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ABSTRACT 

We consider the use of random search for high dimensional optimization problems where the objective 

function to be optimized can only be computed with error . Random search is easy to carry out, but ex-

traction of information concerning the objective function is not so straightforward. We propose fitting a 

statistical model to the objective function values obtained in such a search, and show how the fitted model 

can be used to estimate the best value obtained when the search effort is limited and how this value com-

pares with the unknown true optimum value. A possible use of this approach is in combinatorial optimiza-

tion problems. The dimension in such a problem is not usually considered, but if a dimension can be as-

sociated with it, then it is likely to be high. We illustrate our method with a numerical example involving 

a travelling salesman problem. 

1 INTRODUCTION 

This paper considers the use of random search optimization (RSO) in simulation to minimize, an objec-

tive function )(θX , typically an expected system performance measure, that is a continuous function of 

a vector θ  of d continuous decision variables, where θ  can be selected from a compact region Θ  of 
dR , and where the minimum expected performance 

 

  )(minmin θXx
θ Θ∈

=  (1) 

 

is obtained at an interior point minθ of Θ . We conduct the random search in the following way. We first 

sample m mutually independent values of θ : 

 

  mθθθ  ..., , , 21 , (2) 

 

which we shall call search points, from some continuous distribution with density 

 

  Θ∈ θθg  ),( . (3) 

 

We allow for a general density rather than sampling from a uniform distribution to enable sampling to be 

focussed in the most promising regions of Θ based on prior information. 

 Then for each iθ  we make n independent simulation runs, each of some predetermined and fixed stan-

dard length t. We shall not discuss how individual runs are conducted. For example, if a warm up period 
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is needed in each run, we assume that this has already been considered and dealt with. If the total time 

available allows a maximum of c simulation runs, we have that 

 

  c = nm. (4) 

 

Writing iX  for )( iθX , the observed performance indices are: 

 

  .,...,2,1;..., ,2,1          , njmiXY ijiij ==+= ε  (5) 

where ijε  are random ‘error’ quantities with mean zero and variance 
2σ . We consider only the case 

where the ijε  are mutually independent and where 
2σ  is the same at all individual observations. 

 The averages of the observations at each iθ  are 

 

  ,,...,2,1for   say,  , 
1

1

1

1
miXnXYnW ii

n

j

iji

n

j

iji =+=+== ∑∑
=

−

=

− ζε  (6) 

 

where the averaged errors iζ  have mean zero and variance: 

 

  .say ,/][Var 22
ni n σσζ ==  (7) 

We include the suffix n as a reminder that ][Var iζ  depends on n. The important point to note is that be-

cause the iθ  are randomly sampled, the iX  are also random variables which are independent of the iζ . 

There are thus two sources of variation: the search induced variability of the iX  and the simulation in-

duced variability of the iζ . In all that follows we shall use the notation )(θX  when we are regarding X 

as a deterministic function of θ , and the notation )( iθX , or iX , when regarding X as a random variable 

resulting from the random sampling of the iθ  in (2). We shall write )(⋅XF , and )(⋅ζF  to denote the cu-

mulative distribution functions (CDF) of iX  and ζ  and )(⋅Xf  and )(⋅ζf  for their probability density 

functions (PDF). 

 To date published theoretical work has focussed on the situation where d is known and where the 

minimum observed value of the iW  is used to estimate minx . We shall write this smallest value as W(m,n) 

to indicate that its distribution depends on both m and n. Chia (2005) and Chia and Glynn (2007) have 

studied the behavior of ),( nmW  under the classical assumption that )(θX  is a quadratic function of θ   

near minθ . The main result is that ),( nmW  has minimum variance when 

 

  m  ~ )4/( +dd
rc ,  n ~ )4/(41 +− d

cr  (8) 

 

as ∞→c , with r an arbitrary but fixed positive constant. 

 Essentially the same problem has also been considered by Yakowitz et al. (2000) who however em-

ploy a search on a low dispersion set of points, but yielding a result very similar to that of (8). 

 We shall also consider this problem under the same quadratic assumption for )(θX , but for the case 

where the dimension d is to be regarded as being large, and possibly not even precisely known. 
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 Our approach is to fit a statistical model to the observations (5). To completely specify a statistical 

model for the observations (5) we note that Yij is simply the sum of Xi and ijε . Thus all we need to do is 

specify )(⋅XF  the distribution of X and )(⋅εF  the distribution of ε . The distribution of Y is then the con-

volution of these two distributions. For the situation where d is large we show that we do not need to con-

sider any definite value for d but can assume that a central limit theorem applies to the distribution of X 

so that we can assume it to be normally distributed. Moreover we shall only consider the situation where 

the errors are normally distributed. The distribution of Y is then also normally distributed.  

 One of the advantages of using a statistical model is that it allows one to study quantities of interest 

other than W(m,n). We shall therefore study not simply the distribution of W(m,n), but estimation of the un-

known optimum value xmin, and also the distribution of the value of the performance measure actually ob-

tained when the search point iθ  corresponding to W(m,n) is selected. This last is perhaps the quantity of 

most interest in a random search. We also consider the calculation of confidence intervals (CI) for these 

quantities using resampling. We also suggest a modified Anderson-Darling goodness of fit test, again us-

ing bootstrap resampling, to test the adequacy of the fitted statistical model. 

 In our numerical example the precise form of the distribution of Xi is completely know so that the op-

timum solution is known. We are therefore able to make definitive comparisons of the results of the RSO 

with this solution. 

 In the next section we discuss in more detail our normal model of the observations (5). The practical 

approach of fitting this model to data is described in Section 3. In Section 3 we also discuss the use of 

bootstrapping to calculate CIs and a goodness of fit test of such a model. A numerical example is given in 

Section 4 and a brief summary is given in Section 5. 

 

2 THE NORMAL MODEL 

Consider the use of RSO, as described in Section 1, to estimate the optimum expected performance minx  

as given in (1), with the individual observations of the form (5). 

 We consider first the situation where, for a given search point θ , )(θX  can be observed without error. 

Consider the following assumption. 

 

Assumption A The optimum value minx  is obtained at an interior point Θ∈minθ  and, throughout Θ , (i) 

)(θX  is twice continuously differentiable and (ii) )(θX  has a positive definite Hessian, )( minθH , of 

second derivatives. Moreover let the first derivative be zero at minθ . 

 

We have the following result. 

 

Lemma 2.1 Under Assumption A 

 

  minmin
2/

min for    )],(1[)(]Pr[ xxxxRxxKxX
d

i >−+−=≤ , (9) 

 

for some 0>K , where 0 as  )1(o)( →= xxR . 

 Proof  With no loss of generality assume the components of θ  are taken in standardized units so that 

the contour where xθX =)( , with x constant, is the boundary of the hypersphere 

})(|{),(
1

22

 maxmax ∑
=

≤−=
m

i

ii rθrS θθθ  of radius r and centre minθ , where min
2

xxr −=  and whose vo-

lume is therefore 
d

Cr  where C depends on d and )( minθH  but is independent of r. Moreover if the densi-
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ty (3) is strictly positive and continuous at minθ  then the density in ),( minθrS  is a constant to first order in 

r. Thus the proportion of points falling within ),( minθrS  will be proportional to its volume 
d

Cr  also to 

first order in r. This is exactly equivalent to saying that the tail behavior of X near its minimum )( minθX  

is of the form (9).      y 

 

 Lemma 2.1 shows that the left tail of the distribution of iX  is closely represented by a power-law de-

pendent on the dimension d. Indeed if )(θX  is exactly quadratic and the density is exactly uniform for 

all ),( minθrS∈θ  for some r, then (9) clearly holds exactly with 0)( =xR , for all x sufficiently close to 

minx . 

 In view of Lemma 2.1 a simple model for )(⋅XF  with the correct form of left-tail behavior would be 

the gamma distribution with CDF 

 

  γβγβαγβα
γ

αα >−−Γ= ∫
−−−

xduuuxF
w

X for    ,}]/)[({exp)(),,|(
11

, (10) 

 

where we have written 2/d=α  and minx=γ . 

 We are actually interested in the case where d is large. In this situation the gamma distribution actually 

converges to a normal form that is not apparent if we retain the parametrization of (10).  Cheng and Iles 

(1990) call such a model an embedded model obtainable at an infinite limit. They show that if 

 

  βαωαβγµαλ 2/12/1   ,  , =+== −  (11) 

 

and let −∞→→∞→ γβα   ,0  ,  in such a way that ωµ   and   remain fixed (with 0→λ ), then the gamma 

distribution converges to the normal distribution with mean µ  and standard deviation ω . 

 There are two implications of this result. Firstly, when d  is large, we can approximate the distribution 

of Xi in its left tail by the normal model 

 

  )/)((),|( ωµωµ −Φ= xxFX , (12) 

 

where )(⋅Φ  is the CDF of the standard normal distribution. Secondly, it might appear that this representa-

tion does not then include an explicit parameter for the minimum γ  that we are interested in estimating. 

This is a consequence of the form of (11) which indicates that γ  is likely to be large and negative. The 

behavior of any estimate of γ  is likely therefore to be unstable and unreliable. We are therefore better off 

in using (12) for the distribution of Xi, and rather than trying to estimate γ  we should estimate a low 

quantile of (12) instead. We will adopt this approach and estimate 

 

  ωµδ qq z+= , (13) 

 

where qz  is the qth quantile of the standard normal distribution and with q = 0.05 say. Thus qδ  in (13) is 

estimated simply by estimating ωµ  and . 

 Our statistical model of the observations (5) is completed by specifying the distribution of ε , the ran-

dom simulation induced error arising from the within-run stochastic variation. We shall simply assume 

that this is normal, i.e. 
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ε  ~ ),0( 2σN       (14) 

 

where 2σ  is unknown but constant. Normally distributed errors would seem a reasonable assumption in 

many contexts. For example in the simulation of a continuous production process the output of interest is 

typically an average output rate or cost. 

 The discussion just given is appropriate where this left-tail of the distribution of iX is well approx-

imated by the power-law form given in Lemma 2.1. In view of our discussion, this indicates that a propor-

tion of the smaller iW  values might reasonably be assumed to be the sum of two independent and approx-

imately normally distributed random variables. We therefore make the following assumption. 

 

Assumption B  Let mWWW ...21 <<  be the observed averaged observations given in (6), only now taken 

in ranked order. Given m, ρ  can be found with 10 << ρ  for which each of the averaged observations in 

the subsample 

νWWW ...21 <<       (15) 

 

where 

 ρν m=       (16) 

 

takes the form 

iii XW ζ+=       (17) 

 

with iX  ~ ),( 2ωµN  and iζ  ~ )/,0( 2
nN σ  are mutually independent so that 

 

iW  ~ ),( 2ψµN       (18) 

where 

 
2122 σωψ −+= n .            (19) 

 

In the next Section we show how to estimate the parameters σωµ  and   ,  under Assumption B. 

3 FITTING THE NORMAL MODEL 

We consider estimation of the parameters σωµ  and   ,  of the normal model given in Assumption B. It is 

easiest to estimate σ  first separately from ωµ   and  . 

3.1 Estimation of σ  

As observations are replicated at each search point, an easy immediate, quite efficient, estimate of 
2σ  is 

obtainable using 

 

  ∑ ∑
= =

−− −−=
m

i

n

j

iij XXnm
1 1

2112 )()1(σ̂  (20) 

where 

  ∑
=

−=
n

j

iji XnX
1

1 . (21) 
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Here 
2σ̂  has the same distribution as 21

τχτ −  where 2
τχ  is a chi-squared variable with )1( −= nmτ  de-

grees of freedom. Thus, provided m > n, σ̂  has variance that is )( 1−cO  as ∞→c . 

3.2 Estimation of ωµ   and   

We assume that σ̂  is as given in (20). Using Assumption B we shall apply the method of maximum like-

lihoo to a subsample to estimate the other two parameters ωµ   and  . This type of method is used in esti-

mating the value at risk of a financial portfolio (see Pickands 1975, for example). From now on we shall 

assume that the sample (6) has been ordered so that mWWW <<< ...21  and set  ρν m=  as in (16).. 

Clearly, as ∞→m , νW  tends in probability to the ρ th quantile of the distribution (18). Thus we have to 

order 2/1−
m , when m is large, that 

 

 ( )  ,/)( ρψµν =−Φ W  

 i.e. 

  ψµ ρν zW −=  (22) 

 

in probability, where ρz  is the ρ th quantile of the standard normal distribution and  ˆ 212 σωψ −+= n . 

Using this condition the loglikelihood is easily shown to be: 

 

 .ˆ    ,)(
2

1
)log()2log(

2
)ˆ|,(

1

2

2
σψψ

ψ
ψνπ

ν
σωµ

ν

ρν ≥−−−−−= ∑
=i

i zWWL  (23) 

 

We can obtain the maximum likelihood (ML) estimate of ψ  explicitly in this case: 

 

 ( )[ ]{ }{ } ˆ  , )/(14 )(2 maxˆ 212/12221
σ nzWWszWW

/-
W ρνρνψ −−++−= − , (24) 

 

with the ML estimate of µ  given by 

 

 ψµ ν
ˆˆ

pzW −= . (25) 

  

The distribution of X thus has estimated CDF: 

 

  ]ˆ/)ˆ[()ˆ,ˆ|( ωψωµ ρν zWxxFX +−Φ= , (26) 

 

where )ˆˆ(ˆ 212 σψω −−= n provided σψ ˆˆ > . The case σψ ˆˆ 2/1−≤ n  is an indication that the variance of the 

error term in (5) is so large that the effect of the performance index variance is lost. In this case the re-

sults of the entire search are probably suspect and cannot be relied on. 

 There is an issue concerning the choice of the value of ρ . Making it too large might result in a poor 

fit because normality of the Xi cannot be guaranteed over the entire range of its distribution, but too small 

a choice would result in unnecessary loss of estimator efficiency and accuracy. We dealt with this simply 

by fitting the model over a range of ρ  values, 9.0,...,2.0,1.0=ρ  in our case, and then selecting a value 

where the estimates were reasonably stable. 
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3.3 Confidence Intervals for Quantities of Interest 

In the numerical example to be presented in Section 4 we examine the distributional properties of 

three quantities of particular interest The first two are: 

 (i)   ωµδ ˆˆˆ
qq z+= , the estimate of qδ  given in (13). 

 (ii) 1 W , the smallest observed average performance measure appearing in (6). 

 We shall assess the effectiveness of qδ̂  and W1 as estimators of qδ  and xmin  by examining their distri-

butional properties using the parametric bootstrap . The method is described for example by Cheng 

(2006). The underlying idea is that if the assumptions concerning the distributions of iX  and ijε  in the 

original observations (5) are correct then they will be well approximated by )ˆ,ˆ|( ωµ⋅XF  and )ˆ,0( 2σN  re-

spectively. We therefore take these estimated distributions as being the true distributions and sample from 

them to generate B parametric bootstrap (BS) replicates 

 

  BknjmikkXkY ijiij ,...,2,1  },..,2,1 ,,...,2,1  ),()()({ *** ===+= ε  (27) 

 

with )(*
kXi  ~ )ˆ,ˆ|( ωµ⋅XF  and )(

*
kijε  ~ )ˆ,0( 2σN , where an asterisk denotes a bootstrapped quantity.  

Each of the B BS replicates in (27) has exactly the same form as (5). Thus t, where qt δ̂=  or 1Wt = , 

which were calculated from the original observations (5) can also be calculated from each bootstrap repli-

cate in (27), giving a sample of B bootstrap values of t : },...,2,1  ),({ *
Bkkt = . Under fairly general 

smoothness conditions, see Bickel and Freedman (1981), the empirical distribution function (EDF) 

formed from this BS sample is a consistent estimate of the CDF of t . We can therefore use the BS sample 

to construct a CI for the unknown true qδ  or xmin value being estimated. 

 In the numerical examples described in Section 4 the },...,2,1  ),({ *
Bkkt =  sample is both skewed and 

biased. We used the following CI based on the conventional normal approximation CI as described by 

Davison and Hinkley (1997, Section 5.2.1), but modified in a simple way to allow for this asymmetry in 

the )(* kt  sample. Let },...,2,1),({ * Bkkt =  represent the BS sample and let 
*

t  be the BS sample mean 

obtained from the BS sample.. Now assume that the sample is ordered and define B1 as the subscript for 

which 
** )( tkt ≤ 1,...,2,1for  Bk =  and )(** ktt < , BBBk ,...,1,for 11 += . Let 

  )1/())((  ),1/())(( 1

2*

1

*2

21

2*

1

*2

1

1

1

−−−=−−= ∑∑
+==

BBtktsBtkts
B

Bi

B

i

. 

The suggested )%1(100 p−  CI then has lower and upper limits 

 

  sztptpt p

UL

2/

*** ))(  ),(( ±= , (28) 

 

where 2/pz  is the upper p/2 quantile of the )1,0(N  distribution and s is the larger of s1 and s2. 

 We consider one other quantity of particular practical interest: 

 (iii) )1(X , the performance measure actually achieved when the search point corresponding to W1 is se-

lected as being the best. We write this as 

 

  1)1(1 ζ+= XW . (29) 
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We have used a bracketed subscript in X(1) as a reminder that the actual performance measure correspond-

ing to W1 may not be the lowest actual performance measure that has been obtained amongst all the 

search points examined in the RSO. 

 The quantity X(1) is not observable in a real RSO. It can be estimated from the model but this is quite 

complicated. Instead we estimated it using the BS sample mean 

 

  ∑
=

−=
B

k

kXBX
1

*
)1(

1*
)1( )( , (30) 

 

 We can in this case also directly calculate a CI of the form (28), but with 
*

t  now representing 
*

)1(X , in 

exactly the same way as described for the cases 
** γ̂=t  and 

*

1

* Wt = . This is possible even in a real RSO 

where )1(X  is not known, as the BS process generates all the individual )(*
kX i  and )(*

kijε  in (27) which 

are therefore all known. 

 The interesting issue arises here as to what is the unknown quantity that the interval (28) is the CIs for, 

when 
*

)1(

*
Xt = . It can of course be regarded as a CI for E(X(1)), but it would be much more interesting to 

regard it, unconventionally, as a CI for the actual unknown X(1). the quantity of real interest, even though 

this is random.Though we do not give a justification here in detail it turns out that this is reasonable be-

cause the distribution of the BS observations in (27) tend to those of the original observations. We find 

that under suitable regularity conditions 

 

  pptXps cc −→≤≤ 1))ˆ,( )ˆ,(Pr( )1( φφ   with probability1 as ∞→c , (31) 

 

where )ˆ,ˆ,ˆ(ˆ
cccc σωµφ =  are the estimates obtained from a RSO using c observations, and ),( φps  

satisfies 2/)|),((
)1(

ppsFX =φφ  and ),( φpt  satisfies =)|),((
)1(

φφptFX  )2/1( p− . These latter 

are estimated from the BS CI (28) for X(1). Inversion of (31) in the usual way then gives a CI for 

X(1). 

3.4 Goodness of Fit Test 

An obvious concern  is whether the fitted distribution of Xi, is correct or not. The Anderson-

Darling (AD) statistic, A
2
, goodness of fit test with its critical values calculated by parametric re-

sampling can be used for this as discussed by Cheng (2006). The only change needed is that the 

AD statistic has to be modified to allow it to be applied to the subsample (15). In analogy to the 

standard AD statistic (see Anderson and Darling, 1952) we define this as 

 

  ∫ −

−
=

p

W

WW

WW Fd
FF

FF
A

 

0 

2
2 ˆ

)ˆ(ˆ

)
~ˆ(

ρ
ν  (32) 

 

where )ˆ,ˆ,ˆ|(ˆ σωµ⋅= WW FF  is the fitted distribution and WF
~

 is the empirical distribution function 

(EDF) of the subsample (15). Written out explicitly we find that (32) is equivalent to 

  ∑
−

=

− −+−−+−−=
1

1

12 )]}ˆlog()ˆ)[log(12()1(1{
ν

ρννρ
i

ii FFiA , (33) 
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where )ˆ,ˆ,ˆ|(ˆ σωµ⋅= iWi WFF . This form is easier to use for numerical calculations than (32). Note 

that the summation in (33) does not include νF̂  as the condition (22) requires ρν =F̂ . 

4 AN EXAMPLE OF A COMBINATORIAL OPTIMIZATION PROBLEM 

A situation where our model of Section 3 might be appropriate occurs in combinatorial optimization. In 

such problems the set of solutions is usually discrete but typically has very large cardinality. Thus it 

seems reasonable to assume that the distribution of the objective function values obtained in a random 

search of points drawn from the solution set can adequately be approximated by a continuous distribution. 

The dimensionality in combinatorial problems is not usually considered. We argue however that if the 

dimension can be defined at all, it will typically be large. These considerations suggest that our statistical 

model given in Assumption B might be appropriate in such problems. We demonstrate this in this Section 

by applying the method of the previous Section to a travelling salesman problem (TSP) containing a sto-

chastic element. 

 Table 1 gives the x,y coordinates of nine randomly generated points in the unit square. We define a 

tour as a path that starts and ends at a given point, visiting each other point just once. The TSP problem is 

to find the tour with the shortest total length, X, assuming the Euclidean distance is used for the distance 

from one point to the next on a tour. The length of each tour is the sum of nine distances, so that though a 

dimension is not usually associated with such a problem, it seems not unreasonable to regard each tour as 

associated with a point in 8-dimensional space, assuming the starting point to be fixed. The search space 

therefore comprises the 8!/2=20160 distinct points in this space corresponding to the distinct tours of the 

nine original points. The problem thus has a reasonable number of points in the search space, but suffi-

ciently small to enable all tour lengths to be evaluated. 

 For simplicity of presentation we reduced all tour lengths by the amount of the shortest tour length, so 

that the minimum transformed tour length corresponds to xmin = 0. If we select tours at random, each be-

ing equally likely, then we have the RSO problem where the distribution of the tour lengths has CDF de-

picted in Figure 1. It will be seen that even in this relatively small example the left tail does have a shape 

one might associate with a normal tail, even if only superficially. 

In our problem we assume tour lengths cannot be evaluated accurately and have added a standard 

normal error. Thus in our problem observed tour lengths are as in (5) with 1=σ . 

 

Table 1: The x, y Coordinates of the Nine Points of the Travelling Salesman Problem of Section 4. 

 

x, y x, y x, y 

0.685, 0.991 0.195, 0.462 0.656, 0.664 

0.083, 0.964 0.540, 0.360 0.054, 0.831 

0.287, 0.111 0.673, 0.600 0.095, 0.206 

 

 

 Three metaexperiments were carried out, each with a different value of c: 100, 1,000 and 

10,000, in order to encompass a representative range of c values that might be used in practice. 

Each metaexperiment was made up of 100 independent but otherwise identical experiments. In 

each experiment an RSO as described in Section 3 was carried out using one of the c values. 

From (8) it is clear that with d large we should take m much larger n. We thus took m = c/4 and n 

= 4 to provide 3c/4 degrees of freedom to estimate σ  as described in Subsection 3.1. 
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CDF of Tour Length, X,  for TSP Problem
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Figure 1: The CDF of Xi  the 20160 tour lengths in the travelling salesman problem assuming all tours are 

equally likely to be selected.  All tours are shifted by the amount of the shortest tour length, so that the 

shortest tour length corresponds to xmin = 0 

 

 

 The RSO produced a set of observations of the form (5), with, in each observation, iX  ran-

domlyselected from the 20160 tours, all tours being equally likely to be selected, and with the ijε  

all standard normal variables. We then fitted the model of Assumption B. The three quantities of 

interest described in Subsection 3.3, namely. ,δ̂  1 W  and X(1) were then calculated. 

 A set of parametric bootstrap versions of the RSO was then obtained, exactly as described in 

Subsection 3.3 to produce the three )%1(100 p−  CIs: ))(ˆ  ),(ˆ( ** pp UL δδ , ))(  ),(( *

1

*

1 pWpW UL , 

and ))(  ),(( *

)1(

*

)1( pXpX
UL . These were used as CIs for 05.0δ , so that q = 0.05 in Equation (13), xmin= 

0 and X(1) respectively. We used 90% CI’s so that p = 0.05. 

 In a real RSO study none of these quantities are known. However in our experiments all are 

known, with 0=γ , 05.0δ = 1.303, and with X(1) easily obtained from the observations (5). Thus in 

all three cases we can check if the CI covers the true value or not. The metaexperiment simply 

replicates the entire experiment just described a number of times, N say, to allow estimation of 

the true coverage by seeing how often each CI covers its true value. 

 We also carried out the goodness of fit test of Subsection 3.4 in each experiment of each me-

taexperiment, with the test returning the result either as ‘reject’ or ‘not reject’ the fitted statistical 

model, and with probability of not rejecting a correct model set at 90%. 

 In all experiments the number of bootstraps, B was set at 100. The number of replicates, N, in 

a metaexperiment was also set at 100. Even though these are relatively low settings the results 

obtained provide a reasonably clear picture of the overall performance of the method over a 

range of conditions. 

 Table II summarizes the results obtained for the 3 metaexperiments carried out. The Table 

gives, for each metaexperiment, ρ , the proportion of the main RSO sample used in fitting the 
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model, and GoFp , the proportion of the experiments for which the model was not rejected as a 

bad fit by the goodness of fit test. The rows M and SD are the sample mean and sample standard 

deviation of these samples, which therefore estimate the true behavior of each quantity. Each ex-

periment also produced 100 BS samples of each quantity of interest giving a BS sample mean for 

each. The mean of these BS sample means, taken over the 100 experiments for each quantity, i.e. 

the grand mean for each quantity taken over all BS samples and all experiments in the metaexpe-

riment, is given in row BM. The 100 BS values of each quantity in each experiment are also used 

to calculate a 90% CI. The half-width was recorded in each experiment giving a sample of 100 

half-widths. The sample mean of these half widths is recorded in the CI/2 row. The final row, 

PCI gives the proportion of the 100 experiments that the true value of the quantity of interest is 

covered by its CI.  

 The GoFp  values in Table 2 indicate that the model fit was satisfactory in the experiments. 

 The sample means and sample standard deviations in rows M and SD behave generally as one 

would expect, showing improved accuracy as c increases.  

 Comparison of the bootstrap means of row BM with those in row M gives an indication of the 

general reliability of the bootstrap process. The BM values for δ̂  and W1 are not otherwise of 

particular interest, as the true values of these latter quantities, as given in the M row, are always 

observable in an RSO. The BM value, (30), for the quantity X(1) is however of more interest, as it 

is a point estimate of the true X(1) value, which will be unknown in a practical RSO. So it is of in-

terest see how its mean value compares with its known true value in our experiments. 

 For each quantity of interest, the CI half width in the CI/2 row is a direct measure of the 

spread in its BS sample. One would expect this to be roughly twice the sample SD value, which 

in most cases they are. 

 Perhaps of most interest in Table 2 are the PCI values, giving the observed coverages of the 

true values of each quantity. The nominal confidence level used in calculating the CIs is 90%. 

The PCI values for 05.0δ̂  and X(1)  seem satisfactory. The PCI values for W1 are erratic suggesting 

that W1 is not a particular good estimator of the true minimum xmin which is as we expected, indi-

cating that our strategy of estimating 05.0δ  a low quantile for X(1)  is preferable.  

 

Table 2. Results of 3 RSO Metaexperiments for each of Three Values of c in the TSP Example. 

The Table Entries are as explained in the Text.  

 

               c = 100             c = 1000              c = 10000 

 m  ρ  GoFp  m  ρ  GoFp  m  ρ  GoFp  

 25 0.4 0.90 250 0.4 0.91 2500 0.2 0.92 

 

   

05.0δ̂  
1W  )1(X    05.0δ̂  

1W  )1(X    05.0δ̂  
1W  )1(X  

M 1.140 0.726 1.286 1.330 0.178 1.022 1.318 -0.398 0.837 

SD 0.422 0.396 0.417 0.120 0.306 0.404 0.036 0.251 0.388 

BM 0.994 0.559 1.155 1.301 0.101 1.011 1.312 -0.446 0.660 

CI/2 0.777 0.826 0.856 0.198 0.590 0.729 0.068 0.505 0.722 

PCI 0.87 0.61 0.9 0.92 0.99 0.89 0.92 0.74 0.91 
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5 SUMMARY 

We have discussed a statistical model that may be of use in analysing the results of an RSO. The use of 

bootstrapping enables the quality of estimates of quantities of interest to be gauged. In particular the mod-

el enables estimation not only of )1(X , the performance actually achieved when the search point corres-

ponding to the best observed search point is selected as being the best, but also of quantile points, qδ , as 

given in equation (13). The proportion of all possible solution points θ  with objective function value less 

than (i.e. better than) qδ  is q. Thus comparison of the estimates of )1(X  and qδ  gives an indication not 

only of the best value of the objective function obtained in the search, but also of the quality of this value. 
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