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ABSTRACT

Factor Screening experiments identify those factors with significant effect on a selected output. We
propose a modification of Cheng’s method as a new factor screening alternative for simulation models
whose output has homogeneous variance and can be described by a second-order polynomial function.
The performance of the proposed model is compared with several other factor screening alternatives
through an empirical evaluation. The results show that the proposed method sustains its efficiency
and accuracy as the number of factors or the homogeneous variance increases. However, its accuracy
degrades as variance heterogeneity increases.

1 INTRODUCTION

Simulation models can consist of a large number of inputs, which are usually referred to as factors in
Design of Experiments (DOE). Exploring the response (output) of large-scale and complex simulation
models can become prohibitively costly and requires many time-consuming simulation runs. Factor
Screening experiments, which assume that only a few factors are really important (parsimony principle),
systematically examine the impact of input factors on a selected simulation response to identify those
factors with significant effects.

Factor screening (Bettonvil and Kleijnen 1996) is generally employed in the pilot phase of complex
simulation studies. The factors identified as being important can be further explored in later phases;
e.g., the important factors might be cast as a metamodel and used in optimization. Moreover, the results
of factor screening can be used not only for confirming prior expectations (which is an important
step in validating the simulation models), but they are also informative when the simulation provides
insights that do not match expectations. Many real-world models are characterized by high degree of
uncertainty, and hence demand comprehensive datasets to accurately estimate the input parameters.
Such data are often unavailable in practice. For instance, medical decision-making models generally
suffer from inaccuracy in their input parameter estimates, simply due to the lack of sufficient data
for obtaining accurate estimates. Performing factor screening analysis on the models created in such
environments can help identify the influential factors in the models, and consequently, prioritize the
data collection efforts giving emphasis to those input factors with greater significance.

Most of the factor screening methods introduced in recent years are created on the base of classical
experimental design (Montgomery 2000) and sequential bifurcation (Bettonvil and Kleijnen 1996).
Among those, 2k Fractional Factorial design (Montgomery 2000), Cheng’s Method (Cheng 1997),
and fold-over Controlled Sequential Bifurcation (CSB-X) (Wan, Ankenman, and Nelson 2006b) have
received the most attention. The reader is referred to Kleijnen et al. (2005) for a comprehensive review
on designing simulation experiments. In this paper, we present a new factor screening method, called
MCh-X, which is a modification of Cheng’s method. MCh-X relaxes some of the restrictive assumptions
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of Cheng’s method in order to work under conditions posed by more complex simulation models. We
compare the performance of MCh-X along with 2k Fractional Factorial designs of resolution IV and
CSB-X based on various criteria of efficiency, accuracy, and cost-effectiveness (achieving the highest
accuracy with the least number of observations).

The remainder of this paper is organized as follows. Section 2 presents a literature review on the
commonly-used factor screening methods: 2k Fractional Factorial Design of resolution IV, Cheng’s
method, and the fold-over Controlled Sequential Bifurcation. In §3, we introduce a modification
of Cheng’s method (MCh-X) as a new alternative factor screening method. Section 4 compares the
performance of the factor screening methods studied here. Section 5 concludes the paper and discusses
future research.

2 LITERATURE REVIEW

Among the most popular factor screening methods are 2k Fractional Factorial designs of resolution
IV (2k FF-IV) (Montgomery 2000). In these designs, no main effects are confounded with any other
main or second-order interaction effects but the second-order interaction effects can be confounded
with each other.

These designs assume that certain higher-order interactions are negligible so they can be confounded
with main or second-order interaction effects. These designs also assume that errors are approximately
normally distributed with mean zero and a homogeneous variance σ2. Factorial designs have several
attractive properties. First, they are very easy to construct and already available in almost all statistical
software. Second, since they examine more than one factor at a time, these designs can identify certain
important interaction effects. Third, they are orthogonal designs, i.e. the pair-wise correlation between
any two columns (factors) in the design matrix is zero. This simplifies the analysis of the fitted regression
model, because the estimates of the factors’ effects and their contributions to the explanatory power
of the regression model do not depend on other regressors included in the model. Finally, although
ordinary least squares regression assumes that the error term is identically distributed, the regression
coefficients are still unbiased estimators even if the underlying variance is not constant.

Sequential Bifurcation (SB), introduced by Bettonvil and Kleijnen (1996), was mainly designed for
deterministic simulation models, and based on group screening designs (Johnson and Gastwirth 1999,
Kleijnen 1987). SB, like all other group screening designs, assumes a low-order polynomial metamodel
for the response function of the simulation model and known signs for the main effects. Knowing
the main effects’ signs assures that individual effects do not compensate for the effects of each other
within a group. The criterion that SB uses for declaring a factor as important is the absolute value
of the factor’s main effect. Cheng (1997) extended SB to handle simulations models with stochastic
response. His method assumes a first-order polynomial for the response function and a homogeneous
variance over the entire experimental region. Since Cheng’s method assumes known signs of main
effects (β j), the factor’s upper and lower bounds should be determined such that β j ≥ 0, for all i.
Cheng’s method requires two parameters from a user: the delta limit (δ ), which is the value that the
main effect of a factor should reach to be considered important, and alpha (α), which is the probability
of declaring an important factor unimportant.

Cheng’s method does not control the probability of declaring an unimportant factor important, or the
probability of declaring an important factor important at any step. Controlled Sequential Bifurcation
(CSB), proposed by Wan, Ankenman, and Nelson (2003), Wan, Ankenman, and Nelson (2006a), is a
procedure that incorporates a two-stage hypothesis-testing approach into SB to control the probability
of type I error (i.e., the probability that an effect is classified as important when it is not) and power
(i.e., the probability that an important effect is correctly classified). CSB controls the power at each
bifurcation step and the type I error for each factor under heterogeneous variance conditions. In
CSB, the analyst must specify two thresholds. The lower threshold (∆0) indicates the level that the
main effect of a factor must reach to be considered important. The higher threshold (∆1) is the level
that is considered critical when exceeded by a factor’s main effect. In other words, if β j ≤ ∆0, then
factor j is classified as unimportant and if β j ≥ ∆1, factor j is classified as critical, and otherwise if
∆0 < β j < ∆1, it is classified as important.

From an error perspective, for those factors with effects ≤ ∆0, CSB controls the type I error
by declaring them important with probability less than α; and for those factors with effects ≥ ∆1,
CSB detects them with power greater than γ . Those factors whose effects fall between ∆0 and ∆1
are considered important and the CSB procedure has reasonable, though not guaranteed, power to
identify them (Wan, Ankenman, and Nelson 2003). Furthermore, in CSB, dependence of outputs
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across different factor settings due to common random numbers is permitted. For the special case,
where α = 1− γ (type I error is equal to one minus power), Wan, Ankenman, and Nelson (2006a)
implemented a fully sequential test in CSB that has the same error control as the two-stage testing
procedure. Wan, Ankenman, and Nelson (2006b) improved the CSB procedure by incorporating a
fold-over design in the hypothesis test to identify important main effects even when two-factor
interactions and quadratic terms are present. The new procedure, called CSB-X, still has the same
error control for screening main effects. However, CSB-X is unable to estimate interaction and
quadratic effects.

Since CSB-X controls both type I error and power to remain in the acceptable range, its efficiency
decreases noticeably when applied to a model with a large variance. An example of such a case
is provided in §4.1. For models with a high variance, however, if the assumption of homogeneous
variance is still satisfied, then Cheng’s method can be augmented with a few modifications to achieve
the same degree of accuracy as CSB-X and still be desirably efficient. Details of such modifications,
which result in a new factor screening method called MCh-X, are explained in the following section.

Among factor screening methods not discussed in this paper are Latin Hypercube (LH) designs and
supersaturated designs (McKay, Beckman, and Conover 1979, Hinkelmann and Kempthorne 2005).
Generating orthogonal LH designs with good space-filling property can be challenging and imposing
restriction on the maximum number of factors that can be included in the experiment (for further discus-
sion, refer toSteinberg and Lin (2006), Cioppa and Lucas (2007), Bingham, Sitter, and Tang (2009)).
Likewise, generating and analyzing supersaturated designs pose restrictions and complications, which
are outside the scope of this paper (for more information, refer to Hinkelmann and Kempthorne (2005),
Georgiou (2008), Lin (1995), Eskridge et al. (2004)).

In addition, we do not investigate the two most recent derivatives of CSB: Controlled Sequential
Factorial Design (CSFD) (Shen and Wan 2005) which combines sequential hypothesis-testing proce-
dures with the traditional factorial design to control the Type I Error and power for each factor under
heterogeneous variances conditions; and hybrid CSB-CSFD (Shen and Wan 2006) which employs a
two-stage hybrid approach to combine CSB and CSFD to achieve better overall performance. We
leave further investigation of these methods for future research.

3 A MODIFICATION OF CHENG’S METHOD

In terms of eliminating insignificant factors, Cheng’s method is lenient in detecting the unimportant
factors; that is, even if a main effect of a factor (or a group-factor) is less than δ , it is possible that the
method does not eliminate it. Although this property does not affect the correctness of the method,
it is counter to the fundamental assumption of most factor screening methods that only a few factors
are important among many potentially important factors; hence it generally leads to declaring some
unimportant factors important.

The CSB-X is the only sequential method that works with high degree of accuracy when variance
is heterogeneous. Yet, as discussed in §4, it loses its efficiency rapidly as the (homogeneous or
heterogeneous) variance increases. Therefore, we propose a modification of Cheng’s method (MCh-
X) in pursuit of enhancing the performance of Cheng’s method to work efficiently as homogeneous
variance increases.

MCh-X differs from the original Cheng’s method in the following aspects: (1) MCh-X is based on
testing the hypothesis that each factor is unimportant unless there a strong evidence to the contrary.
(2) Cheng’s method assumes a linear function for the response, which is rarely the case for many
simulation models. MCh-X assumes a second-order polynomial function and uses a fold-over design
to cope with the circumstances where the second-order interactions are not negligible. MCh-X is
however unable to estimate these second-order interaction effects.

To quantify importance, MCh-X uses three parameters: significance level α , and two importance
parameters δ and τ . The parameter δ is the value that a factor’s main effect (or a group’s main effect)
should reach to be considered important. At any iteration, if a non-singleton group of factors has
a main effect statistically greater than δ at a significance level α , then the group is categorized as
important; otherwise the group will be eliminated and marked as unimportant. To classify a single
factor, the procedure declares the factor important (unimportant) if its main effect is statistically greater
(less) than δ at a significance level α; if such a decision cannot be made with the current number of
observations, the procedure acquires more observations until the estimated half-width of the factor’s
main effect becomes less than the parameter τ at a significance level α . Therefore, the parameter τ
can be used to determine the precision of the estimated main effects. A low value for τ forces the
procedure to estimate the main effects with higher precision, and thus requires more observations.
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From an error perspective, MCh-X may misclassify an unimportant group factor (i.e., a group with
main effect less than δ ) with probability α . Furthermore, when classifying a single factor, it may
miss an important factor with main effect greater than δ + τ with probability at most α . Like the
original Cheng’s method, MCh-X also assumes that the error term has homogeneous variance and
the directions of the main effects are known.

The MCh-X assumes the following response function (y) around a given point x = (x1, . . . ,xK):

y = β0 +
K

∑
j=1

β jx j +
K−1

∑
j=1

K

∑
j′= j+1

β j, j′x jx j′ +
K

∑
j=1

β j, jx
2
j + e(x), (1)

where

K: total number of factors in the experiment;
x j: value of factor j, standardized to lie in [−1,+1];
β j: first-order or main effect of factor j = 1, . . . ,K (β0 is the intercept);

β j, j′ : interaction effect of the factors j and j′, 1 ≤ j < j′ ≤ K;
β j, j: pure second-order or quadratic effects of factor j = 1, . . . ,K;
e(x): error term, assumed to be normally distributed with mean zero and constant variance σ2.

It is also assumed that for all j, β j ≥ 0. In order to satisfy this assumption, for factor j, we can
define its upper level (Hj) and lower level (L j) such that β j ≥ 0.

Let y( j) denote the response value when the factors 1, . . . , j are set at their upper levels (Hj) and
the remaining factors ( j +1, . . . ,K) are set at their lower levels (L j). Therefore, in the standardized
metamodel (1), the values of the first j factors are +1 and the values of the remaining factors are −1.
Thus polynomial (1) yields:

y−( j) = β0 +β1 + · · ·+β j−1 +β j −β j+1 −·· ·−βK

+ ∑
i<i′≤ j

∑βi,i′ + ∑
j<i<i′

∑βi,i′ − ∑
i≤ j<i′

∑βi,i′ + e(x), j = 0,1, . . . ,K.

The symbol y−( j), called the mirror observation of y( j), denotes the response value when the
factors 1, . . . , j are set at their lower levels (L j) and the remaining factors ( j + 1, · · · ,K) are set at
their upper levels (Hj). Therefore, in the standardized metamodel (1), the values of the first j factors
are −1 and the values of the remaining factors are +1. So the polynomial (1) yields:

y( j) = β0 −β1 −·· ·−β j−1 −β j +β j+1 + · · ·+βK

+ ∑
i<i′≤ j

∑βi,i′ + ∑
j<i<i′

∑βi,i′ − ∑
i≤ j<i′

∑βi,i′ + e(x), j = 0,1, . . . ,K.

If j < k, then the scaled difference D( j,k) = [(y(k)−y−(k))−(y( j−1)−y−( j−1))]/4 has the expecta-
tion E[D( j,k)] = ∑k

i= j βi, and therefore, D( j,k) can be regarded as an estimator for the sum of the main

effects for factors j to k. If y(k),y−(k),y( j−1) and y−( j−1) are independent, then Var[D( j,k)] = σ2/4.

If we have r( j−1) observations at level j−1 and mirror level −( j−1), i.e., y( j−1)
r and y−( j−1)

r ,

for r = 1,2, . . . ,r( j−1), and r(k) observations at level k and mirror level −k, i.e., y(k)
r and y−(k)

r , for
r = 1,2, . . . ,r(k), then:

D̄( j,k) =

[

1

r(k)

r(k)

∑
r=1

(y(k)
r −y−(k)

r )− 1

r( j−1)

r( j−1)

∑
r=1

(y( j−1)
r − y−( j−1)

r )

]

/4, (2)

and

Var[D̄( j,k)] =
1
8

σ2
(

1

r( j−1)
+

1

r(k)

)

.
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The MCh-X method proceeds as follows.
Step 0: To initiate the process we make r(0) = N0 > 1 runs at levels 0 and its mirror level −0,

and make r(K) = N0 > 1 runs at level K and its mirror level −K. Thus at the start of Step 1 we have
four sets of observations:

Observations at level 0 : {y(0)
r : r = 1, ...,r(0)}, (3)

Observations at mirror level −0 : {y−(0)
r : r = 1, ...,r(0)}, (4)

Observations at level K : {y(K)
r : r = 1, ...,r(K)}, (5)

Observations at mirror level −K : {y−(K)
r : r = 1, ...,r(K)}. (6)

We place all the coefficients in a single, unclassified set G1 = {β1,β2, . . . ,βK}. Thus initially the
number of sets is p1 = 1. We assign 1 to s and proceed to the next step.

Step s (s > 0): At the beginning of Step s, factors are partitioned into ps sets:

Gi,s = {β j : k(i−1),s < j ≤ ki,s}, for i = 1,2, . . . , ps. (7)

For example, at Step 1 (s = 1 and p1 = 1), there is only one set of factors and Expression (7) results
in Gi,1 = {β j : k(i−1),1 < j ≤ ki,1}, i = 1, where k0,1 = 1 and k1,1 = K. Thus G1,1 = {β1,β2, . . . ,βK}.

At the beginning of Step s, we have 2× (ps +1) sets of observations:

Observations at level ki,s : {y
(ki,s)
r : r = 1, ...,r(ki,s)}, for i = 1, . . . , ps, (8)

Observations at mirror level − ki,s : {y
−(ki,s)
r : r = 1, ...,r(ki,s)}, for i = 1, . . . , ps, (9)

Observations at level k(i−1),s : {y
(k(i−1),s)
r : r = 1, ...,r(k(i−1),s)}, for i = 1, . . . , ps, (10)

Observations at mirror level − k(i−1),s : {y
−(k(i−1),s)
r : r = 1, ...,r(k(i−1),s)}, for i = 1, . . . , ps. (11)

At this point, some of the sets are already classified, some are unclassified. If all sets have been
classified, then the algorithm ends. Otherwise, we select any unclassified set; call this Gi,s. Two cases
may occur:

Case 1: Gi,s is not a singleton set
If Gi,s is not a singleton set (set of size one), we check if all the factors can be classified as

unimportant. This can be done by considering the expected main effect of the set Gi,s, which is
D̄(k(i−1),s,ki,s). Since e(x) is assumed to be normally distributed, D̄(k(i−1),s,ki,s) is also normally
distributed with mean

µ(Gi,s) = ∑ki,s

i=k(i−1),s
βi,

and variance

υ(Gi,s) =
1
8

σ2(
1

r(k(i−1),s−1)
+

1

r(ki,s)
).

Let S2
ki,s

denote the estimated variance of the observations at level ki,s, S2
−ki,s

denote the estimated

variance of the observations at mirror level −ki,s, S2
k(i−1),s−1 denote the estimated variance of the

observations at level k(i−1),s −1, and S2
−(k(i−1),s−1) denote the estimated variance of the observations

at mirror level −(k(i−1),s−1). Pooling these estimates gives an overall estimator of σ2 for set Gi,s as:

S2
Gi,s

=
(r(k(i−1),s−1)−1)(S2

k(i−1),s−1 +S2
−(k(i−1),s−1))+(r(ki,s)−1)(S2

ki,s
+S2

−ki,s
)

2(r(k(i−1),s−1) + r(ki,s)−2)
.
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Pooling the estimates of σ2 over all stages gives an overall estimator of σ2 at the start of step s
as:

S2
s =

ps

∑
i=1

(r(k(i−1),s−1) + r(ki,s)−2)S2
Gi,s

ps

∑
i=1

(r(k(i−1),s−1) + r(ki,s)−2)

. (12)

Now, in order to check if the main effect of set Gi,s is significant, we test the following one-sided
hypothesis: H0: µ(Gi,s) ≤ δ .

If H0 is rejected, then the factor set Gi,s will be classified as important. If H0 is not rejected,
then the implication is that the factor set Gi,s does not have a significant effect, and hence will be
eliminated from the experiment. Because rejecting H0 is a strong conclusion, this formulation forces
the factor to demonstrate that its main effect exceeds δ . In other words, this formulation assumes
that the effect is unimportant unless there is strong evidence to the contrary.

If the null hypothesis H0: µ(Gi,s) ≤ δ is correct, then the quantity

t0 =

D̄( j,k)−δ√
Var[D̄( j,k)]

√

SSs
σ2

/

ω
=

D̄( j,k)−δ
√

1
8 σ2(1

/

r( j−1)+1/

r(k))
√

S2
s

σ2

=
D̄( j,k)−δ

1
2
√

2
Ss

√

1
/

r( j−1) +1
/

r(k)

has a t-distribution with ωs degrees of freedom, where

ωs = 2∑s
i=1 (r(k(i−1),s−1) + r(ki,s)−2) (13)

and SSs = ωS2
s .

If tα ,ω denotes the upper α critical point of the t-distribution with ω degrees of freedom, then
if t0 > tα ,ω , we reject the null hypothesis H0 and conclude that the corresponding group-factor is
important. Having t0 > tα ,ω results in

D̄(k(i−1),s,ki,s) > δ +
1

2
√

2
tα ,ωsSs

√

1
/

r(k(i−1),s−1) +1
/

r(ki,s). (14)

Therefore, if Inequality (14)holds, withconfidence1−α , µ(Gi,s)> δ ; or equivalently∑
ki,s
i=k(i−1),s

βi >

δ . Thus, with confidence 1−α, we can consider the set Gi,s as important.
Next, Gi,s willbe split into twogroupsatks =

⌈

(k(i−1),s + ki,s)/2
⌉

and the twonewsets{βk(i−1),s
, . . . ,βks}

and {βks+1, . . . ,βki,s} will replace Gi,s. We then obtain the following sets of observations to add to
the observation sets (8)-(11):

Observations at level ks : {y(ks)
r : r = 1, ...,r(ks) = N0},

Observations at mirror level − ks : {y−(ks)
r : r = 1, ...,r(ks) = N0},

Observations at level ks +1 : {y(ks+1)
r : r = 1, ...,r(ks+1) = N0},

Observations at mirror level − (ks +1) : {y−(ks+1)
r : r = 1, ...,r(ks+1) = N0}.

We next increment s and go to Step s+1.

Case 2: Gi,s is a singleton set
If Gi,s = {βk}, then we proceed to fully classify βk. This can be done by considering the expected

main effect of the set {βk}, D̄(k,k), which can be estimated by Equation 2. A two-sided 1−α
confidence interval for βk with upper and lower limits is given by:

β±
k = D̄(k,k)± 1

2
√

2
tα/2,ωs

Ss

√

1
/

r(ks−1) +1
/

r(ks), (15)

where Ss and ωs are calculated as before according to Equations 12 and 13, respectively.
The decision rule for classifying βk is as follows:
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1. If β−
k > δ , then βk is classified as important.

2. If β+
k < δ , βk is classified as unimportant.

3. Otherwise, we do not have enough information to classify βk and more observations are needed.
If

1

2
√

2
tα ,ωSs

√

1
/

r(k(i−1),s−1) +1
/

r(ki,s) < τ (16)

does not hold, we make additional runs at levels k(i−1),s and ki,s. If r(k(i−1),s−1) and r(ki,s) are

not equal, we add runs at the level with the smaller number of runs until r(k(i−1),s−1) = r(ki,s)

or the Inequality 16 is satisfied. If r(k(i−1),s−1) = r(ki,s) but Inequality 16 is still not satisfied,
we increase r(k(i−1),s−1) and r(ki,s) together until Inequality 16 becomes true. Now if δ < β−

k ,
we classify βk as important, and otherwise we classify it as unimportant.

Once βk is classified, we increment s and go to Step s+1.
To use MCh-X, we need to specify the number of observations to be obtained at each iteration,

N0. If we want to estimate the main effects within the half-width τ , then a proper value for N0 can
be calculated by Equation 15 as follows. Given an estimate for the standard error (σ̂ ), if we assume
r(k(i−1),s−1) = r(ki,s) = N0 and tα/2,ωs

≈ z1−α
2
, where z(1−α

2 ) is the upper 1− α
2 critical value of the

standard normal distribution, then any N0 ≥
( 2τ

σ̂z(1−α
2 )

)2
results in the half-width being less than τ .

4 PERFORMANCE EVALUATIONS OF THE FACTOR SCREENING METHODS

In this section, the performance of the factor screening methods is discussed in terms of efficiency (cost),
accuracy (effectiveness) and cost-effectiveness. This comparison can be helpful for experimenters in
selecting factor screening alternatives that best suit their models’ characteristics.

The number of observations that a factor screening method requires to determine the set of
important factors is generally considered a measure of efficiency (Kleijnen et al. 2005). To quantify
the accuracy of a method, when the set of important factors is known, we can use the percentage of
the important factors declared important (1− α̂) as a measure for accuracy .

In practice, obtaining observations from complex simulation models can be prohibitively costly. In
those situations, in detecting the set of important factors, the experimenter may be willing to sacrifice
a small portion of accuracy to achieve better efficiency (fewer runs). Therefore, it is also valuable to
rank the factor screening methods in terms of cost-effectiveness, which we measure as the ratio of
cost (total number of observation needed) to effectiveness (accuracy):

Cost-effectiveness ratio =
Total # of required observations

1− α̂
. (17)

In situations where sacrificing a small portion of accuracy to achieve better efficiency is legitimate,
the experimenter may select the factor screening method that yields the smallest cost-effectiveness
ratio.

In §4.1 we study the performance of factor screening methods under different variance settings.
In §4.2, we investigate how the number of factors affects the performance of these methods. The
results can be used to gain a rough insight into the performance of each factor screening method under
certain conditions; yet it should be pointed out that a method cannot be adequately evaluated simply
by observing its performance on a number of test beds; especially since the performance of factor
screening methods are highly sensitive to their parameter settings. The sole purpose of this section is
to obtain better understanding about the performance of each method under certain scenario settings.
Nonetheless, understanding how each method performs allows us to make recommendations about
which factor screening method can be expected to perform best under various conditions.

4.1 Performance Comparison: Effect of Variance

To evaluate and compare the performance of the discussed methods on different variance scenarios,
we created a test bed in Microsoft Excel 2007 with the following settings. One hundred factors
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are assumed to be involved, 10 of which are randomly selected to be important. The second-order
interaction effects between any factor and an unimportant factor are assumed to be unimportant. The
10 important factors add 45 second-order interaction effects, 10 of which are randomly selected to be
important. The coefficient of any important effect, including main or second-order interaction effects,
is uniformly distributed over the intervals [−1,−0.7] and [0.7,1], whereas for the unimportant factors,
the coefficients are uniformly distributed over the interval [−0.5,0.5]. All other effects associated
with higher order interactions are considered to be zero.

The error term for the response value y is assumed to be normally distributed with mean zero and
variance (σ + cy)2, where σ and c are constant values. We test the factor screening methods on two
different variance scenarios:

Model 1: Homogeneous variance with settings: σ ∈ {0.25,0.50,0.75,1.00} and c = 0.
Model 2: Heterogeneous variance with settings: σ ∈ {0.05,0.10,0.15,0.20} and c = 0.2(σ +

0.1).

For each scenario, we use 2k FF-IV, CSB-X, and MCh-X to identify the important factors. The
parameter settings for each method are as follows. For 2k FF-IV, we set N = 40σ for Model 1 and
N = 200σ for Model 2; for MCh-X, we set α = 0.05, δ = 0.5, τ = 0.6, and N0 = 40σ for Model 1
and N0 = 200σ for Model 2; and for CSB-X, we set α = 0.1, ∆0 = 0.5, ∆1 = 0.6, and N0 = 5.

Figures 1 and 2 compare the factor screening methods in terms of the different performance
measures for the scenarios with homogeneous and heterogeneous variance, respectively. In these
figures, accuracy is measured by the percentage of important factors detected by each method,
efficiency is measure by total number of observations required by a method for the factor screening
experiment, and the cost-effectiveness is calculated according to Equation 17. All confidence intervals
are calculated at 5% significance level. In each figure, a sufficient number of observations have been
obtained to create non-overlapping confidence intervals. Also note that both MCh-X and CSB-X
assume that the signs of main effects are known; therefore prior to applying them to each model,
an inexpensive Plackett-Burnman (PB) design (Montgomery 2000) was used to determine the signs
of main effects. Moreover, for the heterogeneous variance scenario, the response observations were
transformed by the Cox-Box method (Montgomery 2000) before using 2k FF-IV.

According to Figures 1 and 2, the 2k FF-IV designs are generally efficient and accurate in
determining the important factors. In the case of variance heterogeneity, the 2k FF-IV designs can
still yield accurate results if an appropriate variance-stabilizing transformation (Montgomery 2000)
is applied (see Figure 2(b)).

As shown in Figures 1(b) and 2(b), CSB-X rarely misclassifies an important factor since it has
control over both type I error and power at each iteration. The main advantage of CSB-X is its capability
to function under variance heterogeneity. However, as the variance increases, the efficiency of CSB-X
deteriorates rapidly (see Figures 1(a) and 2(a)). Hence, for simulation models with relatively high
variance and costly observations, this method may become prohibitively demanding. Nonetheless,
for cases where accuracy is far more important than efficiency, CSB-X is the preferred choice.

Figures 1(a) and 1(b) show that MCh-X generally yields accurate results under variance ho-
mogeneity while sustaining its efficiency as the variance increases. However, since it employs the
assumption of variance homogeneity, the MCh-X tends to misclassify the factors as the variance
heterogeneity becomes more pronounced (see Figure 2(b)). Moreover, MCh-X generally has a low
cost-effectiveness ratio for models with homogeneous variance (see Figure 1(c)). This implies that
when the simulation runs are costly, the experimenter can get fairly accurate results with a reasonable
number of simulation runs by using the MCh-X method.

4.2 Performance Comparison: Effect of Number of Factors

To observe the effect of the number factors on the performance of the methods studied here, we consider
4 models with n∈ {50,100,150,200} factors. In each model, 10% of the factors are randomly selected
to be important. The second-order interaction effects between any factor and an unimportant factor
are assumed to be unimportant. Among the second-order interaction effects, 0.1n effects are randomly
selected to be important. The coefficients of factors are determined with the same settings as in §4.1.

The error term is assumed to be normally distributed with mean zero and variance σ2. For each
set of models, we test the factor screening methods on two different variance scenarios: σ = 0.25
is assumed for the low variance scenario, and σ = 0.75 is assumed for the high variance scenario.

1041



Yaesoubi, Roberts and Klein

For each scenario, we use 2k FF-IV, CSB-X, and MCh-X. The parameter settings for each method
are as follows. For 2k FF-IV, we set N = 40σ ; for MCh-X, we set α = 0.05, δ = 0.5, τ = 0.6, and
N0 = 40σ ; and for CSB-X, we set α = 0.1, ∆0 = 0.5, ∆1 = 0.6, and N0 = 5.

Figures 3 and 4 compare the methods in terms of the various performance measures for the
scenarios with different number of factors. All confidence intervals are calculated at 5% significance
level. In each figure, a sufficient number of observations have been obtained to create non-overlapping
confidence intervals.

Figures 3(a) and 4(a) show that for both low and high variance scenarios, MCh-X required the
least number of runs to classify the factors, which increases by the number of factors at a linear rate.
Moreover, according to Figures 3(b) and 4(b), when variance is homogenous, the factor screening
methods studied here sustain their accuracy as the number of factors increases. Finally, Figures 3(c)
and 4(c) display that for both low and high variance scenarios, MCh-X has the lowest cost-effectiveness
ratio for different numbers of involved factors.

5 CONCLUSIONS AND FUTURE RESEARCH

The main methodological contribution of this work is the improvement made in Cheng’s method.
The original Cheng’s method may fail to identify the important factors when the response variance
is relatively high or the second-order interaction effects are significant. The modification of Cheng’s
method overcomes some of the original method’s limitations, as discussed in detail in §3.

Early sequential factor screening methods require restrictive assumptions about the variance.
Recent work, to some extent, has relaxed those assumptions. The CSB-X is designed for simulation
models with heterogeneous variance. It, however, loses its efficiency as the response (homogeneous
or heterogeneous) variance increases. In this paper, we introduced the MCh-X as an alternative factor
screening method that sustains is efficiency as the homogeneous variance increases. Among the current
factor screening alternatives, only 2k FF-IV does not lose its accuracy and efficiency when applied
to models with high heterogeneous variance, given that the appropriate transformation is applied.
Sequential factor screening methods are still in need of further revision to provide efficiency under
high heterogeneous variance.

One of the main limitations of the MCh-X method is the variance homogeneity assumption. For
simulation models with heterogeneous response variance, 2k Fractional Factorial of Resolution IV
and CSB-X are still the better factor screening candidates. All factor screening methods discussed
in this paper assume a second-order polynomial function for the model response (except the Cheng’s
method which assumes a first-order polynomial function). This assumption might not be satisfied as
the complexity of a simulation model increases and therefore it might lead to misclassification of the
factors. A factor screening method that can relax such a restrictive assumption is highly desired.
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(a) Efficiency

(b) Accuracy

(c) Cost-Effectiveness

Figure 1: Performance evaluation for the homogeneous variance scenario
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(a) Efficiency

(b) Accuracy

(c) Cost-Effectiveness

Figure 2: Performance evaluation for the heterogeneous variance scenario
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(a) Efficiency

(b) Accuracy

(c) Cost-Effectiveness

Figure 3: Performance evaluation in terms of the number of factors involved for σ = 0.25
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(a) Efficiency

(b) Accuracy

(c) Cost-Effectiveness

Figure 4: Performance evaluation in terms of the number of factors involved for σ = 0.75
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