
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

IDENTIFYING EFFECTIVE POLICIES IN APPROXIMATE
DYNAMIC PROGRAMMING: BEYOND REGRESSION

Matthew S. Maxwell
Shane G. Henderson
Huseyin Topaloglu

Department of Operations Research and Information Engineering
Cornell University

Ithaca, NY 14853, USA

ABSTRACT

Dynamic programming formulations may be used to solve for optimal policies in Markov decision
processes. Due to computational complexity dynamic programs must often be solved approximately.
We consider the case of a tunable approximation architecture used in lieu of computing true value
functions. The standard methodology advocates tuning the approximation architecture via sample
path information and regression to get a good fit to the true value function. We provide an example
which shows that this approach may unnecessarily lead to poorly performing policies and suggest
direct search methods to find better performing value function approximations. We illustrate this
concept with an application from ambulance redeployment.

1 INTRODUCTION

One common approach for approximate dynamic programming (ADP) is to approximate the true
value function as a linear combination of fixed “basis” or “feature” functions which attempt to
describe the main features of the model. The weights on these functions are tuned so that the
approximation is close to the true value function. This approximation architecture is then used in lieu
of the true value function when making decisions via the dynamic programming optimality equation;
Bertsekas and Tsitsiklis (1996) and Powell (2007) are excellent resources on this topic.

This tuning approach is generally justified by theoretical results that bound the performance of a
greedy policy with respect to a given approximation by the discrepancy between the approximate value
function and the true value function (see Bertsekas and Tsitsiklis 1996 for details). Unfortunately,
such bounds usually hinge on the state with the largest discrepancy between the two value functions.
For dynamic programs with very large state spaces this distance is likely to be considerable, and hence
these bounds for ADP policies are quite weak.

Another approach would be to perform simulation optimization over the tunable parameters directly.
Often this direct search method is more computationally expensive than the regression-based tuning,
but it has the distinct advantage of tuning the parameters to maximize performance directly rather than
tuning the parameters to better approximate the value function, which may or may not increase overall
performance. One example of the benefits to this approach is found in Szita and Lörincz (2006) where
a noisy cross-entropy method is used to obtain policies for the game of Tetris which perform over 30
times better than policies found using standard ADP approaches.

Additionally, direct search methods may lead to policies superior than those obtainable through
regression-based tuning. In Section 3 we give an illustrative example of this situation. In this
example the optimal policy lies within the space spanned by the approximation architecture; however,
regression-based tuning approaches will always yield a non-optimal policy. In Section 4 we consider

1079978-1-4244-9864-2/10/$26.00 ©2010 IEEE



Maxwell, Henderson and Topaloglu

a case study of tuning ADP policies for ambulance redeployment. The comparison of different tuning
methods in this case study show similar results as that observed in the illustrative example. Section 2 is
a brief review of dynamic programming (DP) and ADP topics that will be used within this document.

2 BACKGROUND

Consider a stochastic shortest path problem where the objective is to minimize the expected cumulative
transition cost from any starting state s to the absorbing state sa. Superficially this appears to be a
minimization over a possibly infinite sequence of decisions; however, using DP recursion we can
reformulate this minimization problem into a simpler form. Let J(s) denote the value of being in state
s, i.e. the expected cumulative transition cost from s to sa. The DP optimality equation states that we
need only to optimize over the combined transition cost and value function of possible future states to
make optimal decisions. Specifically, an optimal policy can be found by choosing a decision in each
state that minimizes the sum of the transition cost and the expected value function of the subsequent
state. The DP literature contains standard algorithms to compute J(s) for all s such as value iteration
and policy iteration, see, e.g., Bertsekas (2005).

With this recursive formulation, any function f on the state space yields a policy—simply choose
the decision that minimizes the combined transition cost and expected value of f (s′), where s′ denotes
the (possibly random) subsequent state. Thus the function f is used in lieu of J for making decisions.
This policy is called the greedy policy with respect to f . In an ADP setting it is often common to
model f as a linear combination of basis functions over the state space, where the coefficients are
described herein as tunable weights.

In DP algorithms it is generally assumed that J(s) is calculated for each s. In the ADP setting this
is often infeasible because the state space may be very large or even uncountable. Hence the standard
DP methods for calculating J(s) can not be applied directly to the approximating function f (s) in
ADP. Instead, ADP usually uses similar methods which attempt to tune the coefficients of f (s) to
approximate J(s) well. One common approach is to use sample path data (i.e. sample path-based
estimates of J(s)) as regressors in a least-squares fitting over the weighting coefficients of f (s).
Section 4.5 contains a detailed description of one such method.

3 AN ILLUSTRATIVE EXAMPLE

Consider the stochastic shortest path Markov decision process (MDP) shown in Figure 1 where state
0 is an absorbing state and the objective is to minimize the sum of the transition costs from state 3
to state 0. In this MDP there is only one decision available, from state 3 go to state 1 or state 2, and
hence there are only two deterministic policies, π1 and π2, which denote choosing to go to state 1 or
state 2 from state 3 respectively. Since we are trying to minimize the sum of the transition costs, π1
is optimal.

Figure 1: Example MDP

Now consider the basis function φ(s) = s and the approximation architecture Jr(s) = rφ(s) = rs
for some tunable parameter r. If (and only if) r > 7, then −7+ Jr(2) = −7+2r > r = Jr(1) and the
greedy policy with respect to Jr is equivalent to π1 and hence optimal. Thus the optimal policy is
within the span of policies which are greedy with respect to Jr. In some sense, this indicates that our
approximation architecture Jr is rich enough to induce an optimal policy provided that the value of r
is chosen sufficiently well. Unfortunately, standard approaches for tuning r are unable to do this.

1080



Maxwell, Henderson and Topaloglu

Let Jπi(s) for i = 1,2 denote the value of being in state s and following policy πi. To fit r via
regression we would first fix a policy πi and fit the coefficient via

r∗i,p = argmin
r∈R

3

∑
s=0

|Jπi(s)− rs|p , (1)

where r∗i,p denotes the tuning coefficient when πi is used for sampling states and regression is performed
using a 1 ≤ p ≤ ∞ norm.

Proposition 1. For i = 1,2 and 1 ≤ p ≤ ∞ the greedy policy with respect to Jr∗i,p
is π2, i.e. is not

optimal.

Proof. Assume 1 ≤ p < ∞. The case where p = ∞ can be proved in similar fashion to what follows.

3

∑
s=0

|Jπ1(s)− rs|p = |0−0|p + |0− r|p + |14−2r|p + |0−3r|p

= (1+3p) |r|p +2p |7− r|p (2)

For any r > 7 both terms of (2) can be reduced by decreasing r until r = 7. Hence we have that
r∗1,p ≤ 7. Now assume r > 0 (otherwise we already know the greedy policy with respect to Jr∗i,p

= π2).
Then

lim
r ↑ 7

(

d
dr

((1+3p) |r|p +2p |7− r|p)

)

= lim
r ↑ 7

(

p(1+3p)rp−1 − p2p(7− r)p−1)

= p(1+3p)7p−1

> 0

Since the slope of (2) as r ↑ 7 is strictly positive for all 1 ≤ p < ∞ we know that (2) can be reduced
by setting r = 7− ε for some ε > 0. Hence r∗1,p < 7 and the greedy policy with respect to Jr∗1,p

= π2.
Similar analysis holds for r∗2,p as well.

Hence, regardless of our starting policy and choice of p norm, regression cannot achieve parameters
which induce an optimal policy. It is easy to create analogous examples where π2 has arbitrarily bad
performance compared to π1.

It may be argued that the MDP in Figure 1 is a contrived example and a similar situation is
unlikely to happen in practice. We argue that this MDP is a quintessential example of the DP concept
of considering both the immediate cost and the cost-to-go when making decisions. The failure of a
tuning method to perform well in this simplistic situation raises concerns for the method applied to
more complex situations. It may also be argued that the proposed approximation architecture is not
suitable for the MDP. It is true that the optimal value function is not within the span of the basis
functions (although in this particular case a function that induces an optimal policy is), but that is the
same reality faced in nearly all ADP applications. The fact that there is a greedy policy with respect
to Jr that yields the optimal policy provides evidence that the approximation architecture is sufficient
for this MDP.

4 CASE STUDY: AMBULANCE REDEPLOYMENT

In this section we consider a class of ADP policies for ambulance redeployment in Edmonton, Alberta,
Canada as indexed by a vector of tunable parameters r. First, we describe the ambulance redeployment
problem and give the MDP formulation of ambulance redeployment. Next, we define the class of ADP
policies and the approximating basis functions used within the policies. Using this class of policies
and the discrete-event simulation model we tune the parameters r via standard regression-based tuning

1081



Maxwell, Henderson and Topaloglu

algorithms and compare the resulting policies to those found by direct search over r. Ultimately, this
case study shows that even when tuning ADP polices in realistic situations we see results similar to
those of Section 3.

4.1 Ambulance Redeployment

Two primary roles of ambulance dispatchers are to assign ambulances to respond to incoming emergency
calls and to coordinate the positions of idle ambulances in preparation for future calls. Typically the
role of assigning ambulances to emergency calls is handled by sending the closest available ambulance
to respond to incoming calls. Although this strategy may not be “optimal” it is widely used in practice
because it generally performs well and it eliminates potential liability concerns faced by emergency
medical service (EMS) organizations utilizing other dispatch methods.

The role of positioning idle ambulances to prepare for future calls is accomplished by redeploying
ambulances from one location to another location in real-time to fill holes in the ambulances’ coverage
area. These ambulance redeployment policies can be quite complex, but despite the complexity
significant performance gains can be achieved as shown in Gendreau, Laporte, and Semet (2001),
Nair and Miller-Hooks (2009), and Maxwell et al. (2010).

This case study is modeled after the EMS operations of Edmonton, Alberta, Canada. Edmonton is a
city of about 800,000 people in a 40×30 km2 area. The city is served by 16 ambulances and 5 hospitals.
We consider a set of 11 possible bases at which idle ambulances may wait incoming calls. We developed
a discrete-event simulation model for EMS operations in Edmonton and used this model to compare
redeployment policies. A travel model for Edmonton using major streets and a representative arrival
process is included in the simulation. See Maxwell, Henderson, and Topaloglu (2009) for additional
information on the discrete-event simulation.

4.2 MDP Formulation

Formulating ambulance redeployment as a MDP requires defining a state space, a control space, the
system dynamics, the transition costs, and the objective function for the problem. A brief description
of these components and the associated notation will be given below, and a more precise description
of this formulation can be found in Maxwell et al. (2010).

Let S denote the state space and sk ∈ S denote the kth realized state in the discrete-event
simulation. A state sk contains all information necessary such that future states are independent of
past states conditional upon sk. For ambulance redeployment this includes the location, destination,
and status of all the ambulances as well as the location of emergency calls. Additionally, since we
assume constant travel times and non-exponential service times, the time at which these events begin
is also included as part of our state. Finally, the current simulation time and the current event from
the discrete-event simulation are included in the state as well.

Let X (sk) denote the feasible actions in state sk. If sk is a decision state, meaning a state in which
an ambulance just became free and there are no calls on the waiting list, then X (sk) is the set of all
ambulance bases indicating the destination base for the newly freed ambulance. If sk is not a decision
state then X (sk) contains a single “do nothing” action which has no effect on the state or the system
dynamics.

The complex system dynamics of ambulance redeployment are best described implicitly via the
discrete-event simulation. Let Uk+1 denote a random uniform vector of appropriate dimension which
will be transformed to include all sources of randomness present between state sk and sk+1. Then
sk+1 = f (sk,x,Uk+1) where f (sk,x,Uk+1) denotes the system dynamics starting in state sk choosing
action x ∈ X (sk) with the random realization defined by Uk+1.

The transition cost c(sk,x,Uk+1) is one if sk+1 corresponds to an emergency call arrival event
for which the closest ambulance is over 8 minutes away (i.e. a “lost call”) and zero otherwise.
This cost function is justified due to the fact that EMS provider contracts are often designed around
the proportion of lost calls in a given time period. Despite contractual agreements, one possible

1082



Maxwell, Henderson and Topaloglu

criticism of this cost structure is that calls responded to immediately after 8 minutes and calls
responded to much beyond 8 minutes contribute the same penalty although the medical outcomes
of the latter is likely to be more severe; see Erkut, Ingolfsson, and Erdoğan (2007). Regardless,
Maxwell, Henderson, and Topaloglu (2009) shows that this cost structure is effective at reducing
response times uniformly as opposed to only those near or below the 8 minute threshold.

4.3 ADP Policy

Let J(sk) denote the value of being in state sk, i.e. the expected cumulative costs from state sk until
the end of the time horizon. The MDP formulation allows us to use DP to solve for J(sk) via the
optimality equation

J(sk) = min
x∈X (sk)

E [c(sk,x,Uk+1)+ J ( f (sk,x,Uk+1))] , (3)

and an optimal policy can be found by choosing an action x that minimizes the right-hand side of
(3) (see Bertsekas and Shreve 1978). The uncountable state space of our problem causes (3) to be
intractable. Thus we will attempt to approximate the right-hand side of (3) and use this approximation
to define our ADP policy.

We approximate the true value function J via the approximation Jr(·) = ∑B
b=1 rbφb(·) where the

φb(·) are fixed basis functions and r = (r1, . . . ,rB) are tunable parameters. Furthermore, since we
cannot compute the expectation in (3) exactly we estimate the expectation via Monte Carlo samples.
Thus the greedy policy with respect to the approximation Jr for any sk ∈ S is given by choosing a
minimizer of

min
x∈X (sk)

1
N

N

∑
i=1

(

c(sk,x,u
(i)
k+1)+ Jr

(

f (sk,x,u
(i)
k+1)

))

, (4)

where u(1)
k+1, . . . ,u

(N)
k+1 denote N realizations of the random variable Uk+1 (see an improved sampling

method in (Maxwell, Henderson, and Topaloglu 2009)). One crucial assumption for solving (4) is
that the cardinality of X (sk) is small enough that the minimization can be accomplished by evaluating
for each x ∈X (sk). For our application the cardinality of X (sk) is at most the number of ambulance
bases, and hence the computation required by (4) is feasible for real-time decision support.

4.4 Basis Functions

The basis functions φb(·) used in our approximation architecture are motivated by considering each
base individually as an M/G/Kb/Kb queue where Kb is the number of ambulances assigned to base
b (i.e. those ambulances either idle at base b or traveling to base b). Specifically, let Kb(sk) denote
the number of available ambulances assigned to base b in state sk, and define φb(sk) to be the Erlang
loss of the resulting queue

φb(sk) =

(

λb(sk)
µb(sk)

)Kb(sk)
/Kb(sk)!

∑Kb(sk)
j=0

(

λb(sk)
µb(sk)

) j
/ j!

,

where λb(sk) and µb(sk) are, respectively, the arrival rate and service rate of emergency calls for base
b in state sk. The arrival rate parameters λb(sk) are approximated by assigning demands at locations
to their closest base in the following manner. First, we discretize the call arrival process into a grid
Γ and define Γb = {γ ∈ Γ : d(b,γ) = minb′∈1...B d(b′,γ)} where d(b,γ) denotes the travel time from
base b to the centroid of cell γ . Then we approximate λb(sk) as ∑γ∈Γb

λγ(sk) where λγ(sk) denotes

1083



Maxwell, Henderson and Topaloglu

the arrival rate to cell γ in state sk. The service rate parameters µb(sk) are approximated by a constant
µb which is the average service rate for ambulances stationed at base b and serving calls arriving in
Γb. Thus the arrival rate for base b in state sk is approximated by the summed arrival rates from areas
closest to base b in state sk, and the service rate for base b is approximated via a simulation containing
only base b and arrivals only in Γb. The service rates for each base can be estimated via simulation
prior to any ADP computations and included as input to the ADP algorithm.

The Erlang loss is applicable in an ambulance redeployment context because it represents the
proportion of emergency call arrivals that occur near a given base when there will be no ambulances
stationed at that base. Such calls must be handled by ambulances stationed at bases further away.
Due to the additional travel time involved it is usually impossible to respond to these calls within the
specified time threshold. Furthermore, the additional travel time causes the responding ambulance to
be busy longer than it otherwise would, and hence decreases its availability. Since the additional travel
time in this situation increases the cumulative costs directly and indirectly, the Erlang loss serves as
a good proxy for the value function in this application.

4.5 Simulation-based Tuning via Regression

The regression-based tuning of ADP policies in this case study is similar to that in (1); however, due
to the size of the state space and the inability to compute the required expectation exactly we must
use sample path information to tune our parameters. Consequently, we use the following approximate
policy iteration algorithm (as contained in Maxwell et al. 2010).

Step 1. Initialize the iteration counter n to 1 and initialize r1 = {r1
b : b = 1, . . . ,B} arbitrarily.

Step 2. (Policy improvement) Let µn be the greedy policy induced by Jrn , i.e.

µn(sk) ∈ argmin
x∈X (sk)

{

1
N

N

∑
i=1

(

c(sk,x,u
(i)
k+1)+ Jrn

(

f (sk,x,u
(i)
k+1)

))

}

.

Step 3. (Policy evaluation through simulation) Simulate the trajectory of policy µn over the
planning horizon for Q replications. Let {sn

k(q) : k = 1, . . . ,K(q)} be the state trajectory of
policy µn in replication q and Cn

k (q) be the cost incurred by starting from state sn
k(q) and

following policy µn in replication q.
Step 4. (Least-squares projection) Compute the tunable parameters at the next iteration as

rn+1 = argmin
r∈RB

{

Q

∑
q=1

K(q)

∑
k=1

[

Cn
k (q)− J(sn

k(q),r)
]2

}

.

Step 5. Increase n by 1 and go to Step 2.

This process is repeated until some stopping condition is met. Usually the stopping condition is rather
ad hoc such as stopping after a specified amount of CPU time has elapsed or a specified number
of iterations have completed. After the stopping condition is met the policy having the best sample
performance is usually selected as the ADP policy. An alternative method would be to use ranking
and selection upon some or all of the policies explored in the approximate policy iteration algorithm
to select the ADP policy.

4.6 Results

We compare the least-squares approximate policy iteration algorithm in Section 4.5 with two other
policy tuning approaches: Least-Squares Temporal Difference (LSTD) learning (Boyan 2002) and
the Nelder-Mead simplex method (Nelder and Mead 1965). LSTD is based on the popular Temporal
Difference (TD) method for ADP policy tuning found in Sutton (1988). The TD learning algorithm

1084



Maxwell, Henderson and Topaloglu

uses a single Monte Carlo sample of the quantity given in (4) (i.e. N = 1) in conjunction with the
current approximation Jrn(sk) to update the tunable weights after each state transition. LSTD converges
to the same parameters as TD does, but LSTD generally has better convergence properties because
it uses entire sample path information to tune parameters as opposed to single-step transitions. The
Nelder-Mead simplex method is a black box deterministic function minimization heuristic. Since this
method is a black box method it does not use any value function properties of ADP-specific methods.
Instead, it uses the discrete-event simulation to obtain performance estimates of the greedy policy
with respect to Jr as a function of the tunable weights r. The Nelder-Mead method then tunes r
through a derivative-free search method based solely upon policy performance at different values of
the tunable weights. We used the implementation of this algorithm given in Nelder and Mead (1965).
We use this very simplistic approach to what is certainly a simulation-optimization problem to see
what might be possible, rather than as an example of how to tackle such problems. A natural next
step would be to employ the recommendations given by Barton and Ivey (1996).

Figure 2 shows the results of these three tuning methods applied to the ambulance redeployment
problem on Edmonton. Each “function evaluation” in Figure 2 corresponds to 30 replications of a
two week simulation with a given ADP policy. A single function evaluation takes approximately
70 minutes of CPU time. With this large function evaluation time the computation cost of the three
methods are dominated by function evaluations, and hence the comparison of these three methods
based on function evaluations is justified.

Figure 2: Coefficient Tuning Results

The simulation used synchronized random number streams between the three different tuning
algorithms and between all function evaluations for a single algorithm. Since the random number
streams are all synchronized a policy’s performance is actually deterministic. There are two reasons for
this synchronization: first, it allows the results of the three different procedures to be more accurately
compared to each other, and second, it illustrates a policy’s ability to find coefficients inducing good

1085



Maxwell, Henderson and Topaloglu

performance on a somewhat easier, deterministic version of the problem. This synchronization method
has the potential to cause bias in the policy performance (compared to the true performance of a
given policy); however, additional simulations with independent random number streams show that
this bias is negligible.

The first striking observation in Figure 2 is that the Nelder-Mead method dominates the two
regression-based methods throughout the entire training process. The least-squares and LSTD methods
vary rapidly between better and worse performing policies with the LSTD method almost always
finding better policies than the least-squares methods. Some of the better policies found via the
regression methods might be considered adequate policies, but even the best of these policies do not
perform as well as those found via the Nelder-Mead method. Furthermore, the least-squares and LSTD
methods were unable to find policies with any significant improvement over their initial policies.

A second observation is that the least-squares and LSTD methods appear to be fluctuating around
a constant value whereas the Nelder-Mead evaluations appear to be consistently decreasing. This
means that the least-squares and LSTD methods are not making any noticeable progress toward better
policies as the Nelder-Mead method is. The performance of the policies found via Nelder-Mead flatten
after about 150-200 iterations. The Nelder-Mead method may have stopped at a local minimum rather
than the global minimum, but even if this is the case, the policies resulting from the local minimum
are superior to those found via the regression-based methods.

5 CONCLUSION

We considered two types of tuning methods for ADP policies: regression-based and direct search.
The standard ADP policy tuning methods use regression to select weighting coefficients r that result
in an approximating value function Jr which is close to samples of the true value function J. The
direct search method tunes the parameters directly to improve performance. In Section 3 we gave an
example MDP where regression-based tuning methods are theoretically unable to achieve an optimal
policy even though there exists a set of tuning weights for which the greedy policy with respect
to these weights is optimal. In Section 4 we empirically showed a direct search method obtaining
superior performing policies than two standard regression-based approaches for a realistic ambulance
redeployment problem.

Although simulation-optimization methods have had some success in ADP tuning applications
previously, they are often viewed as naı̈ve and computationally expensive. It is true that these methods
are not tailored to ADP applications specifically and that the computational effort for direct search
methods may be high, but we have shown, both theoretically and empirically, that these methods
may be able to achieve a higher level of performance from ADP approximation architectures than
traditional methods are fundamentally able to achieve. Consequently, we expect great benefits from
further research on simulation-optimization methods tailored for ADP policy tuning.

ACKNOWLEDGMENTS

This research was supported in part by NSF Grant Number CMMI 0758441.

REFERENCES

Barton, R. R., and J. Ivey, John S.. 1996. Nelder-Mead Simplex Modifications for Simulation Opti-
mization. Management Science 42 (7): 954–973.

Bertsekas, D. 2005. Dynamic programming and optimal control. Nashua, NH: Athena Scientific.
Bertsekas, D., and S. Shreve. 1978. Stochastic optimal control: The discrete time case. New York:

Academic Press.
Bertsekas, D., and J. Tsitsiklis. 1996. Neuro-dynamic programming. Belmont, Massachusetts: Athena

Scientific.
Boyan, J. A. 2002. Technical update: Least-squares temporal difference learning. Machine Learning 49

(2): 233–246.

1086



Maxwell, Henderson and Topaloglu

Erkut, E., A. Ingolfsson, and G. Erdoğan. 2007. Ambulance deployment for maximum survival. Naval
Research Logistics 55 (1): 42–58.

Gendreau, M., G. Laporte, and S. Semet. 2001. A dynamic model and parallel tabu search heuristic
for real time ambulance relocation. Parallel Computing 27:1641–1653.

Maxwell, M. S., S. G. Henderson, and H. Topaloglu. 2009. Ambulance redeployment: An approximate
dynamic programming approach. In Proceedings of the 2009 Winter Simulation Conference, ed.
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, 1850–1860. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Maxwell, M. S., M. Restrepo, S. G. Henderson, and H. Topaloglu. 2010. Approximate Dynamic
Programming for Ambulance Redeployment. INFORMS Journal on Computing 22 (2): 266–281.

Nair, R., and E. Miller-Hooks. 2009. Evaluation of relocation strategies for emergency medical service
vehicles. Transportation Research Record: Journal of the Transportation Research Board (2137):
63–73.

Nelder, J., and R. Mead. 1965. A simplex method for function minimization. The computer journal 7
(4): 308–313.

Powell, W. B. 2007. Approximate dynamic programming: Solving the curses of dimensionality.
Hoboken, NJ: John Wiley & Sons.

Sutton, R. S. 1988. Learning to predict by the methods of temporal differences. Machine Learning 3
(1): 9–44.

Szita, I., and A. Lörincz. 2006. Learning tetris using the noisy cross-entropy method. Neural Com-
putation 18 (12): 2936–2941.

AUTHOR BIOGRAPHIES

MATTHEW S. MAXWELL is a Ph.D. candidate in the School of Operations Research and Infor-
mation Engineering at Cornell University. He has a B.S. in Computer Science from Brigham Young
University and is a recipient of the U.S. Department of Homeland Security’s Graduate Fellowship. His
research interests include discrete-event simulation, simulation optimization, and approximate dynamic
programming. His web page is located at <http://people.orie.cornell.edu/msm57/>.

SHANE G. HENDERSON is a professor in the School of Operations Research and Information
Engineering at Cornell University. He is the simulation area editor at Operations Research, and an
associate editor for the ACM Transactions on Modeling and Computer Simulation and Operations
Research Letters. He co-edited the handbook Simulation as part of Elsevier’s series of Handbooks
in Operations Research and Management Science, and also co-edited the Proceedings of the 2007
Winter Simulation Conference. He likes cats but is allergic to them. His research interests include
discrete-event simulation and simulation optimization, and he has worked for some time with emer-
gency services. His web page can be found via <http://www.orie.cornell.edu>.

HUSEYIN TOPALOGLU is an associate professor in the School of Operations Research and Informa-
tion Engineering at Cornell University. He holds a B.Sc. in Industrial Engineering from Bogazici Uni-
versity in Turkey, and a Ph.D. in Operations Research and Financial Engineering from Princeton Uni-
versity. His research interests include stochastic programming and approximate dynamic programming
with applications in transportation logistics, revenue management and supply chain management. He
teaches courses on dynamic programming, simulation modeling, systems engineering and revenue man-
agement. His web page is located at <http://legacy.orie.cornell.edu/˜huseyin/>.

1087


