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ABSTRACT

We describe an adaptation of the knowledge gradient, originally developed for discrete ranking and selection
problems, to the problem of calibrating continuous parameters for the purpose of tuning a simulator. The
knowledge gradient for continuous parameters uses a continuous approximation of the expected value of a single
measurement to guide the choice of where to collect information next. We show how to find the parameter
setting that maximizes the expected value of a measurement by optimizing a continuous but nonconcave
surface. We compare the method to sequential kriging for a series of test surfaces, and then demonstrate its
performance in the calibration of an expensive industrial simulator.

1 INTRODUCTION

We consider the problem of tuning the parameters of an expensive simulator to achieve specific performance
metrics. This problem requires searching over a continuous, multidimensional parameter space to find the
settings which produce the best results. Each measurement is time consuming and yet produces noisy
measurements. In this paper, we propose an algorithm that is asymptotically optimal but which promises fast
convergence.

We use as our algorithmic framework the correlated knowledge gradient algorithm presented in
(Frazier, Powell, and Dayanik 2009) which combines a model for the function being maximized with a
criterion for choosing the sampling decision based on the value of an observation. The knowledge gradient
policy is a widely applicable policy that has had promising results maximizing a variety of standard test func-
tions. The strength of the policy is based on the policy’s implicit handling of exploration versus exploitation
when choosing the sampling decision which leads to convergence properties.

A popular approach for optimizing expensive functions is Bayesian global optimization which combines a
model and a sampling criterion to sequentially choose points to sample in order to maximize a function. Common
sampling criteria include the probability of improvement presented in (Kushner 1964) or expected improve-
ment criteria (see (Zhilinskas 1975); (Mockus 1993); (Locatelli 1997); (Jones, Schonlau, and Welch 1998);
(Huang, Allen, Notz, and Zeng 2006)). These sampling criteria can easily be exactly calculated with a krig-
ing or Gaussian process regression model (see (Matheron 1963); (Sacks, Welch, Mitchell, and Wynn 1989);
(Cressie 1990); (Kleijnen 2009); (Rasmussen and Williams 2006)). Gaussian process regression treats the
truth as a realization of a Gaussian process and is convenient for interpretation purposes because it com-
bines a regression function with the distribution of uncertainty about the regression function. The correlated
knowledge gradient presented in (Frazier, Powell, and Dayanik 2009) computes the expected improvement
in the performance of a design as a result of a single measurement, for problems with a finite (and not
too large) number of potential measurements. In this paper, we present an adaptation of the knowledge
gradient for problems with multidimensional, continuous parameters. Our presentation is based on the work
in (Scott, Frazier, and Powell 2010).

We begin by writing our model calibration problem as an optimization model. Next we describe the
knowledge gradient framework for sequentially searching for the best set of parameters, where the goal is fast
convergence in the face of noisy measurements. We sketch the logic used to handle continuous parameters by
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using an approximation of the knowledge gradient, which allows us to find the best measurement by solving
a nonlinear programming problem over a nonconcave surface. Finally, we compare its performance against
sequential kriging on structured test problems as well as an industrial simulator.

1.1 CALIBRATION PROBLEM

We want to calibrate our simulator over p continuous parameters, x = [x1, ...,xp]
T . After the simulator runs

with a fixed x, it outputs q statistics of the company’s simulated operations, G1(x), ...,Gq(x); our observations
of these statistics contain noise because there is randomness in the simulator. We want to calibrate the simulator
against the company’s actual operations so we use the company’s true statistics which are g1, ...,gq. We want
to find parameters x such that Gi(x) is close to gi for i = 1, ...,q. Using a quadratic loss function, we can write
our objective as maximizing the function µ(x) given by

µ(x) = −
q

∑
i=1

(Gi(x)−gi)
2 . (1)

Our optimization problem can now be written

max
x∈X

µ(x), (2)

where x ∈ R
p and X is a compact set. Our observations of µ(x) contain noise since there is randomness in

the simulator. We will sequentially choose parameter settings xn for n = 0, ...,N −1 where N is the number
of times we are allowed to run the simulator due to time constraints. For n = 0, ...,N−1, after deciding to try
parameter setting xn, we run the simulator which gives us a noisy observation of µ(xn) which we call ŷn+1.
We next describe a model for µ(x).

2 KNOWLEDGE GRADIENT FRAMEWORK

We summarize the correlated knowledge gradient framework as presented in (Frazier, Powell, and Dayanik 2009)
and extend it to the case of continuous decision variables. The framework combines a model for the function
being maximized as well as a method for choosing the sampling decision based on the value of an observation.

2.1 GAUSSIAN PROCESS REGRESSION

Gaussian process regression (see (Rasmussen and Williams 2006)) or equivalently kriging in geosciences
(see (Matheron 1963)) uses a Bayesian approach to model the function µ(x). We treat µ(x) as a realization
of a Gaussian process; for any set of points [x0, ...,xn], [µ(x0), ....,µ(xn)] is a realization of a multivariate
normal distribution. That is, [µ(x0), ....,µ(xn)]T ∼N (µ0([x0, ...,xn]),Σ0([x0, ...,xn])), where µ0([x0, ...,xn]) is
E([µ(x0), ....,µ(xn)]T ) and Σ0([x0, ...,xn]) is Cov([µ(x0), ....,µ(xn)]T ). The mean of the prior, E(µ(x)), is often
set to a constant, and the initial covariance matrix can be fully specified by using a covariance function. For
arbitrary points x0 and x1, define Σ0(x0,x1) = Cov

(

µ(x0),µ(x1)
)

. We use the power exponential covariance
function as in (Jones, Schonlau, and Welch 1998) to assign the initial covariance,

Σ0(x0,x1) = Cov
(

µ(x0),µ(x1)
)

= βe−∑p
i=1 αi(x0

i −x1
i )2

, (3)

where β > 0 is a scalar which specifies the uncertainty of µ (larger variance is larger uncertainty), and αi > 0
specifies the smoothness in dimension i (larger correlations create a smoother regression function). Intuitively,
if x0 and x1 are close, µ(x0) and µ(x1) will be highly correlated, roughly meaning µ(x0) and µ(x1) are
expected to be similar.

To formally denote the information available at iteration n, we define a filtrationF n as the sigma-algebra gen-
erated by x0, ŷ1, ...,xn−1, ŷn. We denote our posterior distribution as µn([x0, ...,xn])= E([µ(x0), ....,µ(xn)]T |F n),
Σn([x0, ...,xn]) = Cov([µ(x0), ....,µ(xn)]T |F n), and Σn(x0,x1) = Cov(µ(x0),µ(x1)|F n). We assume our obser-
vations are normally distributed around the truth with variance λ (x), that is ŷn+1|µ,xn ∼N (µ(xn),λ (xn)). The
multivariate normal distribution is a conjugate family when the observations come from a normal distribution
with known variance, and hence [µ(x0), ....,µ(xn)] conditioned on F n also has a multivariate normal distribu-
tion. Let In be an n×n identity matrix and suppose we are at iteration n, meaning we have observed ŷ1, ..., ŷn at
the decisions x0, ...,xn−1. We now give the equations for the regression (see (Meinhold and Singpurwalla 1983);

1100



Scott and Powell

(Rasmussen and Williams 2006)). The residuals are given by

ỹn =







ŷ1

...
ŷn






−







µ0(x0)
...

µ0(xn−1)






, (4)

and the covariance of the residuals are given by,

Sn = Σ0 +







λ (x0)
. . .

λ (xn−1)






. (5)

The optimal Kalman gain can be calculated as,

Kn = Σ0[Sn]−1, (6)

and the updated means and covariance matrix of the first n decisions can be written in matrix notation as,







µn(x0)
...

µn(xn−1)






=







µ0(x0)
...

µ0(xn−1)






+Knỹn, (7)

Σn = (In −Kn)Σ0. (8)

The updated mean and variance of an arbitrary deicision, x, is called Gaussian process regression and is given
by

µn(x) = µ0(x)+
[

Σ0(x0,x) , · · · , Σ0(xn−1,x)
]

[Sn]−1ỹn, (9)

Σn(x,x) = Σ0(x,x)−
[

Σ0(x0,x) , · · · , Σ0(xn−1,x)
]

[Sn]−1







Σ0(x0,x)
...

Σ0(xn−1,x)






. (10)

For a complete derivation of recursive updating equations and their relation to a standard normal random
variable see (Frazier, Powell, and Dayanik 2009). The regression can be updated recursively with the equation







µn+1(x0)
...

µn+1(xn)






=







µn(x0)
...

µn(xn)






+

yn+1 −µn(xn)

λ (xn)+Σn(xn,xn)







Σn(x0,xn)
...

Σn(xn,xn)






. (11)

Noting that Var(yn+1 −µn(xn)|F n) = λ (xn)+Σn(xn,xn), equation (11) can be rewritten







µn+1(x0)
...

µn+1(xn)






=







µn(x0)
...

µn(xn)






+

Zn+1
√

λ (xn)+Σn(xn,xn)







Σn(x0,xn)
...

Σn(xn,xn)






, (12)

where Zn+1 is a standard normal random variable which equals
(

yn+1 −µn(xn)
)

/
√

λ (xn)+Σn(xn,xn); all the
other terms in equation (12) are F n measurable and hence constants.

2.2 KNOWLEDGE GRADIENT

The knowledge gradient is a nonnegative number which gives the value of a measurement defined to be the
expected amount the maximum of the regression will increase due to one additional observation at a decision
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x. Mathematically this is written in (Frazier, Powell, and Dayanik 2009) as

νKG,n(x) = E

[

max
u∈X

µn+1(u)

∣

∣

∣

∣

F
n,xn = x

]

−max
u∈X

µn(u), (13)

where the first term is the expected maximum of the regression after one additional observation at decision
x and the second term is the current maximum of the regression function. In equation (13), µn+1(u) is a
random variable because it depends on the observation yn+1. The knowledge gradient is larger at decisions
where the regression function is higher, but it is also larger at points where there is more uncertainty. The
knowledge-gradient policy chooses the sampling decision at time n by maximizing the knowledge gradient,

xn ∈ argmaxx∈X νKG,n(x). (14)

When the decision space is discrete and finite, the knowledge gradient can be exactly calculated using the
algorithms described in (Frazier, Powell, and Dayanik 2009). To search over a continuous parameter space,
approximations are necessary to calculate the knowledge gradient. Below we propose an adaptation of the
knowledge gradient where we approximate (13) in a way that makes it possible to search over νKG(x) as a
continuous surface.

2.3 APPROXIMATE KNOWLEDGE GRADIENT

To handle problems where the measurement x is multidimensional and continuous, we need to find an analytical
approximation which can be optimized using classical search techniques. We do this by replacing the maximum
over X with a maximum over previously sampled points, which gives us the approximate knowledge gradient,

ν̄KG,n(x) = E

[

max
i=0,..,n

µn+1(xi)

∣

∣

∣

∣

F
n,xn = x

]

− max
i=0,..,n

µn(xi)|xn=x. (15)

Analogous to equation (14), the sampling decision is the decision which has the largest value,

xn ∈ argmaxx∈X ν̄KG,n(x). (16)

The approximate knowledge gradient is now taken over a discrete set of points and hence can be calculated
by the algorithm in (Frazier, Powell, and Dayanik 2009). We define σ̃(Σ,x) = (Σex)/(

√

λ (x)+ eT
x Σex), where

ex is a column vector of zeros with a 1 corresponding to decision x. Next, we define the pairs (ai,bi) for
i = 0, ...,n as the sorted pairs (µn(xi), σ̃i(Σ̄n,xn)) conditioned on F n and xn = x for i = 0, ...,n. The pairs
(ai,bi) are sorted such that bi ≤ bi+1 for i = 0, ...,n−1. If there exists some i 6= j such that bi = b j and ai ≤ a j,
then the pair (a j,b j) dominates (ai,bi) and you add (ai,bi) to a list of initially dominated lines. The ai’s can
be viewed as the intercepts and the bi’s can be viewed as the slopes of the lines. We define A0 as the index
map such that (ai,bi) = (µn(xA0

i ), σ̃A0
i
(Σ̄n,xn)). For a fixed xn = x, ai and bi are constants. Now, the first term

in the approximate knowledge gradient can be calculated as

E

[

max
i=0,...,n

µn+1(xi)

∣

∣

∣

∣

F
n,xn = x

]

= E

[

max
i=0,...,n

µn(xi)+ σ̃i(Σ̄n,xn)Zn+1

∣

∣

∣

∣

F
n,xn = x

]

(17)

= E

[

max
i=0,...,n

ai +biZ

]

. (18)

= E

[

ñ

∑
i=0

(

aA1
i
+bA1

i
Z
)

1[c̃i,c̃i+1)(Z)

]

(19)

=
ñ

∑
i=0

[

aA1
i
(Φ(c̃i+1)−Φ(c̃i))+bA1

i
(φ(c̃i)−φ(c̃i+1))

]

. (20)

In equation (17) we use the recursive update equation for µn+1(xi) given by equation (12). Algorithm 1 is
a scan-line algorithm that replaces the maximization in equation (18) with a piecewise linear function using
indicator functions. In Algorithm 1, A1 is called the accept set and is a vector of indices which keeps track of
all the i’s such that line ai +biz is part of the maximum in equation (18). We keep track of the values of z where
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Table 1: Summary of Algorithm 1 which expresses f (z) = maxi=0,...,n ai +biz as f (z) = ∑ñ
i=0(ãi + b̃iz)1[c̃i,c̃i+1)(z). .

c0 = −∞, cn+1 = +∞, A1 = [0]
for i = 1 : n

if (ai,bi) not initially dominated
loopdone = false
while loopdone == false

j = A1(end)
c j+1 = (a j −ai)/(bi −b j)
if length(A1) 6= 1 & c j+1 ≤ ck+1 where k = A1(end −1)

Delete last element in A1.
else add i to the end of A1.

loopdone = true
end

end
end

end

the lines intersect in a vector c. ci+1 is the largest value of z such that line ai +biz is the maximum in equation
(18). In terms of the lines in the accept set A1, c1+A1

i
is the intersection of aA1

i
+bA1

i
z and aA1

i+1
+bA1

i+1
z. Solving

for the z such that these lines intersect we get c1+A1
i
= (aA1

i
−aA1

i+1
)/(bA1

i+1
−bA1

i
) for i = 1, ..., ñ, where ñ is

the length of A1 minus one. Also we set c0 = −∞ and cn+1 = +∞. For convenience, we define ãi = a(A1
i )

,

b̃i = b(A1
i )

, c̃i+1 = c(1+A1
i )

, and c̃0 = −∞ for i = 0, ..., ñ. Algorithm 1, given in Table 1, efficiently calculates

constants c̃0, ..., c̃ñ+1 and the vector of indices, A1, so that a function of the form f (z) = maxi=0,...,n ai + biz
can be rewritten as f (z) = ∑ñ

i=0(aA1
i
+bA1

i
z)1[c̃i,c̃i+1)(z).

In addition, we show how to calculate the gradient of the approximate knowledge gradient,∇xν̄KG,n(x),
at a fixed x ∈X . This will allow us to use gradient ascent to maximize the approximate knowledge gradient.
Let A = A0[A1]; A contains the indices i such that (µn(xA0

i )+ σ̃A0
i
(Σ̄n,xn))z is part of the maximum in equation

(17) for some value of z. The gradient is given by using the chain rule because a, b, and c depend on xn and
by using the fact that ∂

∂x Φ( f (x)) = φ( f (x)) ∂
∂x f (x) and ∂

∂x φ( f (x)) = −φ( f (x)) f (x) ∂
∂x f (x),

∇xE

[

max
i=0,..,n

µn+1(xi)

∣

∣

∣

∣

F
n,xn = x

]

=
ñ

∑
i=0

[(

∇xn µn(xAi)
)

(Φ(c̃i+1)−Φ(c̃i))+
(

∇xn σ̃Ai(Σ̄
n,xn)

)

(φ(c̃i)−φ(c̃i+1))
]

+
ñ

∑
i=0

[(

µn(xAi)+ σ̃Ai(Σ̄
n,xn)c̃i+1

)

φ(c̃i+1)∇xn c̃i+1 −
(

µn(xAi)+ σ̃Ai(Σ̄
n,xn)c̃i

)

φ(c̃i)∇xn c̃i
]

. (21)

The calculation of ∇xn c̃i for i = 0, ..., ñ+ 1 is relatively straightforward. An equivalent equation for the
c̃i’s which are output from Algorithm 1 is c̃i =

ãi−1−ãi
b̃i−b̃i−1

for i = 1, ..., ñ with c̃0 = −∞ and c̃ñ+1 = +∞. Then

using the quotient rule we can calculate the following:

∇xn c̃i =

{

(b̃i−b̃i−1)(∇ãi−1−∇ãi)−(ãi−1−ãi)(∇b̃i−∇b̃i−1)

(b̃i−b̃i−1)2 , for i = 1, ..., ñ
~0, for i = 0, ñ+1.

(22)
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Equation (21) also requires calculating ∇xn µn(xi) and ∇xn σ̃i(Σ̄n,xn) for i = 0, ...,n. Let ~0 be a column

vector of zeros, let B ,

√

λ (xn)+ eT
xn Σ̄nexn , and let Jn be the following matrix of first-order partial derivatives,

Jn =
[

∇xnΣ0(x0,xn) , · · · , ∇xnΣ0(xn−1,xn)
]

(23)

= 2







α1(x0
1 − xn

1)Σ
0(x0,xn) · · · α1(x

n−1
1 − xn

1)Σ
0(xn−1,xn)

...
. . .

...
αp(x0

p − xn
p)Σ0(x0,xn) · · · αp(xn−1

p − xn
p)Σ0(xn−1,xn)






. (24)

Then we can write

∇xn µn(xi) =

{

~0, if i < n
∇xn µ0(xn)+ Jn[Sn]−1ỹn, if i = n.

and

∇xn σ̃i(Σ̄n,xn) =
B∇xneT

xi Σ̄nexn − eT
xi Σ̄nexn∇xnB

B2 ,

where

∇xneT
xi Σ̄nexn =



















2DIAG(α)(xi − xn)Σ0(xi,xn)− Jn[Sn]−1Σ0exi , if i < n

−2Jn[Sn]−1







Σ0(x0,xn)
...

Σ0(xn−1,xn)






, if i = n

and

∇xnB =
1
2
(λ (xn)+Σn(xn,xn))−

1
2






∇xnλ (xn)−2Jn[Sn]−1







Σ0(x0,xn)
...

Σ0(xn−1,xn)












.

We have now shown how to calculate the approximate knowledge gradient in equation (20) and its
gradient in equation (21). Detailed derivations for the procedures and equations in the section can be found
in (Scott, Frazier, and Powell 2010).

2.4 MAXIMIZING THE APPROXIMATE KNOWLEDGE GRADIENT

Choosing the sampling decision in equation (16) requires care because the knowledge gradient is not a concave
function. From observation, the knowledge gradient often has local minima near previously sampled points
because the uncertainty near these points is very low. On the other hand, when two points have been sampled,
often there is a local maximum in the middle of the points where the uncertainty is still large. Based on
these observations and because equation (21) gives us the gradient of the approximate knowledge gradient,
we propose a multistart gradient ascent algorithm started at the midpoints of every possible pair of previously
sampled points. Each gradient ascent has a fixed stepsize chosen such that the magnitude of the initial step is
one fourth the Euclidian distance between the pair of previously sampled points to ensure the gradient ascent
algorithm does not immediately leave the region of interest. Each gradient ascent algorithm will converge
to a local maximum. Afterwards, we take the maximum of all the local maxima to get an approximation of
the maximum of the approximate knowledge gradient. Finding the exact maximum is not critical since this
optimization problem is just to determine the next sampling decision.

2.5 PARAMETER ESTIMATION DETAILS

Our observations, y1, ...,yn, come from a multivariate normal distribution and hence we can easily write the
likelihood. Assuming that the variance of the observation noise is a constant, λ , and the initial mean, µ0(x),
is a constant, µ0, the likelihood can easily be written as,

Lŷ(α,β ,λ ,µ0) = (2π)−n/2|Σ0 +λ I|−1/2exp

(

−1
2
(ŷ−µ01)T (Σ0 +λ I)−1(ŷ−µ01)

)

,
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Table 2: AKG Policy.

for n = 0, ...,N −1
Choose sampling decision: xn ∈ argmaxx∈X ν̄KG,n(x).
Get noisy observation ŷn+1 of function at xn.
Update the regression, µn+1 and Σn+1.

end
Implement x⋆ ∈ argmaxx∈X µN(x).

where 1 is a n× 1 column vector of ones and ŷ =
[

ŷ1 · · · ŷn
]T

. For the numerical work in this paper
we use maximum likelihood estimation, although maximum a posteriori or other methods for estimating the
parameters of a multivariate normal distribution are appropriate.

2.6 OUTLINE OF APPROXIMATE KNOWLEDGE GRADIENT POLICY

As outlined in (Scott, Frazier, and Powell 2010), the approximate knowledge gradient policy samples the
maximum of the approximate knowledge gradient after every iteration in order to sequentially choose our N
sampling decisions. Table 2 shows the approximate knowledge gradient policy. If necessary, an initial Latin
hypercube sampling design (LHS) may be used to estimate the parameters. After our N observations, the
natural choice for the implementation decision is to choose the decision we believe is best by maximizing
µN(x), however this could be modified if we were risk adverse and were less inclined to implement decisions
with high uncertainty.

2.7 CONVERGENCE OF APPROXIMATE KNOWLEDGE GRADIENT POLICY

The approximate knowledge gradient policy is a myopic policy by design, but it does not get stuck at a local
maximum. The following assumptions are sufficient to show that as the number of iterations goes to infinity,
our uncertainty of the function decrease to zero for every decision. In the proof we assume the observation
noise is constant, the regression is bounded, and µ() does not become perfectly does not become perfectly
correlated at two distinct decisions:

Assumption 1. λ (x) = λ

Assumption 2. limsupn→∞ |µn(x)−µn(u)| is bounded for every x,u ∈ X almost surely.

Assumption 3. For any x 6= u, ∃c s.t. limsupn→∞ |Corrn(µ(x),µ(u))| ≤ c < 1 almost surely.

With these assumptions, (Scott, Frazier, and Powell 2010) shows that the approximate knowledge gradient
policy will find the maximum of the function, formally written in the following theorem.

Theorem 4. Under the Approximate Knowledge Gradient Policy, if Assumptions 1-3 are satisfied, then
limn→∞Varn[µ(x)] = 0 for all x.

The proof begins by showing that for any accumulation point of the policy we become certain of the
function at the accumulation point, limn→∞Varn(µ(xacc)) = 0. A formal argument is then used to show
liminfn→∞ supx∈X ν̄KG,n(x) = 0 for every sample path, followed by a proof by contradiction based on the
fact that having limn→∞Varn[µ(x)] > 0 would result in sufficiently large approximate knowledge gradients.
Although this theorem says nothing about the rate of convergence, it would be a weakness to lack this property.

3 NUMERICAL EXPERIMENTS

In this section we compare the approximate knowledge gradient policy (AKG) with sequential kriging
optimization (SKO) from (Huang, Allen, Notz, and Zeng 2006). We first compare them on maximizing
Gaussian processes in the presence of noise since both algorithms are based on Gaussian process regression.
Finally, we compare them, along with LHS, on calibrating an airline simulator.
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Table 3: Performance on Gaussian processes where the observations contain normally distributed noise with variance
λ . Bold means that the value is statistically significantly different from the competition.

AKG SKO
Test Function

√
λ E(OC) Std (E(OC)) Med(OC) E(OC) Std (E(OC)) Med(OC)

GP (α = .1,β = 100)
√

.1 .0076 .0057 .0000 .0195 .0041 .0043

σ = 8.417

√
1.0 .0454 .0243 .0018 .0888 .0226 .0182√

10.0 .3518 .0587 .0337 .2426 .0216 .0535
GP (α = 1,β = 100)

√
.1 .0077 .0022 .0000 .0765 .0311 .0000

σ = 9.909

√
1.0 .0270 .0045 .0000 .1993 .0486 .0255√

10.0 .4605 .1028 .0489 .6225 .0669 .1558
GP (α = 10,β = 100)

√
.1 .1074 .0259 .0000 .5302 .0799 .0000

σ = 10.269

√
1.0 .1846 .0286 .0000 .6638 .0839 .0839√

10.0 1.0239 .1021 .1415 1.8273 .1450 .6290

3.1 PERFORMANCE ON GAUSSIAN PROCESS TEST FUNCTIONS

We generate one-dimensional Gaussian processes over a 300 point grid on the interval [0,15] with the
covariance function given in equation (3). Each algorithm is run for 50 observations and each observation
contains normally distributed noise with variance λ . We define the opportunity cost as the difference between
the true maximum and the truth of the decision we believe is the best; OC = maxx µ(x)−µ(x⋆), where x⋆ is
the implementation decision. Thus the closer the opportunity cost is to zero, the better. Table 3 summarizes
the results of each algorithm with different covariance function parameters and levels of observation noise.
Each row corresponds to 500 sample paths, and the bold numbers are significantly better using Welch’s t-test
at the .05 level. The first 4 sampling decisions for each algorithm are chosen using an LHS design in order
to estimate the parameters. At that point the algorithms begin and MLE parameter estimation is done after
every observation. Table 3 shows some significant benefits for the approximate knowledge gradient policy
on Gaussian processes.

3.2 AIRLINE CALIBRATION

We now demonstrate the approximate knowledge gradient policy on a particular calibration problem of the form
given by equations (1) and (2). An industrial computer model simulates one month of a business jet’s operations
which involves customers’ demands for airplanes, crew scheduling, ferrying, and unexpected airplane repairs;
the model takes approximately fifteen minutes to simulate a month of the company’s operations once. After the
program simulates the month of the operations one time, it outputs a set of statistics summarizing the behavior
of the company over the month. The statistics of interest include the percentage of airplanes upgraded, G1(x),
and the percentage of airplanes downgraded, G2(x); if the company cannot provide the exact airplane model
requested by the customer, the company can upgrade or downgrade the customer’s demand by providing a
better or worse plane (each airplane is given a quality number based on its size and age). The other important
output statistics are three utilities (G3(x),G4(x),G5(x)) which are observable percentages based on the airlines
operations. In order for the simulator to be useful, these output statistics should match the previous month’s
operations of the company fairly closely. The actual statistics of the company are given, and we call them
our target goals, g1, ....,g5.

Before each run of the simulator, we may choose the parameter settings, x, of the simulator. For our
particular problem we are allowed to set the maximum the plane can be downgraded, x1, or upgraded, x2.
Parameters x3 and x4 are the simulator’s scaling factors for the penalties for downgrading and upgrading a
customer’s demand; the company provides the customer with an airplane as similar to their request as possible.
The last parameter, x5, controls the simulator’s amount of ferrying (flying airplanes without passengers). The
company can fly planes without passengers in order to strategically place airplanes and crew in more useful
locations.

Our calibration problem requires solving the optimization problem in equation (2). Since each run of the
simulator requires fifteen minutes, we limit ourselves to 50 iterations to determine the best parameter settings.
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3.3 PERFORMANCE ON CALIBRATION PROBLEM

In this section we compare the algorithms for calibrating the airline simulator. Based on knowledge of plausible
parameter values, we specify our domain by requiring x1 ∈ [0,35.0], x2 ∈ [0, .4], x3 ∈ [20,60], x4 ∈ [0, .4],
x5 ∈ [0,60], and the target goals for the output statistics in the objective are set to be g1 = 40, g2 = 4, g3 = 60,
g4 = 60, and g5 = 60. For the AKG and SKO, the first 12 observations were chosen by an LHS design in
order to obtain MLE estimates of the parameters of the covariance function in equation (3) which are the
variance of the observation noise, λ , and the initial mean, µ0.

We would like the objective given by equation (1), which is negative, to be as large as possible, although
an objective of zero is not necessarily achievable by the simulator. For LHS, the implementation decision, x⋆,
is chosen simply as the sampling decision with the largest (best) observation. For AKG in these numerical tests
the implementation decision is chosen in the same way as SKO; (Huang, Allen, Notz, and Zeng 2006) gives
a exponential utility maximization argument to suggest using x⋆ = argmaxx0,...,xn−1 µn(x)−

√

Σn(x,x) for the
implementation decision. This avoids implementation decisions with very large uncertainty that maxx µn(x)
may occasionally give.

Figure 1 shows the results of the the algorithms calibrating the simulator, each with 50 observations from
the simulator. Each algorithm was run five times, and the five sample paths of the objective are plotted. To
produce Figure 1, the estimates of the objective are obtained after the algorithm has run by going back and
running the simulator at each of the implementation decisions. The Latin hypercube sampling design appears
to have a steadily increasing objective. SKO and AKG have similar performances, although they both appear
better than LHS. The output statistics, G1 through G5, are all on the scale of 0-100. Limited sample paths
are available due to the time-consuming nature of the simulator, but we can visually conclude that the AKG
policy is a competitive algorithm.

Figure 1: We show the performance of the algorithms on the calibration problem. The estimates of the objective of
each algorithm are shown from five sample paths.

We now briefly examine the first sample path of the AKG algorithm by plotting where it sampled as well
as how the output statistics of the implementation decisions improve as the number of sampled decisions
increases. Figure 2 shows where the policy is sampling in each of the five dimensions. The final implementation
decision for this sample path is x = [20.4,0.40,44.5,0.16,51.68]T . Looking at the histograms in Figure 2,
we see that for each dimension of x the AKG policy has explored much of the decision space, but has also
spent additional time sampling near the final implementation decision.

4 CONCLUSION

We describe an adaptation of the knowledge gradient for continuous measurement choices, which is then run
on test functions and later used for calibrating an industrial simulator. In both scenarios the approximate
knowledge gradient is found to be a competitive policy base on the value of an additional measurement. The
approximate knowledge gradient policy is a viable method with nice convergence properties that sequentially
chooses different parameter settings in order to optimize continuous parameters with a limited number of
noisy runs.
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Figure 2: Frequency histograms showing where the AKG policy sampled in each dimension for a particular sample
path.
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