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ABSTRACT

We examine a newsvendor problem with two agents: a requesting agent that observes private demand information,
and an oversight agent that must determine how to allocate resources upon receiving a bid from the requesting agent.
Because the two agents have different cost structures, the requesting agent tends to bid higher than the amount that
is actually needed. As a result, the allocating agent needs to adaptively learn how to interpret the bids and estimate
the requesting agent’s biases. Learning must occur as quickly as possible, because each suboptimal resource allocation
incurs an economic cost. We present a mathematical model that casts the problem as a Markov decision process with
unknown transition probabilities. We then perform a simulation study comparing four different techniques for optimal
learning of transition probabilities. The best technique is shown to be a knowledge gradient algorithm, based on a
one-period look-ahead approach.

1 INTRODUCTION

Consider a game in which two players with newsvendor payoffs, a requesting agent and an oversight agent, have
to coordinate to meet an uncertain demand. This arrangement occurs in collaborative settings, where members of a
common organization have to make a joint resource allocation decision to satisfy consumer demand. More often than
not, however, the adverse effects of over- or underestimating this demand differ for the two parties, a fact that translates
into different underage and overage cost structures between them. Consider the following scenarios:

• The marketing branch of a business requests a budget for an upcoming advertising campaign. Underfunding
the project may result in an ineffective campaign, whereas overfunding draws monetary resources away from
other important projects within the organization.

• A project manager within a consulting firm coordinates with other managers to assemble a team for a given
project. An understaffed project may be subject to unnecessary delays and missed deadlines, while overstaffing
projects can create coordination problems and force the company to take on fewer projects.

• The IT department of a company requests a timeframe for completing a programming assignment. The IT
department faces a penalty for not finishing on time, but an estimate that is too long will unduly stall the
company’s objectives.

The requesting agent is usually endowed with access to better information about the demand, and has an incentive
to engage in opportunistic behaviour, submitting misleading allocation requests that exaggerate the difference between
the optimal allocation quantities for the two agents. However, the oversight agent can, through repeated play and
observation, learn the requesting agent’s behavioral patterns using standard Bayesian updating techniques, eventually
gaining the ability to account for the bias in the requests. The oversight agent will also have a strong interest in learning
this biasing behaviour quickly, as underage and overage costs accumulate over time.

From the point of view of the oversight agent, the problem can be modeled using a Markov decision process
(see Puterman 1994 for a definitive overview of classical MDPs) with the added dimension of unknown transition
probabilities. The state of the MDP is an aggregate summary of the past history of the game (for example, the last
three requests submitted). The set of actions is the set of possible allocation quantities, and the reward process is
given by the newsvendor payoff of the oversight agent. However, the probability of moving from one state to another
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depends on the strategy of the requesting agent, which is unknown to the oversight agent. These transition probabilities
must be estimated and improved over time as the game progresses. The oversight agent is thus faced with a classic
exploration/exploitation tradeoff: it may be necessary to choose an action that appears to be sub-optimal, in the hope
of collecting new information about the bias of the requesting agent that could help lower costs later on. The problem
of making sequential decisions under an evolving belief structure is known as “optimal learning.”

Despite a rich literature on single-agent newsvendor problems (see Petruzzi and Dada 1999 and Khouja 1999 for
further references), few studies have considered coordination between two agents with newsvendor payoffs. Numerous
studies on supply chain coordination analyze production decisions between retailers and manufacturers, and design
contractual incentives to achieve optimal production levels (see e.g. Cachon 2003 for an overview). An alternate
approach considers the effects of exchanging information on demand forecasts and production capabilities (see e.g.
Chen 2003). However, these studies consider the perspective of a central planner optimizing costs over the entire supply
chain, whereas the two-agent newsvendor problem deals with information acquisition and adaptive strategies on each
player’s aggregate costs. Information sharing does not consider the dimension of optimal learning.

Bayesian optimal learning has been widely studied in the context of simple problems such as ranking and
selection (see Bechhofer, Santner, and Goldsman 1995 and Kim and Nelson 2006) and multi-armed bandits (see e.g.
Gittins 1989 or Berry and Fristedt 1985). Optimal learning has also been studied in the context of the single-
agent newsvendor problem, where it is necessary to learn an uncertain demand. Nahmias and Smith (1994) and
Agrawal and Smith (1998) represent frequentist approaches. Bayesian methods for cases of fully observable demand
can be found in Scarf (1959), Clark and Scarf (1960), and Azoury (1985). The case of censored demands is covered in
Lariviere and Porteus (1999), Ding, Puterman, and Bisi (2002) and Bensoussan, Cakanyildirim, and Sethi (2007), and
reviewed by Berk, Gürler, and Levine (2007). All of these studies focus on the issue of information collection, and do
not involve a physical state variable.

An early approach to learning with a physical state (Bellman and Kalaba 1959) applied classical dynamic pro-
gramming techniques after expanding the state variable to include the information about the transition probabilities (the
“hyperstate” or “knowledge state”). However, the size of the state variable quickly becomes intractably large under
this approach. The work by Cozzolino, Gonzalez-Zubieta, and Miller (1965) derives an optimal solution for a simple
example with two physical states, but is also unable to handle larger problems. Similar approaches can be found in
Martin (1967) and Satia and Lave (1973).

Duff and Barto (1996) applied concepts from the Bayesian optimal learning literature by placing Dirichlet priors
on the transition probabilities, and viewing the problem of choosing an action as an instance of the multi-armed bandit
problem. The resulting algorithm is only outlined, without much discussion of implementation. Later studies by
Dearden, Friedman, and Russell (1998) and Mannor et al. (2007) place a Bayesian prior on the value function, whereas
Dearden, Friedman, and Andre (1999) and Strens (2000) place the priors on the transition probabilities. Other Bayesian
approaches have been considered in the literature on partially observable MDPs, with a detailed survey available in
Ross et al. (2008).

We tackle the problem using the concept of knowledge gradients, which originally appeared in Gupta and Miescke (1996)
as an approach to the ranking and selection problem. The knowledge gradient (KG) method chooses the action that
maximizes the expected single-period improvement in the estimate of the optimal objective value. This approach
was studied in greater detail by Frazier, Powell, and Dayanik (2008), and then extended to other classes of opti-
mal learning problems, such as ranking and selection with correlated rewards (Frazier, Powell, and Dayanik 2009),
ranking and selection with unknown measurement noise (Chick, Branke, and Schmidt 2010) and multi-armed bandits
(Ryzhov, Powell, and Frazier 2009, Ryzhov and Powell 2009). The work by Ryzhov and Powell (2010) derives a KG
policy for an offline learning problem where the objective is to solve a path-finding problem on a graph with unknown
arc lengths. However, the physical structure of the graph only comes into play when solving the shortest-path problem,
not when deciding what to measure.

In this paper, we propose a KG policy for the problem of learning on an MDP with unknown transition probabilities.
We show how the expected single-period improvement can be computed exactly, and we also suggest how the computational
cost of the policy can be reduced. We also give the implementation of the local bandit approximation method of
Duff and Barto (1996), which was not done in the original paper. Finally, we present experimental results comparing
KG to local bandit approximation and other methods.

2 MATHEMATICAL MODEL

Consider a demand process D that is unknown to both players. Further, suppose that the requesting agent can make
a noisy observation of the demand at time n given by D̂n ∼ N

(

Dn,σ2
)

. The variance σ2 can be interpreted as the
accuracy of the demand forecast made by the requesting agent.
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2.1 Generation of the request

Let cu
r and co

r be the underage and overage costs of the requesting agent. In the nth play of the game, the requesting
agent’s cost function for an allocation quantity x̃n is the standard newsvendor payoff:

CR (Dn, x̃n) = cu
r (Dn − x̃n)+ + co

r (x̃n −Dn)+ .

The requesting agent minimizes costs by ordering at the critical quartile (Arrow, Harris, and Marschak 1951), or

qn,∗ = D̂n +σΦ−1
(

cu
r

cu
r + co

r

)

.

However, in most cases, the oversight agent is more conservative than the requesting agent, with a lower underage cost
relative to overage cost. Letting cu

a and co
a be the underage and overage costs of the oversight agent, we have cu

a
co

a
< cu

r
co

r
.

From the point of view of the oversight agent, the optimal allocation quantity given D̂n is

x̃n,∗ = D̂n +σΦ−1
(

cu
a

cu
a + co

a

)

< qn. (1)

Because the oversight agent prefers to allocate less than the requesting agent asks for, the latter may adopt a strategy of
employing a bias or padding term β when making requests. Thus, the actual order quantity submitted by the requesting
agent at time n is

Qn = qn,∗ +β n. (2)

In practice, the oversight agent does not see the observation D̂n when making a decision, and only has access to the
request Qn. Then, (1) can be rewritten in terms of β n as

x̃n,∗ = Qn +σ
(

Φ−1
(

cu
a

cu
a + co

a

)

−Φ−1
(

cu
r

cu
r + co

r

))

−β n.

We can express the cost incurred by the oversight agent in the nth play, given the decision xn ∈ X , is expressed in
terms of the differential

xn = x̃n −

(

Qn −σΦ−1
(

cu
r

cu
r + co

r

))

(3)

that was allocated in relation to the request Qn. The newsvendor cost for the oversight agent now depends on the bias,
and is given by

CO (Sn,xn,β n) = cu
a [−(xn +β n)]+ + co

a [xn +β n]+ . (4)

With the representation in (4), we can restate the oversight agent’s decision problem in terms of choosing the differential
xn rather than the allocation quantity x̃n itself. The request Qn is now contained in the decision variable. By considering
the differential (how much to over- or underfund the request) rather than the request itself, the bias becomes the only
uncertain quantity in the problem.

We assume that the bias β n is drawn from a finite set {b1, ...,bK} where bK > ... > b1. The distribution of β n

depends on the degree of cooperation between agents. If the requesting agent expects full cooperation from the oversight
agent, β n will tend to be small; if the requesting agent believes that the oversight agent is likely to underfund the
request, β n will be more likely to be large. The requesting agent can infer the oversight agent’s responsiveness from
an aggregate expression of the past history of the moves made in the game up to time n, represented by a scalar

sn = hn (

β 0,x0, ...,β n−1,xn−1) , (5)

where hn is a discretizing function mapping the previously observed costs into some finite set. For a given cost history
s at time n, the bias β n is a discrete random variable with probability mass function given by

P(β n = bk |s) = ρs,k.

If S is the number of possible cost histories, the biases can be completely characterized by an S×K matrix called ρ ,
where element ρs,k is as given above. The bias process (β n)∞

n=0 is thus Markovian with respect to the sigma-algebra
F n generated by the first n moves made by both agents.
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2.2 Markov decision process model

Suppose that the matrix ρ is known to the oversight agent. This assumption is relaxed in Section 3, where we assume
that the oversight agent holds imperfect beliefs about the biasing behaviour that can be improved through learning. We
model the decision problem of the oversight agent using a Markov decision process.

The decision made by the oversight agent at time n depends on the history sn of the game as given in (5). We thus
refer to sn as the physical state of the MDP. The decision itself is a quantity xn, as defined in (3). We denote by X

the set of all possible differentials available to the oversight agent, and assume that X is finite (e.g. a discretization
of an interval). Once a decision is made, the next state is determined by a function sn+1 = SM (sn,xn,β n) where SM is
determined by (5). The quantity β n will not become known to the oversight agent until time n+1. However, we index
it by n to reflect the fact that it is set by the requesting agent at time n.

The oversight agent must choose an allocation policy π to minimize the total discounted cost,

inf
π

IE

∞

∑
n=0

γnCO (sn,Xπ,n (sn) ,β n) , (6)

where Xπ,n is a decision rule associated with the policy π that maps the state sn to an action Xπ,n (sn) ∈ X . The
allocation policy that solves (6) can be found by solving Bellman’s equation (see Puterman 1994) using value iteration,
policy iteration, or linear programming methods.

2.3 A learning model for transition probabilities

Suppose now that the oversight agent does not know the biasing beliefs ρ exactly. Following the precedent of
Silver (1963) and Martin (1967), we use Dirichlet priors to capture the oversight agent’s uncertainty about ρ . Given a
set of unknown transition probabilities p1, ..., pK for K outcomes and a vector of parameters α = (α1, ...,αK) with all
αk ≥ 0, the Dirichlet density is given by

f (p1, ..., pK ;α1, ...,αK) =
Γ

(

∏K
k=1 αk

)

∏K
k=1 Γ(αk)

K

∏
k=1

pαk−1
k

for all p1, ..., pK satisfying p1 + ...+ pK = 1. The notation Γ refers to the gamma function. The resulting marginal
estimate of each individual probability pk is given by (DeGroot 1970)

IE(pk) =
αk

∑K
k′=1 αk′

.

A sample p̂ ∼ Dir (α) can be generated (Gelman et al. 2004) by first drawing Ak ∼ Gamma(αk,1) for k = 1, ...,K and
letting p̂k = Ak/∑K

k′=1 Ak′ .
Let ρs = (ρs,1, ...,ρs,K) denote the biasing behaviour for a given cost history. This vector is unknown to the oversight

agent, but we assume that our beliefs about ρs follow a Dirichlet distribution with parameter vector α0
s =

(

α0
s,1, ...,α

0
s,K

)

,

denoted by ρs ∼ Dir
(

α0
s

)

. We assume that ρs and ρs′ are independent for s 6= s′. The collection α0 =
(

α0
s |s

)

is referred
to as the knowledge state, to distinguish it from the physical state of the MDP.

Every time we choose an action x under a cost history s, we observe a random transition to a new state. The
observation W n+1

s is determined using the true, unknown bias probabilities ρs, and thus provides information that can
be used to update our beliefs. The random transition can be viewed as a multinomial random variable with 1 trial
(the single random transition) and K different categories (the possible values of the bias). The pmf of the random
observation is given by P

(

W n+1
s = ek

)

= ρs,k, where ek is a vector of zeros with 1 at position k. Note that the random
transition depends on the bias β n that was already chosen by the requesting agent before the action xn is selected.
Thus, W n+1

s depends on s, but not on the choice of action out of s.
Each random transition changes our beliefs about the bias probabilities. Let αn

s denote our beliefs about ρs at time
n. If, at time n, the physical state is sn, the updating equations for our beliefs are given by

αn+1
s =

{

αn
s +Ŵ n+1

s if s = sn

αn
s otherwise.

(7)

Because the vectors ρs are independent, observing a random transition out of a state with history s only changes our
beliefs about ρs. This change is made by incrementing the corresponding component of αn

s by 1. A derivation of (7)
can be found in DeGroot (1970).
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In fact, given αn and the game history s, we can compute the conditional distribution of αn+1
s . Despite the

complexity of the Dirichlet density, this conditional distribution has a simple form that will allow us to present a
computable learning policy in Section 3. Proposition 1 gives this result.

Proposition 1. Suppose that, at time n, the physical state of the MDP is s. The conditional distribution of αn+1
s given

αn is discrete, with pmf

ρn
s,k = Pn (

αn+1
s = αn

s + ek
)

=
αn

s,k

∑K
k′=1 αn

s,k′

where Pn denotes a conditional probability given αn.

Proof: The value of αn+1
s depends on the outcome of the random transition W n+1

s . We know that W n+1
s takes values ek

for k = 1, ...,K and follows a multinomial distribution. Thus, we can apply the tower property of conditional expectation
to write

ρn
s,k = IE

n (

Pn (

αn+1
s = αn

s + ek |ρ
))

= IE
(

ρs,k |αn) =
αn

s,k

∑K
k′=1 αn

s,k′
.

The notation IE
n denotes a conditional expectation given αn.

3 LEARNING POLICIES

We describe three heuristics for optimal learning of transition probabilities in an MDP. The first is the pure exploitation
policy, which follows a greedy strategy and does not consider the learning component of the problem when making
decisions. The second is the local bandit approximation policy of Duff and Barto (1996), which attempts to reduce the
problem to a multi-armed bandit problem. Finally, we apply the knowledge gradient concept of Gupta and Miescke (1996)
and Frazier, Powell, and Dayanik (2008) to this setting.

3.1 Value iteration and pure exploitation

With the addition of learning into the problem, the policy π in (6) is a set of decision rules Xπ,n mapping a physical
state sn and a knowledge state αn to a point in the action space X . We will now give a simple example of such a
learning policy.

Suppose that we have made n measurements and stopped learning entirely. We will continue to make transitions
and collect rewards after time n, but we will not be allowed to use these transitions to update our beliefs, so αn′ = αn

for all n′ > n. Then, our best guess of the optimal policy is the policy produced by the classic value iteration algorithm
(an overview of this and other classic MDP algorithms is available in Puterman 1994), assuming that the true transition
probabilities are given by the time-n beliefs αn. This procedure, which we refer to as αn-value iteration, initializes
v0 (s) = 0 for all possible physical states s, and iterates

vm (s) = min
x∈X

K

∑
k=1

ρn
s,k

(

CO (s,x,bk)+ γvm−1 (

sM (s,x,bk)
))

(8)

for all s until maxs
∣

∣vm (s)− vm−1 (s)
∣

∣ is within some specified tolerance level, then returns the policy πn that chooses
actions by solving (8) using the final approximation vπn obtained from the procedure. If desired, value iteration can be
replaced by any classic MDP algorithm.

The pure exploitation policy is defined to be the policy that makes a decision according to the policy πn obtained
from αn-value iteration, but then proceeds to update the beliefs using (7), and uses αn+1-value iteration to recompute
the policy that seems to be the best under the new beliefs. The pure exploitation decision rule is

XExp,n (sn,αn) = arg min
x∈X

K

∑
k=1

ρn
sn,k

[

CO (sn,x,bk)+ γvπn
(

SM (sn,x,bk)
)]

. (9)

3.2 Local bandit approximation

The local bandit approximation (LBA) policy by Duff and Barto (1996) removes the physical state from the problem,
and uses techniques from the multi-armed bandit literature to make decisions. Suppose that we are at time n. We can
use αn-value iteration to obtain the policy πn. If we fix this policy, the MDP reduces to a Markov chain Yn whose
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transition probabilities are given by

P
(

Yn+1 = SM (s,Xπn (s) ,bk) |Yn = s
)

= ρn
sn,k.

When we make a random transition out of state s, we incur a cost of the form

f
(

s,SM (s,Xπn (s) ,bk)
)

= CO (s,Xπn (s) ,bk) .

We can let

τs,s′ = min
{

n ≥ 0 |Yn = s′, Y0 = s
}

be the number of transitions required for this Markov chain to reach state s′ for the first time, given that it starts in
state s. The quantities

R
(

s,s′
)

= IE





τs,s′−1

∑
n=0

γn f (Yn,Yn+1) |Y0 = s





T
(

s,s′
)

= IE





τs,s′−1

∑
n=0

γn |Y0 = s





represent the expected discounted cost incurred and time elapsed up to time τs,s′ , and can be computed using first-transition
analysis on Yn.

Then, given that the MDP is in state sn, define

gx (sn,αn) =
∑K

k=1 ρn
sn,k

[

CO (sn,x,bk)+ γR
(

SM (sn,x,bk) ,sn
)]

1+ γ ∑K
k=1 ρn

sn,kT (SM (sn,x,bk) ,sn)
. (10)

If we choose action x out of state sn, we will transition to state SM (sn,x,bk) with a certain probability, after which
we will follow the policy πn. When we do so, we will make τSM(sn,x,bk),sn transitions before we return to the state sn.
Thus, (10) represents the expected total discounted cost per unit of expected discounted time that we receive during
the sojourn between visits to sn.

Equation (10) is analogous to the reward-per-unit-time representation of Gittins indices for multi-armed bandits.
Gittins indices were first developed by Gittins and Jones (1974), and this particular representation is discussed e.g. by
Duff (1995). Thus, gx (sn,αn) is like a Gittins index for the action x, with the sojourn costs and times determined by
policy πn after the first transition. The LBA policy then makes the decision with the smallest cost-per-unit-time,

XLBA,n (sn,αn) = arg min
x∈X

gx (sn,αn) . (11)

If we were maximizing a reward instead of minimizing a cost, we would take the argmax in (11) rather than the argmin.
At each time step, LBA views the process as stateless; the downstream rewards are incorporated into the calculation

of (10), and the problem reduces to a choice between |X | different reward processes, each of which leads back to the
present location. To compute Gittins indices for all processes, we must first compute πn, then solve 2 · |X | systems of
S×S linear equations.

3.3 The knowledge gradient policy

We apply the knowledge gradient concept, studied by Gupta and Miescke (1996) and Frazier, Powell, and Dayanik (2008)
originally for the ranking and selection problem, to the setting of MDPs with unknown transition probabilities. In
Ryzhov and Powell (2009), this concept is stated as “choosing the measurement that would be optimal if it were the
last chance to learn.” We assume that we are in state sn at time n, and the (n+1)st transition will be the last one to
impact our beliefs. That is, αn′ = αn+1 for n′ > n + 1. Then, we need to choose one action at time n, and we will
switch to the policy πn+1 starting at time n+1.

Suppose that we make a decision x at time n. By Proposition 1, we know that αn+1
sn is discrete with K possible

values, and αn+1
s′ is known for all s′ 6= s. Let αn+1,k

sn = αn
sn + ek denote the kth possible value of αn+1

sn . By Proposition
1, the conditional probability of this outcome given αn is ρn

sn,k.

For each outcome k = 1, ...,K, we can run αn+1,k-value iteration to obtain a vector vπk
n+1 representing the infinite-

horizon value of being in each state, given that we see outcome k in the random transition out of sn at time n. We can
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take an expectation over all possible outcomes of this transition to obtain

IE
n
sn,xvπn+1 =

K

∑
k=1

ρn
sn,kvπk

n+1
(

SM (sn,x,bk)
)

, (12)

where the expectation IE
n
sn,x is given αn and the state-action pair (sn,x). If we observe the kth outcome on the random

transition out of sn after making the decision x, it follows that sn+1 = SM (sn,x,bk). The time-n + 1 infinite-horizon

value of being in this state is then vπk
n+1

(

SM (sn,x,bk)
)

.
The knowledge gradient policy chooses the optimal action to take at time n, under the assumption that we will

stop learning at time n+1. We can do this by solving a modified version of Bellman’s equation given by

XKG,n (sn,αn) = arg min
x∈X

K

∑
k=1

ρn
sn,k

[

CO (sn,x,bk)+ γvπk
n+1

(

SM (sn,x,bk)
)

]

.

The KG decision rule can be rewritten as

XKG,n (sn,αn) = arg min
x∈X

K

∑
k=1

ρn
sn,kC

O (sn,x,bk) + γ
K

∑
k=1

ρn
sn,k

[

vπk
n+1

(

SM (sn,x,bk)
)

− vπn
(

SM (sn,x,bk)
)

]

+ γ
K

∑
k=1

ρn
sn,kvπn

(

SM (sn,x,bk)
)

.

Define the knowledge gradient (KG) value of action x in state sn to be

νKG,n
sn,x = IE

n
sn,xvπn

(

sn+1)− vπn+1
(

sn+1)

=
K

∑
k=1

ρn
sn,k

[

vπn
(

SM (sn,x,bk)
)

− vπk
n+1

(

SM (sn,x,bk)
)

]

. (13)

Then, the KG decision rule becomes

XKG,n (sn,αn) = arg min
x∈X

{

K

∑
k=1

ρn
sn,k

[

CO (sn,x,bk)+ γvπn
(

SM (sn,x,bk)
)]

}

− γνKG,n. (14)

This expression is very similar to Bellman’s equation for infinite-horizon MDPs, with one crucial difference. In addition
to the one-period contribution function and the downstream reward, we also consider the expected improvement νKG,n

sn,x
in our estimate of the downstream cost that we obtain as a result of choosing action x. To put it another way, the
KG factor νKG,n

sn,x is a bonus for action x representing the value of the information that we can obtain by choosing this
action out of state sn at time n. Note that our algorithm computes this quantity exactly (unlike e.g. the value of perfect
information quantity of Dearden, Friedman, and Andre 1999, which must be estimated using Monte Carlo sampling).

For each action available to us in state sn, we must compute vπk
n+1 for all outcomes k in order to compute the KG

factor using (13). Thus, it is necessary to solve K · |X | value iteration problems in each time step. At the same time,
the computational cost depends only on the size of the action space and the set of possible biases, not on the size of
the space of all possible knowledge states. Furthermore, it is possible to substantially reduce the computational cost
of the KG policy by “fast-starting” the value iteration algorithm in each time step. Instead of initializing v0 = 0 when
running (8), we can initialize value iteration at time n+1 with the output of value iteration at time n.

Table 1 shows the running times of the first three iterations of a MATLAB implementation of the KG policy for
problems of various sizes. Because KG requires us to solve K · |X | value iteration problems, we measure problem
size in terms of this quantity. The first iteration (time n = 0) is the most computationally expensive. Starting at n = 1,
however, we are able to fast-start value iteration with the results from the previous time step. We can observe a speedup
by a factor of five or more between n = 0 and n = 1. This allows KG to handle problems whose size ranges in the
hundreds of thousands, after the hurdle of the first time step.

4 SIMULATION STUDY

Two learning policies can be compared by running them on randomly generated MDPs, in which the true transition
probabilities ρ are generated along with the other parameters. The policies are not allowed to see the true values ρ
when making decisions. However, the random transition made by an MDP after an action has been chosen can be
determined using the true probabilities. Thus, the discounted long-run reward collected by a policy is based on the
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(a) (b)

Figure 1: Results for (a) 15 truth-from-prior problems, and (b) 15 equal-prior problems.

true probabilities, though the decisions themselves are based on the beliefs αn. Our performance measure for a given
problem is the difference in discounted long-run reward collected by two policies on that problem, averaged over 104

sample paths. These sample paths are divided into groups of 500 to obtain approximately normal estimates of the
performance measure, which can then be used to obtain standard errors. It is necessary to generate many sample paths
in order to make a decisive comparison of two policies. However, this substantially increases the computation time,
and requires us to use small problems for our numerical experiments. If one were to use a policy in practice, one
would only run it once, and the computation time would be closer to the numbers in Table 1.

We considered four policies: the KG policy from (14), pure exploitation policy from (9), the LBA policy from
(11), and the Value of Information Exploration (VIE) policy of Dearden, Friedman, and Andre (1999). The VIE policy
approximates the expectation of the true value function by taking Monte Carlo samples from the prior distribution. For
every Monte Carlo sample, we then solve a value iteration problem. To ensure a fair comparison, we set the number
of Monte Carlo samples in VIE equal to the number of value iteration problems solved by KG. Thus, both VIE and
KG required approximately the same computational effort. We ran every policy for 30 iterations.

In our experiments, the history function hn from (5) was defined in such a way as to discretize the cost incurred
by the requesting agent in the most recent game,

C̃R (

xn−1,β n−1) = cu
r

[

−
(

xn−1 +β n−1)]+
+ co

r

[

xn−1 +β n−1]+
,

Table 1: Running time of KG policy with fast-starting.

Size (K · |X |) n = 0 n = 1 n = 2
20 0.068s 0.010s 0.019s
72 0.164s 0.057s 0.054s
272 0.613s 0.185s 0.170s
1056 2.688s 0.755s 0.610s
4160 15.432s 3.784s 1.977s
16512 2m 2s 26.131s 8.041s
65792 19m 31s 3m 49s 3m 42s
262656 4h 30m 46m 48s 43m 45s
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into five levels. From the point of view of the requesting agent, it is natural to adopt less of a bias when this historical
value is small, and more of a bias when it is large. Every problem we considered had randomly generated cost structures,
all of which obeyed the property cu

a
co

a
< cu

r
co

r
.

Two types of problems were generated. In the truth-from-prior problems, the true transition probabilities ρ are
generated from the prior α0, as assumed by the model. This represents a setting where the prior beliefs are reasonably
accurate, and provide useful starting information. The initial priors themselves were chosen in such a way as to reflect
the intuitive biasing behaviour explained above. In the equal-prior problems, all elements of α0 are set to 1, and the
true probabilities ρ are chosen to reflect the intuitive behaviour. This represents a setting where we have no prior belief
about which transitions are more likely. We generated 15 MDPs of each type. Each MDP had five states and four
actions. The small problem size is dictated by the necessity of running each policy many times to obtain an accurate
comparison.

Figures 1(a) and 1(b) show the simulation results for both problem types. The bars represent the difference in
discounted long-run reward collected by the two policies in each comparison. Bars above zero represent problems
where KG outperformed a competing policy. For example, “KG-Exp: 8/15” means that the KG policy outperformed
pure exploitation on 8 out of 15 problems. The dotted lines represent ±2 times the average standard error across all
comparisons.

We see that KG is generally competitive against pure exploitation. KG loses on seven truth-from-prior problems,
but only one of these losses is statistically significant. Similarly, of the eight problems where KG wins, two are
statistically significant. In the equal-prior case, KG has more of an edge, achieving a statistically significant margin of
victory on six out of fifteen problems, while never losing by a statistically significant amount. Pure exploitation yields
good performance on truth-from-prior problems because they consider a setting in which the prior beliefs are accurate
on average. Thus, the action that seems to be the best based on the current beliefs usually is the best. However, in the
equal-prior case, the performance of pure exploitation suffers noticeably.

KG also performs competitively against LBA. While KG suffers four statistically significant losses in the truth-
from-prior case, it achieves a statistically significant margin of victory on seven problems. On the equal-prior problems,
KG outperforms LBA by a significant margin nine times, while being (barely) significantly outperformed only once.

The VIE policy is outperformed by KG in all of the experiments, almost always by a significant margin. This is
especially noteworthy since both KG and VIE solve the same number of value iteration problems in every time step.
However, KG consistently yields significantly better performance with the same computational effort.

We conclude that KG is competitive against a variety of learning policies under both types of priors. If the prior
reveals enough information, a simple policy like pure exploitation tends to achieve good results. However, KG seems
to have an especial advantage in a setting where the prior reveals little information about the problem. It is important
to note that this is precisely the type of problem where it is important to learn well and quickly.

5 CONCLUSION

We have presented a stochastic model for the two-agent newsvendor problem from the point of view of the oversight
agent. The problem is modeled using a Markov decision process in which the transition probabilities represent the
biasing behaviour of the requesting agent. The oversight agent has the ability to adaptively learn this behaviour using
a Bayesian model with Dirichlet priors and multinomial observations. We have proposed a policy for optimal learning
in this setting, based on the knowledge gradient concept from the ranking and selection literature. This work is the
first to apply this concept to a problem with a physical state. The KG policy is intuitive and easy to implement.

The computational complexity of the policy depends on the size of the physical state space, but does not grow
over time. Like the Value of Information Exploration policy of Dearden et al. (1999), the KG policy solves a number
of value iteration problems in order to choose an action. However, experimental results suggest that, when VIE and
KG solve the same number of value iteration problems, KG consistently yields significantly better performance with
the same computational effort. Our experiments also show that KG is competitive against other policies such as the
local bandit approximation policy of Duff and Barto (1996).

While computational cost remains an issue in very large problems, one can use fast-starting for a large speed boost
in all but the first iteration. With this modification, the algorithm can potentially handle problems with large state
spaces, as long as the action space is not too large. Additional methods for decreasing running time are an interesting
subject for future work. However, we believe that the KG approach as we have presented it offers an interesting new
perspective on the problem of learning on an MDP with unknown transition probabilities.
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