∈ (−∞,∞),
the whole time axis.

A(u,v): the random variable counting the number of arrivals in the system within the time interval
(u,v], u < v ∈ (−∞,∞).

D(u,v): the random variable counting the number of departures in the system within the time
interval (u,v], u < v ∈ (−∞,∞).

Both A(u,v) and D(u,v) are general point processes (Cox and Isham 1980) that count the number
of event occurrences over a time interval, special examples for which include Poisson, renewal,
self-exciting processes, and marked point processes (Daley and Vere-Jones 2002). In this work, it
is assumed that neither the arrival pattern nor the service times depend on the state of the system.
Hereby (until Section 4.2), we restrict our discussion to a single-station system. The extension to
multi-station environment will be discussed in Section 7.2.

Let H0 = {Q(t),A(−∞, t),D(−∞, t), t ∈ (−∞,0]} denote the history of the system evolution up to
time 0. The question we intend to address here is: Standing at time 0, how do we predict the system’s
behavior from time 0 onward given the history H0? Note that {A(0, t), t > 0} is considered as the
independent variable (the input flow imposed on the system), and {Q(t),D(0, t), t > 0} the dependent
variables representing the output performance of the system. The objective of this work is to establish
the time-dependent relationship between the first moment measures of these three processes. We
define the following notations.

m(t) = E[Q(t)], the expectation (first moment) of the number of jobs in the system at time t.
a(t) = limδ→0+ δ−1

E [A(t, t +δ )].
d(t) = limδ→0+ δ−1

E [D(t, t +δ )].

It is assumed that a(t) and d(t) exist and are finite. Usually, a(t) and d(t) are also referred to as the
intensity or rate of the corresponding point process. Denoting y(t) = (m(t),d(t)) as the 2×1 vector
including the output performance variables, and x(t) = a(t) the input variable, we aim at characterizing
the input-output dynamics of a queueing system by a number of TFMs:

y(t) = F(x(t −1),x(t −2), . . . ,y(t −1),y(t −2), . . .), (1)

which is a discrete-time functional approximation that describes the dynamics of the queueing system.
The time t in (1) denotes discrete time points. In the rest of this paper, t will be used to represent
both continuous and discrete time index, and any possible confusion is avoidable at the price of a
negligible amount of mental energy.

The vector function F in the TFMs (1) includes two equations, and is of the same dimension as
y(t). Each component of F is a difference equation relating an output performance at time t to the
input and output history of the system. Suppose that we stand at the current time 0 and that the future
time horizon is (0,T ]. Given the seed values of {x(t),y(t)}, which can be derived from H0, we can
use the TFMs to compute recursively the system’s future performance {y(t), t ∈ (0,T ]} under any
input {x(t), t ∈ (0,T ]}.

It is difficult to obtain the TFMs that can accurately characterize the transient dynamics of a
general queueing system, and our method is three fold.
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• Queueing analysis (Section 4): We perform queueing analysis under fairly general assumptions.
Such a theoretical analysis, although inadequate to address the time-dependent behavior of
realistic systems, sheds lights on the functional forms for the TFMs.

• Data collection via offline simulation (Section 5): Under selected input processes, we run
simulations to obtain paired input-output time series. We emphasize that our simulation is
carried out offline in advance of the need to make a decision.

• Transfer function modeling (Section 6): From the simulation data, we develop statistical
methods to obtain the parsimonious TFMs (1) that are adequate to capture the system’s
dynamic behavior.

4 NON–STATIONARY QUEUEING ANALYSIS

In this part, we perform analytical analysis on some simple queueing systems to gain insights to
their non-stationary behavior. These analytical results are also what primarily motivated our transfer
function metamodeling approach.

4.1 An M(t)/M/∞ Example

For the purpose of intuition and motivation, we consider the input-output dynamics of the simple
queueing model M(t)/M/∞, which is one of the very few models whose transient behavior can be
characterized analytically. Suppose that the service rate for each job is µ . From the Kolmogorov
forward equations for the state probabilities (Ross 1995), we can easily derive the following equations
for the M(t)/M/∞:

m′(t) = dm(t)/dt = x(t)−µ ·m(t) (2)
d(t) = µ ·m(t)

These equations characterize the system evolution in terms of m(t) and d(t). Given the initial state
of the system at time 0, the numeric solution of {y(t) = (m(t),d(t)), t > 0} can be obtained for any
input {x(t), t > 0}.

Unfortunately, the situation becomes much more complicated as a finite number of servers is
introduced or the Markovian assumption is relaxed. The objective of the proposed work is to obtain
a discrete-time approximation of equations like (2) for a general queueing system so that its dynamic
behavior can be characterized.

4.2 A General Queue

We consider a single-station queueing process Q(t) with arrivals A(t) and departures D(t), as described
in Section 3. The arrival and departure rates are denoted as a(t) and d(t) respectively. The additional
assumptions made solely for the analytical analysis of this section are:

Pr{A(t, t +δ ) > 1} = o(δ ); Pr{D(t, t +δ ) > 1} = o(δ ) (3)

Conditions (3) imply that there are no multiple simultaneous arrivals or departures, i.e., both A(t) and
D(t) are orderly point processes (Dalye and Vere-Jones 2002).

Following the notation given in Section 3, let

an(t) = lim
δ→0+

δ−1 Pr{A(t, t +δ ) = 1,Q(t) = n}

dn(t) = lim
δ→0+

δ−1 Pr{D(t, t +δ ) = 1,Q(t) = n} (4)

Here, an(t) denotes the arrival rate at time t while there are n jobs (not including the one that is about
to enter) in the system, and dn(t) represents the departure rate at time t with n jobs (including the one
that is about to leave) in the system. Apparently, we have a(t) = ∑∞

n=0 an(t) and d(t) = ∑∞
n=1 dn(t).

Suppose that the system consists of a single server with service time following a general distribution,
say G(τ), where τ ∈ (τL,τU), the feasible time range for the service time. It is required that 0 < τL < τU .
Jobs are served on a first come first served basis. For this general queue, we have derived the x(t)-y(t)
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relationship with x(t) = a(t) and y(t) = (m(t),d(t)):

m′(t) = a(t)−d(t) (5)

d(t) =

∫ τU

τL

a0(t − τ)dG(τ)+
∫ τU

τL

(d(t − τ)−d1(t − τ))dG(τ)

Unlike equations (2) for the M(t)/M/∞ system, equations (5) for the general queue are not closed, and
thus not solvable: Aside from the input process a(t)and the output processes of interest m(t)and d(t), (5)
also involves unknown time-dependent functions a0(t) and d1(t). However, for mediumly/heavily
loaded queues, it is reasonable to assume that a0(t), the arrival rate when no job is in the system,
and d1(t), the departure rate when no job is in the waiting queue, are relatively small and can be
approximated by:

a0(t) ≈ p0(t)×a(t) ≈ e1a(t) and d1(t) ≈ p1(t)×d(t) ≈ e2d(t).

Both e1 and e2 are small fractional constants. Further, if we take the finite-difference approximation of
the derivative and integrals in (5), it is clear that the discrete approximations of equations (5) fall into
the category of TFMs (1). Similar dynamic equations as (5) have also been obtained for single-station
systems with multiple servers.

The analytical results (5) serve three purposes here. First, it shows that even for a single-server queue
with general arrivals and services (a very simple queue), its non-stationary behavior is analytically
intractable. Hence, the approach of TFMs-based discrete approximation may be appropriate for
investigating the time-dependent behavior of general queueing systems. Second, as will become
clear in Section 7.2, the basis of describing the dynamics of a multi-station system lies in the use of
TFMs (1) to approximate the transient behavior of a single station (or a group of stations that can
be considered as a whole), and the single-station queues (with one or multiple servers) considered
above give a fairly general representation. Thus, equations (5) strongly suggest that the TFMs as (1)
are likely to be successful in terms of capturing the system dynamics. As a matter of fact, it was
these analytical results that motivated us to adopt the TFMs (1) in the first place. Third, equations (5)
provide some valuable insights as to the specific functional forms of the target TFMs, which is very
useful in the statistical fitting of the parametric models.

As already noted, the additional assumptions (3) were made here solely for the analytical analysis.
Whereas the TFM modeling, as evident in Section 7, is expected to be able to describe the dynamic
behavior for general queueing systems with failures and re-entrant flows. Next, in Sections 5 and 6,
we discuss in detail the issues associated with the simulation-based TFM modeling.

5 DATA COLLECTION VIA OFFLINE SIMULATION

In this part, we discuss how to obtain the simultaneous pairs of the input-output observations
{(X(t),Y(t)), t = 1,2, . . . ,T} by running simulation. Note that the capital letters here are used to
represent the estimated time series obtained from simulation. In this work, discrete event simulation
models are constructed to represent the queueing systems of interest. The input flow of entities A(t)
is modeled as a point process which is characterized by its first moment measure, i.e., the input rate
a(t) (Section 3). As will be seen in Section 7, in our experiments two types of input processes are
fed to the system: Poisson and equilibrium renewal processes with a(t) being a piece-wise constant
function over time t (e.g., Figure 2).

For a given queueing system, a number of, say I, simulation replications are performed with the input
flow being a stochastic process characterized by a time-varying rate. For replication i (i = 1,2, . . . , I),
the arrival, departure and state processes {Ai(t),Di(t),Qi(t); t = 1,2, . . . ,T} are recorded. It is assumed
that the system is observed at discrete, equispaced intervals of time, and that the basic sampling interval
∆t serves as the unit of time. The paired time series {(X(t),Y(t)), t = 1,2, . . . ,T} are estimated as
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follows.

X(t) = â(t) =
I−1 ∑I

i=1 Ai(t −∆t/2, t +∆t/2)

∆t

Y1(t) = m̂(t) = I−1
I

∑
i=1

Qi(t) (6)

Y2(t) = d̂(t) =
I−1 ∑I

i=1 Di(t −∆t/2, t +∆t/2)

∆t

It can be seen from (6) that both the arrival rate X(t) and and the departure rate Y2(t) are defined
in terms of the average number of occurrences per ∆t. The sampling interval should be sufficiently
small to allow all the systematic variation which occurred in the inputs/outputs to be taken account
of. In our experiments, we set ∆t to be one tenth of the expected processing time of the server, which
is typically smaller than the average interarrival time of entities.

Although the simulation involved in the proposed work is performed offline and the simulation
time is assumed sufficient, it remains important to design simulation experiments so that accurate
TFMs can be obtained at high computational efficiency. In this context, the design of experiments is
concerned with the following questions. How to specify the piece-wise constant function x(t) = a(t)
for the input arrivals of the simulation experiments? How many replications should be performed
at the selected time-varying input process? Due to the space constraint, no specifics for the design
strategies will be given here, and the readers can obtain some idea from the empirical examples in
Section 7.

6 STATISTICAL MODELING ISSUES OF THE TFMS

The modeling of the system dynamic behavior is based on the pair estimates{X(t),Y(t), t = 1,2, . . . ,T}
obtained from simulation experiments. These estimates are subject to random errors, and we use the
following parametric model to represent the stochastic correspondent of the TFMs (1):

Y(t) = F(θ ;X(t −1),X(t −2), . . . ,Y(t −1),Y(t −2), . . .)+ e(t), (7)

where X(t) = â(t) and Y(t) = (m̂(t), d̂(t)) as given in (6). The term e(t) = (e1(t),e2(t)) denotes
the disturbance. The parameter vector θ includes all the unknown parameters involved in the vector
function F. For convenience of the discussion, we also write model (7) as:

Y1(t) = F1(θ1;X(t −1),X(t −2), . . . ,Y(t −1),Y(t −2), . . .)+ e1(t) (8)
Y2(t) = F2(θ2;X(t −1),X(t −2), . . . ,Y(t −1),Y(t −2), . . .)+ e2(t),

with θ = (θ1,θ2). Our task here is to obtain the TFMs that are of the simplest functional form and
adequate to describe the system’s dynamic evolution based on the paired simulation data (X(t),Y(t)).
Due to space constraint, next we briefly explain the model estimation and selection issues without
providing the details.
Estimation of the TFMs. Assuming that a specific functional form (model structure) has been selected,
the TFMs can be fitted from the simulation data. In this work, we assume that each disturbance ei(t)
(i = 1,2) can be approximated by a stationary autoregressive moving average (ARMA) process (Box,
Jenkins, and Reinsel 1994), and the least square methods are used to obtain the fitted TFMs. In Ljung
(1999), the asymptotic normality of the least-square parameters θ̂ has been proved, and the statistical
inference can be performed on the estimated TFMs.
Model Selection. The estimation of the TFMs above is based on a given functional form, but how
do we select the most appropriate structure for the target TFMs? Achieving the parsimonious TFMs
that can accurately describe the system’s transient performance is difficult, and we resort to a number
of venues in search of the best TFMs, which will not be detailed here.
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7 EMPIRICAL EXAMPLES

For a given simulation representing a general queueing system, we seek to describe its transient
behavior by generating a number of TFMs from simulation data. Using such TFMs, a system’s future
dynamics can be predicted in a timely manner without running additional simulation, which could
be very time consuming. In this part, two examples are presented to illustrate the effectiveness of
the proposed methods: an Ek(t)/G/1 system (Section 7.1), and a system with six different stations
and re-entrant flows (Section 7.2). The first two single-station cases are selected from a number of
queueing models (Table 1) on which the TFM modeling methods have been successfully applied,
and these queueing models are intended to show that the proposed methods can handle a wide range
of input flows and different types of service time distribution. Note that in Table 1, ACV and SCV
denote the coefficient of variation (CV) for the distribution of interarrival times and service times
respectively. Accurately characterizing the transient behavior of a single station (or a group of stations
that can be well approximated as a single one) serves as the basis for capturing the dynamics of a
multi-station system. In Section 7.2, the six-station example also involves re-entrant flows, one of
the main features of real semiconductor fabrication systems, and the specifics of extending the TFM
modeling to multi-station systems are detailed through this example.

For each queueing system, the proposed methods were applied for the generation of the TFMs
describing the system dynamics. The TFMs were fitted from the estimation data set (EDS), and can
be used to predict the future evolution of the system under any input flow. To evaluate the prediction
provided by the TFMs, a validation data set (VDS), which contains simulation data different than and
independent of those in the EDS, was collected and the system dynamics estimated from the VDS
was compared to that predicted by the TFMs. For all the numeric examples that we have investigated,
the resulting TFMs are able to accurately predict the future evolution of the system, judging from the
VDS-based cross validation.

Table 1: Single-Station System Configurations.
# Servers Interarrival Time ACV Service Time SCV Failures

1 ∼ 3 exponential,Erlang,deterministic 0 ∼ 1 gamma 0.1 ∼ 1 Yes/No

Before discussing the results, it is worth mentioning that in our discrete TFMs, one time unit
represents the sampling interval ∆t, which is set as about one tenth of the expected service time of
the most heavily utilized server (Section 5). To avoid possible confusion, in the examples below we
specify all the time periods (interarrival time, service time, simulation length, and future horizon) in
terms of the time unit ∆t.

7.1 An Ek(t)/G/1 System

We consider a single-server system whose service time follows a gamma distribution with a mean
of 10 time units (i.e., 10∆t) and standard deviation of 5 time units. The interarrival time of entities
follow an Erlang distribution with k = 25 stages (denoted as E25), corresponding to a CV of 0.2.

To collect the time series data {X(t),Y(t)} for the TFM modeling, simulation experiments were
carried out by feeding to the system the arrivals with the piece-wise arrival rate shown in Figure 2(a).
Each piece in Figure 2(a) corresponds to a stationary renewal process with a certain first moment
measure (rate), the simulation methods of which are discussed in Daley and Vere-Jones (2002) and
implemented in our simulation model. The five selected arrival rates are evenly-spaced to cover the
system utilization range of [0.5,0.98]. The simulation length of each constant-rate period is selected to
ensure that sufficient data is obtained in steady state. The number of simulation replications performed
in this case is 10000. From the multiple replications, the paired estimates {X(t),Y(t)} were calculated
using equations (6). With the collected EDS, the statistical modeling methods were applied and the
resulting TFMs for this Ek(t)/G/1 system are given as follows:

m̂(t) = 1.0045m(t −1)−0.0798d(t −1)+0.0902x(t −1)

−0.0512m(t −1)x(t −1)+0.0452m(t −1)d(t −1)x(t −1)

d̂(t) = 0.0032m(t −1)+0.9474d(t −1)+0.0431x(t −1) (9)
+0.0286m(t −1)x(t −1)−0.0304m(t −1)d(t −1)x(t −1)
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Figure 2: Release rate for estimation and validation data set for Ek(t)/G/1 system

.

Apparently, given the history {x(t),y(t) = (m(t),d(t)), t ≤ 0}, the fitted TFMs (9) can be used to
recursively compute the future performance for any input {x∗(t), t ∈ (0,T ], and the computational
effort required is negligible.

To evaluate the accuracy of the TFMs (9), the VDS were collected by running simulation with
the interarrival time following E25 and the time-varying arrival rate given in Figure 2(b). To avoid
TFMs-based extrapolation, the arrival rates in the VDS are set within the rate range [xL,xU ] used
in the EDS. For the VDS, 50000 simulation replications were performed, and highly accurate time
series y(t) = (m(t),d(t)) were obtained and considered as the “true” dynamic outputs with “zero”
variance under the specified input flow. In Figure 3, the “true” outputs m(t) and d(t) are plotted as the
dotted curves in Figure 3(a) and (b) respectively. The solid curves in Figure 3 represent the predicted
dynamic outputs resulting from the fitted TFMs (9). To obtain the predicted curves, the TFMs-based
recursive computation was initiated by using the first pair of time-series points in the VDS as the seed
values, and iteratively it leads to the prediction of the system evolution over the entire period given
that the arrival rate follows Figure 2(b). Figure 3 shows that the predicted dynamics from the TFMs
almost coincide with the “true” system evolution.

Figure 3: Comparison of the predicted dynamic outputs and their “true” values for the Ek(t)/G/1 system

.

7.2 A Multi-Station System with Re-entrant Flows

The TFMs that well characterize the transient behavior of a single station (or a group of stations)
provide the building blocks for describing the dynamics of multi-station systems, as will become clear
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in this subsection. We illustrate the TFMs-based modeling methods through the system depicted in
Figure 4, which includes re-entrant flows, one of the main features of real semiconductor fabrication
systems. The system consists of six stations with two re-entrant cycles: 2 → 3, and 4 → 5. Each entity
has to visit the first cycle twice before it enters the second cycle, which also needs to be repeated
by an entity for two times. Each station consists of three identical servers, and all the service times
follow Gamma distribution with a CV of 0.5. The mean service time at each of the six stations is
given in Table 2.

Figure 4: The six-station system

.

7.2.1 Extension to Multi-Station Systems

The basic idea to analyze a multi-station system is to decompose the system into a number of
subgroups, treat each subgroup as a single station, and characterize each of them by its TFMs, like
those in equations (9). The dynamic behavior of the entire system can be described by the multiple
sets of TFMs with each set corresponding to a subgroup. The specifics are discussed as follows.

The decomposition of a target system is based on the identification of the most heavily utilized
stations (HUSs). A bottleneck station (BNS) is defined as a station that has the maximum utilization
in the system. We consider a station whose utilization is above 80% of that of the BNS(s) as a
HUS. The HUSs are the stations that most constrain the entity flows and thus play a key role in
determining the overall performance of the system. For a given system, analytical queueing models
in the literature (e.g., Hopp et al. 2002; Kumar and Kumar 2001; Meng and Heragu 2004) are
available to perform utilization analysis for even the most complicated manufacturing systems (i.e.,
semiconductor manufacturing systems), and thus the HUSs can be identified analytically prior to the
simulation-based transfer function modeling. Denoting G as the number of HUSs in a system, we
suggest formulating G subgroups: each subgroup includes one HUS, which dominates the queueing
behavior of the group, and some upstream/downstream non-HUSs of that HUS.

The system decomposition has to be made on a case-by-case basis. Here, we provide a simple
illustration through the example in Figure 4. We decompose the six-station system into two subgroups,
mainly based on the utilization analysis discussed above. Stations 3 and 5 are considered as HUSs, and
the remaining stations are non-HUSs. Hence, Subgroup 1 contains Stations 1, 2, and 3; and Subgroup
2 includes Stations 4, 5, and 6. As illustrated in Figure 5, in our transient analysis, Subgroup i is
characterized by the TFMs[i], a set of TFMs like the one in (9), with the superscript [i] denoting the
group i (i = 1,2). The input rate to the first group x[1](t) is the input rate to the entire system x(t),
and the input rate to the second group x[2](t) is the departure rate from the first group d[1](t). The
two sets of TFMs[i] (i = 1,2), will be used to characterize the transient behavior of the system and to
predict the system dynamics under any input x(t).

The approach of decomposing a system into subgroups and characterizing each group by a set
of TFMs is obviously approximate. The rationale behind this approximation is two fold. First, the
transient effects at non-HUSs are negligible, that is, the time it takes for a non-HUS to reach steady
state is negligible. Thus a subgroup can be considered as a whole with its behavior dominated by the
sole HUS. Second, the implicit assumption made in modeling a subsequent group is that the departures
from the previous group (i.e., the arrivals to this subsequent group) are approximately completely
characterized by the first moment measure, the departure rate. This approximation is supported by
the departure analysis in Buzacott and Shanthikumar (Chapter 3, 1992), and also works empirically
well in our experiments.

Table 2: Configuration parameters for the six-station system.

Station 1 Station 2 Station 3 Station 4 Station 5 Station 6
Mean Service Time 10 10 7 10 7.8 10
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Figure 5: Decomposition of 6 station in tandem system

.

7.2.2 Modeling Results for the Multi-Station System

We present the modeling results of the six-station system which is decomposed into two subgroups
as shown in Figure 5. The EDS was obtained by simulating the system with Poisson arrivals at a
piecewise-constant rate x(t) similar to that in Figure 2(b). From the simulation experiments performed,
the time series data {X [i](t),Y[i](t), t = 1,2, . . .} were collected for the fitting of TFMs[i] (i = 1,2).
The resulting two sets of TFMs[i] (i = 1,2) can be used to predict the system performance under any
input {x∗(t), t ∈ (0,T ]}, and the prediction consists of two steps corresponding to two subgroups.

1. With x[1](t) = x∗(t) and the identified history for Group 1, the TFMs[1] are used to recursively
compute ŷ[1](t) = (m̂[1](t), d̂[1](t)) for t ∈ (0,T ].

2. Given x[2](t) = d̂[1](t) and the identified history for Group 2, the TFMs[2] are then used to
recursively compute ŷ[2](t) = (m̂[2](t), d̂[2](t)) for t ∈ (0,T ].

The goodness of the fitted TFMs[i] (i = 1,2) is evaluated based on the VDS, which is obtained
by simulating the system with Poisson arrivals following a piece-wise constant rate function. From
the VDS, time series y[i](t) = (m[i]1(t),d[i](t)) (i = 1,2) were obtained, and considered as the “true”
dynamic outputs. In Figure 6, we compare ŷ[i](t), the predicted outputs from the TFMs which are
represented by the solid curves, and the “true” system evolution y[i](t) (i = 1,2) which are denoted
as the dotted curves. Evidently, the TFMs[i] (i = 1,2) can accurately predict the dynamic outputs of
this six-station system.

8 SUMMARY

The originality of the proposed work lies in the integration of statistical methods, computer simulation,
and queueing theory to tackle the ever-difficult yet critical research problem of characterizing the
transient behavior of general queueing systems. Such an approach is expected to overcome the
computational burden of simulation and the intractability of analytical methods for general queues.

The resulting TFMs from the proposed method are able to describe system dynamics and have
two advantages. First, the TFMs embody the high fidelity of simulation since they are estimated from
detailed simulation data. Second, the TFMs are difference equations, like the discrete approximations
of the ordinary differential equations provided by an analytical approach; supposing that a certain
input is fed to the system under given initial conditions, the TFMs can be used to recursively compute
the system’s future performance in a timely manner. To efficiently generate such TFMs for queueing
systems, analytical queueing analysis were performed to suggest appropriate functional forms of the
TFMs; experimental design strategies were developed to efficiently collect data via offline simulation;
and statistical TFM fitting methods were developed to obtain well-estimated TFMs from simulation
data.
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