
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

CONVERGENCE PROPERTIES OF DIRECT SEARCH METHODS FOR STOCHASTIC OPTIMIZATION

Sujin Kim
Dali Zhang

Department of Industrial and Systems Engineering,
National University of Singapore,

1 Engineering Drive 2, 117576, Singapore

ABSTRACT

Simulation is widely used to evaluate the performance and optimize the design of a complex system. In the past few
decades, a great deal of research has been devoted to solving simulation optimization problems, perhaps owing to their
generality. However, although there are many problems of practical interests that can be cast in the framework of
simulation optimization, it is often difficult to obtain an understanding of their structure, making them very challenging.
Direct search methods are a class of deterministic optimization methods particularly designed for black-box optimization
problems. In this paper, we present a class of direct search methods for simulation optimization problems with stochastic
noise. The optimization problem is approximated using a sample average approximation scheme. We propose an adaptive
sampling scheme to improve the efficiency of direct search methods and prove the consistency of the solutions.

1 INTRODUCTION

Consider a class of optimization problems of the form

min
x∈X

{

F(x) := E [f (x,ξ (ω))] =
∫

Ω
f (x,ξ)P(dξ (ω))

}

, (1)

where ξ : ω → Ξ ⊂ R
q is a random vector defined on a probability space (Ω,F ,P), E[·] denotes the mathematical

expectation operator, and x ∈ X is a decision vector with X being a nonempty subset of R
p. Throughout this paper, we

assume that E[f (x,ξ (ω))] is well defined for every x ∈ X . The domain X is assumed to be deterministic and known. We
also assume that E[f (x,ξ)] cannot be evaluated analytically by its closed form but has to be estimated by simulation.

In the past few decades, a great deal of research has been devoted to solving these simulation-optimization
problems, due to the many practical applications that can be cast in the form of (1). For various introductions and
perspectives on the problem see Fu (2002), the optimization-related chapters in Henderson and Nelson (2006), and
simulation-optimization tutorials at the Winter Simulation Conference, for example Andradóttir (1998), Kim (2006)
and Kim and Henderson (2008).

One standard technique for solving the problem (1) is the sample average approximation (SAA) approach. This
method approximates the original simulation optimization problem (1) with a deterministic optimization problem in
the following manner. Let N be a deterministic positive integer, and suppose that we generate an independent random
sample ξ1, ..,ξN . For a fixed x, define the sample mean over (f (x,ξi) : 1 ≤ i ≤ N) as

F̄N(x) =
1
N

N

∑
i=1

f (x,ξi).

The SAA problem corresponding to (1) is

(PN) min
x∈X

F̄N(x), (2)

1003978-1-4244-9864-2/10/$26.00 ©2010 IEEE

Kim and Zhang

i.e., we minimize the sample average. Once the sample is fixed, F̄N(x) becomes deterministic. Consequently, the SAA
problem (2) becomes a deterministic optimization problem and one can solve it using any convenient optimization
algorithm. For a general introduction to the SAA approach, the readers are referred to Shapiro (2003).

The basic idea of the SAA method yields several possible variations. For instance, instead of solving a sin-
gle SAA problem, we can solve a sequence of SAA problems {Pmk} with increasing sample size {mk} → ∞
(Chen and Schmeiser 2001, Pasupathy and Schmeiser 2009). At every iteration, the solution from the previous itera-
tion can be used as a starting point and a new SAA problem is resolved. Pasupathy (2010) analyzed the asymptotically
optimal sample size mk and the error-tolerance level ek. However, numerical results show that this optimal convergence
often cannot be realized in finite sample simulation (Royset 2010). Bayraksan and Morton (2010) developed a sequential
sampling scheme to determine the sample size mk. At iteration k, the optimality gap is estimated in order to determine
whether to terminate the algorithm, and mk+1 is updated based on this estimate if the condition on the optimality gap is
not satisfied. Nice statistical inferences on the optimal values and solutions can be obtained in this context, but solving
a new SAA problem at each iteration can be time-consuming.

Another variation is using the variable-number sample-path (VNSP) scheme in an iterative optimization algorithm.
Instead of solving the SAA problem with a fixed sample size N at every iteration, one may want to use variable
sample size Nk, where Nk may grow to infinity with the number of iterations k. Homem-de-Mello (2003) analyzed the
asymptotic property of the objective function under the VNSP scheme and showed the pointwise convergence of the
approximate objective function to the true objective function. This work also incorporated VNSP into some basic random
search methods and applied the scheme to stochastic optimization problems with a finite feasible set. More recently,
Deng and Ferris (2009) applied Powell’s unconstrained optimization method by quadratic approximation (UOBYQA)
to solve a SAA problem under the VNSP scheme, achieving the convergence of the algorithm to a stationary point.
Their numerical results showed that the VNSP scheme has great potential for improving the rate of convergence.

In this paper, we consider a class of direct search methods for simulation optimization problems where the
objective function is evaluated through black-box optimization with stochastic noise. Adapting some of the ideas from
Deng and Ferris (2009), we propose an adaptive sampling scheme to improve the efficiency of direct search methods
and prove the consistency of the solutions. Unlike Deng and Ferris (2009), we do not assume any prior distributions
for the algorithm parameters to adaptively update the sample size at each iteration. The numerical results show that the
proposed algorithm outperforms SAA methods with fixed sampling, supporting our asymptotic convergence analysis.

In Section 2, we review the direct search method for deterministic black-box optimization. In Section 3, we propose
a way of extending this methodology to simulation optimization problems with stochastic noise. Section 4 gives our
convergence analysis of the proposed algorithm. Finally, Section 5 presents numerical results comparing the proposed
method to other techniques.

2 DIRECT SEARCH METHOD

Direct search methods are derivative-free methods that sample the objective function at a finite number of points at
each iteration and decide which actions to take next solely on those function values without any derivative information.
These methods received a great deal of attention since the great advance in parallel computing made in the 1990s.
In particular, the methods have been widely applied to simulation-based optimization problems, in which analytical
derivatives cannot be obtained or the objective function is nonsmooth.

In this section, we present a description for a particular class of direct search methods for deterministic continuous
optimization problems, named as generating set search (GSS). The concept of GSS is introduced by Kolda et al. (2003).
It is generic enough to capture many features of direct search methods, including classical pattern search, while still
remaining simple enough to discuss with a minimum of notation and without handling a variety of special cases. For a
review of direct search methods, the readers are referred to Lewis et al. (2000) and Kolda et al. (2003). For a review
of general derivative-free methods for continuous optimization problems, see Conn et al. (2009). Here we present the
GSS algorithm for the problem of finding a local minimizer of a real-valued function f (x).

I. Initialization. Let x0 ∈ R p be the initial guess, and ∆0 > ∆tol > 0 be the initial value of the step-length control parameter.

Let θmax < 1 be an upper bound on the contraction parameter.

Let ρ : [0,∞)→ [0,∞) be a nonnegative continuous function. Either ρ ≡ 0 or ρ(t) is a positive, continuous, monotonically increasing
function such that ρ(t)/t → 0 as t ↓ 0.

Let βmax ≥ βmin ≥ 0 be upper and lower bounds, respectively, on the lengths of the vectors in any generating set.

II. Algorithm. For each iteration k = 0,1,2, · · ·

• Step 1

(i) (Successful Iteration) If there exists dk ∈ Dk such that f (xk +∆kdk) < f (xk)−ρ(∆k), then do the following:

1004

Kim and Zhang

- Set xk+1 = xk +∆kdk.

- Set ∆k+1 = φk∆k, where φk ≥ 1.

(ii) (Unsuccessful Iteration) Otherwise, f (xk +∆kdk) ≥ f (xk)−ρ(∆k) for all dk ∈ Dk, so do the following:

- xk+1 = xk.

- ∆k+1 = θk∆k where 0 < θk < θmax.

- If ∆k+1 < ∆tol, then terminate.

• Step 2 Let Dk+1 = Gk+1 ∪Hk+1. Here Gk+1 is a generating set for R p satisfying βmin ≤ ||d|| ≤ βmax for all d ∈ Gk+1
and κ(Dk+1) ≥ κmin, and Hk+1 is a finite (possibly empty) set of additional search directions such that βmin ≤ ||d|| for
all d ∈ Hk+1.

Figure 1: GSS algorithm by Kolda, Lewis and Torczon (2000).

The algorithm must be equipped with a set of search directions that includes a descent direction. To avoid poor
search directions, there must be a descent direction that is not “too orthogonal” to the direction of steepest descent. To
ensure that the above conditions are satisfied without using knowledge of explicit gradients, GSS methods use multiple
search directions. The set of these directions is known as the generating set. A set G = {d(1), · · · ,d(r)} of r > p+1
vectors in R

p generates R
p if G positively spans R

p, that is, for any vector v ∈ R
p, there exist λ (1), · · · ,λ (r) ≥ 0 such

that v = ∑r
i=1 λ (i)d(i).

A generating set must contain a minimum of p+1 vectors. For example, in a two dimensions, a minimal generating
set with p+1 = 3 vectors is

G =

{[

1
0

]

,

[

−1
−1

]

,

[

−1
1

]}

.

The coordinate directions also form a generating set with 2p vectors. In two dimensions, there are 2p = 4 vectors in
the set

G =

{[

1
0

]

,

[

−1
0

]

,

[

0
1

]

,

[

0
−1

]}

.

In GSS, we use the notion of cosine measure to quantify the worst-case distance between the steepest descent
direction ν = −∇ f (x) and the vector in G that makes the smallest angle with ν . This measure is defined to be

κ(G) := min
v∈Rn

max
d∈G

vT d
‖v‖‖d‖

,

where G is a generating set in R
p. In order to prevent a slow rate of descent, the cosine measure must be bounded

below, that is, κ(Gk) ≥ κmin for any iteration k = 1,2, · · · .
The nonnegative function ρ is called the forcing function. Choosing ρ to be identically zero imposes a simple

decreasing condition on the acceptance of the step. Under a set of regularity conditions (for example, when the forcing
function ρ is positive, together with some other relatively mild conditions), GSS algorithm achieves global convergence.
The first step of the proof is to show that the sequence of step size parameters ∆k tends to zero.

Theorem 1. (Lewis, Torczon, and Trosset 2000) Let f be bounded below. Suppose that ρ(t) is a positive forcing
function. Then the sequence of stepsizes produced by GSS satisfies

liminf
k→+∞

∆k = 0.

The following theorem leads to global convergence results and to the validation of stopping criteria for GSS
methods.

Theorem 2. (Lewis, Torczon, and Trosset 2000) Let f : R
p → R be continuously differentiable, and suppose ∇ f is

Lipschitz continuous with constant M. Assume that ρ(t) is continuous, ρ(t) = o(t) as t → 0 and ρ(t1) ≤ ρ(t2) for
t1 < t2. Then, GSS produces iterations satisfying

‖∇ f (xk)‖ ≤ κ(Gk)
−1

[

M∆kβmax +
ρ(∆k)

∆kβmin

]

.

By Theorem 2, it can be easily shown that liminfk→∞ ‖∇ f (xk)‖ = 0 and the sequence of iterates {xk} has a limit
point x∗ for which ∇ f (x∗) = 0.

1005

Kim and Zhang

All the analysis above is based on the assumption that there is no random noise in the simulation output. In the
next section, we introduce a version of the GSS algorithm that can handle stochastic noise in the objective function.

3 THE GSS METHOD FOR SIMULATION OPTIMIZATION

In the section, we describe the GSS algorithm for solving the simulation optimization problem (1) based on SAA
methods. We assume that (a) the underlying expected objective function F(x) has no explicit form and the expectation
is computed by taking an average over the observed or sampled objective function f ; (b) f is a black-box function and
every evaluation of the random function f (x,ξ) is obtained by running a simulation with input value x. Thus, we do
not know the explicit form of either F or f , and derivative-based algorithms are not suitable for our problem.

In order to obtain an approximate solution to the true problem (1), we apply the GSS algorithm to the SAA problem
(2). However, instead of fixing a sample from the beginning and then iteratively searching for the (local) minimum of
the resulting deterministic problem (2), we use an increasing sequence of sample sizes {Nk} in order to improve the
finite time performance of the algorithm as well as to achieve convergence. At iteration k, we can either reuse Nk−1

samples from the previous iteration and generate Nk −Nk−1 new samples, or we can generate a new sample that is
independent of all the samples generated previously. The detailed GSS algorithm with VNSP scheme is as follows.

I. Initialization. Let x0 ∈ R p be the initial guess, and ∆0 > ∆tol be the initial value of the step-length control parameter. Let ρ(t)
be a positive, continuous, monotonically increasing function such that ρ(t)/t → 0 as t ↓ 0.

II. Algorithm. For each iteration k = 0,1,2, · · ·

• Step 1
Update Nk and generate a sample ξ 1

k ,ξ 2
k , · · · ,ξ Nk

k . Define

F̄Nk
k (x) :=

1
Nk

Nk

∑
i=1

f
(

x,ξ i
k

)

. (3)

• Step 2
(i) (Successful Iteration) If there exists dk ∈ Dk such that F̄Nk

k (xk +∆kdk) < F̄Nk
k (xk)−ρ(∆k), then do the following:

- Set xk+1 = xk +∆kdk.

- Set ∆k+1 = φk∆k, where φk ≥ 1.

(ii) (Unsuccessful Iteration) Otherwise, F̄Nk
k (xk +∆kdk) > F̄Nk

k (xk)−ρ(∆k), for all dk ∈ Dk, so do the following:

- xk+1 = xk.

- ∆k+1 = θk∆k where 0 < θk < θmax.

- If ∆k+1 < ∆tol, then terminate.

• Step 3 Same as Step 2 in Figure 1.

Figure 2: Algorithm 1 - GSS algorithm for simulation optimization.

The sample size Nk is crucial to the performance of the algorithm. If Nk is too small, the resulting SAA problem
would be inaccurate and may lead to a bad movement of the algorithm. However, when the mesh size ∆k is still large
and the iterate has not entered a neighborhood of a stationary point, we may not need a highly accurate approximate
problem to determine a descent direction, and hence significant computational savings can be achieved by using small
Nk. We determine the sample size Nk in such a way that the probability that the iterate xk is worse than xk−1 decreases
with a certain rate as iteration grows. The sequence of these probabilities eventually converges to zero, meaning that
the iterates converge to a true local solution. The variability of the estimated value of the objective function, and the
potential improvement in the value of the true objective function at the current iteration, should be taken into account
to identify the appropriate value for Nk. We do this by introducing the following new algorithm for the true problem:

At iteration k: k = 0,1,2, · · ·
Let Sk = (xk,∆k,Dk) be the state of Algorithm 1 at the beginning of iteration k and xk+1 be the iterate returned from Algorithm
1 at the end of iteration k.

• Case 1: If xk 6= xk+1 and f (xk+1) < f (xk)−ρ(∆k), then set x′k+1 = xk+1.

• Case 2: Else if there exists d′
k ∈ Dk such that f (xk +d′

k∆k) < f (xk)−ρ(∆k), then set x′k+1 = xk +d′
k∆k.

• Case 3: Else if there exists d′
k ∈ Dk such that f (xk +d′

k∆k) = f (xk)−ρ(∆k), then set x′k+1 = xk+1.

1006

Kim and Zhang

Figure 3: Algorithm 2 - Counterpart GSS algorithm for the true problem.

• Case 4: Else x′k+1 = xk.

Algorithm 2 moves to a better solution whenever there exists a descent direction in the given direction set. If the
given solution is better than other candidate solutions, Algorithm 2 stays at the same solution. Otherwise, take the
solution returned from Algorithm 1. We present the convergence analysis of Algorithm 1 and 2 in the next section.

4 THE ANALYSIS OF THE ALGORITHM

From Algorithm 1 and Algorithm 2, we obtain two sequences of iterates {xk} and {x′k}, respectively. In this section,
we will prove that both sequences converge to a stationary point of the true problem (1) under a set of mild regularity
conditions. The key idea for the convergence proof is that increasing the sample size reduces the bias between the SAA
problem and the true problem. Then, Algorithm 1 will eventually produce a sequence {xk} whose tail part coincides
with that of {x′k}.

Before proceeding to the convergence analysis, we introduce assumptions on function F and f .

A1. F is bounded below on the level set L(x0) = {x ∈ R
p : F(x) ≤ F(x0)}.

A2. F is continuously differentiable.
A3. The positive spanning sets Dk, k = 0,1, . . . in the algorithm are chosen from a finite set D , that is, |D | < ∞

and Dk ⊂ D , for all k.
A4. { f (x,ξ) : x ∈ R

p} is uniformly integrable and supx∈Rp Var[f (x,ξ)] = σ2 < ∞.

Assumptions A1-A3 are sufficient conditions under which the GSS algorithm for the true problem globally converges.
Assumption A2 and A3 replace the Lipschitz continuity of ∇F in Theorem 2. Assumption A4 is necessary so that
the SAA problem converges to the true problem and the random noise is regulated. A2 can be satisfied if the sample
function f satisfies a set of regularity conditions (see Kim 2006).

Let EN
k = {xN

k+1 6= x
′N
k+1}, where xN

k+1 and x
′N
k+1 are solutions obtained at the end of the kth iteration with sample size

Nk = N from Algorithm 1 and 2, respectively. Then P(EN
k) is the probability that Algorithm 1 fails to make a correct

decision at iteration k when the objective function values are approximated using sample size N. The next theorem
shows that this failure probability will eventually converge to zero as the sample size N grows.

Proposition 3. Assume A1-A4. Then P(EN
k) → 0 as N → ∞, for k = 1,2, . . .

Proof. Here we provide a sketch of the proof. Let τk = inf{| f (xk)− f (xk +d∆k)−ρ(∆k)|> 0 : d ∈Dk}. After several
steps of computation, we can obtain

P(EN
k |Sk) ≤ P

(

(F̄N
k (x)− f (x))− (F̄N

k (y)− f (y)) > τk|Sk
)

≤
1

τ2
k

Var
(

F̄N
k (x)− F̄N

k (y)|Sk
)

≤
4σ2

τ2
k N

for given Sk, (4)

where x = xk (or xk +d∆k) and y = xk +d∆k (or xk) for some d ∈ Dk. Note that xk is random and so is τk. Since there
are only finitely many possible values of ∆i, i = 0,1, . . . ,k and D is also finite, the algorithm can visit only a finite
number of points until iteration k, that is, |{xi(ω) : i = 0,1, . . . ,k,ω ∈ Ω}| < ∞. Therefore, inf{τk(ω) : ω ∈ Ω} > 0 and
P(EN

k) ≤C/N for some constant C > 0 .

By Theorem 3, for any given 0 < αk < 1, P(EN
k)≤ αk with large enough N. To prove the convergence of Algorithm

1, we need to assume the following property on the sequence {αk} of failure probabilities.

A5. {αk} is a sequence of real numbers such that 0 < αk < 1, for all k = 1,2, . . . and ∑∞
k=1 αk < ∞.

Let {Nk} be the sequence of sample sizes that satisfies P(ENk
k) ≤ αk, k = 1,2, . . . For notational convenience, we

let xk = xNk
k and x′k = x

′Nk
k . Then, by the Borel-Cantelli Lemma, the events ENk

k ,k = 1,2, . . . occur only finitely many
times, meaning that there exists a large K > 0 such that for all k ≥ K, xk = x′k.

1007

Kim and Zhang

Theorem 4. Assume A1-A5. Then, liminfk→∞ ‖∇ f (xk)‖ = 0 w.p.1 and the sequence of iterates {xk} has a limit point
x∗ for which ∇ f (x∗) = 0.

Proof. The result is an immediate consequence of Theorem 2. Since xk = x′k,k ≥ K for a large K, it suffices to show
that a subsequence of {x′k : k ≥ K} converges to a stationary point. At iteration k, if there exists d′

k ∈ Dk such that
f (x′k + d′

k∆k) < f (x′k)−ρ(∆k), or f (x′k + d∆k) > f (x′k)−ρ(∆k) for all d ∈ Dk, then x′k+1 is the same with the iterate
produced by the original GSS algorithm in Figure 1. If f (x′k + d∆k) ≥ f (x′k)−ρ(∆k) for all d ∈ Dk and there exists
d′

k ∈Dk such that f (x′k +d′
k∆k) = f (x′k)−ρ(∆k), then Algorithm 2 either stays in x′k like the the original GSS algorithm

or moves to x′k + d′
k∆k. Since the iterate x′k + d′

k∆k makes a sufficient improvement in the objective function value,
moving to this point does not affect the convergence result in Theorem 1 and 2.

Equation (4) in the proof of Theorem 3 provides a guideline on how to select an appropriate form for Nk to
guarantee the asymptotic convergence of Algorithm 1. The term 1/τ2

k is a measure of the difficulty of determining a
descent direction, and σ2/N represents the degree of random noise in the approximate objective function. In order to
converge to the true solution, the stochastic error should converge to zero fast enough so that the algorithm can detect
a descent direction with significantly high probability. Let αk = k−α for some α > 1. Then, Equation (4) suggests
Nk = O(kα/τ2

k).
Another way to obtain the upper bound of P(EN

k |Sk) is by using large deviation theory. Suppose that (f (xk,ξ i
k), f (xk +

d∆k,ξ i
k)), i = 1,2, . . . ,Nk are conditionally independent for given Sk. Then, Chernoff’s bound yields

P
(

(F̄Nk
k (x)− f (x))− (F̄Nk

k (y)− f (y)
)

> τk) ≤ e(−NkI(τk)) for given Sk. (5)

Here I(·) is the so-called rate function corresponding to the distribution of f (x,ξ)− f (y,ξ), which is defined by

I(z) := sup
t∈R

[tz− logM(t)]

and M(t) := E

[

et(f (x,ξ)− f (y,ξ))
]

is the moment generating function of f (x,ξ)− f (y,ξ). Since the variance if f (x,ξ)−

f (y,ξ) is finite, we can obtain (see Shapiro and Homem-de-Mello 2000)

I(τk) ≥
τk

3Var(f (x,ξ)− f (y,ξ))
≥

τk

12σ2 for given Sk,

where τk is in a neighborhood of zero. This result suggests that Nk has the form O(αk ln(k)/τ2
k). If L(x0) is compact,

f is Lipschitz continuous on L(x0) and we obtain τk = O(∆k). By replacing τk by ∆k we can obtain Nk = O(kα/∆2
k)

and Nk = O(ln(k)/∆2
k) from Equation (4) and (5), respectively. In our numerical experiments, we tested the efficiency

of these two forms of Nk.

5 NUMERICAL EXPERIMENTS

We applied GSS methods with several sample size updating schemes to an extended two-dimensional Rosenbrock
function. This function is a popular performance test problem for optimization algorithms, because its global minimum
is inside a long, narrow valley with a parabolic shape. We added random noise to the first decision variable x(1),
changing the problem to the following:

f (x,ξ) = 100 ·
(

x(2) −ξ (x(1))2
)2

+
(

ξ x(1) −1
)2

,

where x = (x(1),x(2)). We assume the random variable ξ is independent of x and normally distributed with mean
1 and variance 0.12. The closed form for F(x) = E[f (x,ξ)] can be easily computed, and the optimal solution is
x∗ = (0.4162,0.1750). The optimal value is f (x∗) = 0.4632.

In our numerical experiments, we applied the coordinate direct search algorithm with several types of VNSP
methods to the test problem and compared them. In particular, we used the following forms of Nk:

• VNSP1: c · kα

• VNSP2: c · kα/∆2
k

• VNSP3: c · ln(k)/∆2
k

The real numbers c and α are positive, and α > 1. We propose the last two forms based on our convergence analysis
in Section 4. The first form only depends on the iteration number k, and we test this method to investigate the effect

1008

Kim and Zhang

0 500 1000 1500

2

4

6

8

10

12

14

Number of function evaluations

T
ru

e
fu

nc
at

io
n

va
lu

e

2000 4000 6000 8000 10000 12000 14000

0.46

0.48

0.5

0.52

0.54

0.56

Number of function evaluations
T

ru
e

fu
nc

at
io

n
va

lu
e

N

k
=20

N
k
=k1.2/10

N
K
 =k1.2/(10000*∆

k
2)

N
k
=ln(k)/(10000*∆

k
2)

optimal value

Figure 4: Number of function evaluations vs. true function value.

of the term 1/∆k. The numerical results are somewhat sensitive to the parameters α and c, and we conducted a pilot
run to tune these parameters.

In Figure (4), we plot a single-run performance of accumulated function evaluations against the true function value
at the current iterate. We observe that all the VNSP methods performed better than the constant sample size scheme both
at the early iteration of the algorithm (left plot) and the long term (right plot). At the early iteration, the VNSP methods
use a smaller sample size and can execute more iterations for a given number of function evaluations. However, as the
iterate approaches the optimal solution, a larger sample size should be used to obtain a more accurate approximation
and to make the correct decision on the direction in which to move. All VNSP methods use a larger sample size as
the iteration counter grows and seems to converge to the true optimal solution. On the other hand, the fixed sample
size scheme converges to the solution to the problem (PN), which may not be the solution to the true problem.

Although VNSP1 outperforms the fixed sample size scheme, it does not converge to the true optimal solution as
fast as the other two VNSP schemes. To investigate this issue, we show in Figure (5) how the sample size Nk and the
mesh size ∆k change with the iteration counter k. We see that VNSP2 and VNSP3 take a smaller sample size than
VNSP1 for some time during the early iterations, and then increase exponentially fast as the mesh size shrinks. Figure
(4) shows that VNSP2 and VNSP3 steadily move to better solutions, whereas the solution path of VNSP1 oscillates
much more than the other two VNSP methods at later iterations. When the mesh size is still large, the stochastic
error tends to be relatively small compared to the optimization error, and the algorithm can detect the descent direction
reasonably well with a small sample size approximation. However, when the mesh size is small, the algorithm requires
a much larger sample size to determine the descent direction. These empirical results demonstrate that our proposed
algorithm increases the sample size fast enough so that the stochastic error term is dominated by the optimization error.

In practice, often the computational budget is limited and users usually look for an acceptably good solution,
instead of the optimal. To study the performance and robustness of the different methods, we ran 100 simulations of
each method. We present the mean and standard error of the true objective function value obtained with 2000 and
10,000 function evaluations. The statistical results are summarized in Table 1. The results show that our proposed
two VNSP methods perform more robustly than the other two methods, particularly in the early stage, which is very
advantageous for finite-time performance.

6 CONCLUSIONS

We proposed a stochastic version of direct search algorithms that uses a variable number sampling scheme in the context
of the sample average approximation method. We proposed sample size updating schemes that allow the algorithm to
achieve global convergence. Numerical results show that the proposed methods perform better than a fixed sample size

1009

Kim and Zhang

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

N
k

Iteration number k

Plot of k vs. N
k

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Iteration number k
∆ k

Plot of k vs. ∆
k

N
k
=20

N
k
=k1.2/10

N
k
=k1.2/(10000*∆

k
2)

N
k
=ln(k)/(10000*∆

k
2)

Figure 5: Plots of number of function evaluations Nk and mesh size ∆k.

Table 1: Statistical summary

Nk
2,000 function evaluations 10,000 function evaluations

Mean of F Standard error Mean of F Standard error
20 5.40 0.08 0.65 0.03

k1.2/10 2.18 0.12 0.53 0.02
k1.2/(10000∆2

k) 1.77 0.17 0.52 0.02
ln(k)/(10000∆2

k) 1.37 0.14 0.50 0.01

method and other VNSP methods in the literature, both in the short and long term. There are some issues which require
more consideration and should be taken into account as further research. In the numerical test, Nk involves two tunable
parameters α and c. Selecting good values for these parameters is a nontrivial problem. We are currently investigating
how such values can be determined, as well as a nonparametric form of the sample size Nk. Another direction for
further research is to consider other types of direct search methods, in addition to coordinate search. We believe that
the proposed method shows potential as an analog of the direct search method in deterministic optimization, and is a
promising subject for further study.

ACKNOWLEDGMENTS

The authors thank Amr El-Bakry and Jin-Hwa Song at ExxonMobil Research and Engineering for very helpful comments.
We also thank Ilya O. Ryzhov for helpful discussions on our paper. This research was partially supported by ExxonMobil
Research and Engineering Company Grant R-266-000-052-597 and NUS Research Grant R-266-000-049-133.

REFERENCES

Andradóttir, S. 1998. A review of simulation optimization techniques. In Proceedings of the 1998 Winter Simulation
Conference, ed. D. Medeiros, E. Watson, J. S. Carson, and M. S. Manivannan, 151–158. Piscataway, NJ: IEEE.

Bayraksan, G., and D. P. Morton. 2010. A sequential sampling procedure for stochastic programming. Operations
Research. To appear.

Chen, H., and B. W. Schmeiser. 2001. Stochastic root-finding via retrospective approximation. IIE Transactions.

1010

Kim and Zhang

Conn, A., K. Scheinberg, and L. N. Vincent. 2009. Introduction to derivative-free optimization. USA: MPS-SIAM.
Deng, G., and M. Ferris. 2009. Variable-number sample-path optimization. Mathematical Programming B.
Fu, M. C. 2002. Optimization for simulation: theory vs. practice. INFORMS Journal on Computing 14:192–215.
Henderson, S. G., and B. L. Nelson. (Eds.) 2006. Simulation. Handbooks in Operations Research and Management

Science. Amsterdam: Elsevier.
Homem-de-Mello, T. 2003. Variable-sample methods for stochastic optimization. ACM Transactions on Modeling and

Computer Simulation (2).
Kim, S. 2006. Gradient-based simulation optimization. In Proceedings of the 2006 Winter Simulation Conference, ed.

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 159–167. Piscataway NJ:
IEEE.

Kim, S., and S. G. Henderson. 2008. The mathematics of continuous-variable simulation optimization. In Proceedings of
the 2008 Winter Simulation Conference, ed. S. J. Mason, R. R. Hill, L. Moench, and O. Rose, 159–167. Piscataway
NJ: IEEE.

Kolda, T. G., R. M. Lewis, and V. Torczon. 2003. Optimization by direct search: New persepectives on some classical
and mordern methods. SIAM Review 45:385–482.

Lewis, R. M., V. Torczon, and M. W. Trosset. 2000. Direct search methods: Then and now. Journal of Computational
and Applied Mathematics 124:191–207.

Pasupathy, R. 2010. On choosing parameters in retrospective-approximation algorithms for stochastic root-finding and
simulation optimization. Operations Research. To appear.

Pasupathy, R., and B. W. Schmeiser. 2009. Retrospective-approximation algorithms for the multidimensional stochastic
root-finding problem. ACM Transactions on Modeling and Computer Simulation.

Royset, J. O. 2010. On sample size control in sample average approximations for solving smooth stochastic programs.
manuscript.

Shapiro, A. 2003. Monte Carlo sampling methods. In Stochastic Programming, ed. A. Ruszczynski and A. Shapiro,
Handbooks in Operations Research and Management Science. Elsevier.

Shapiro, A., and T. Homem-de-Mello. 2000. On the rate of convergence of optimal solutions of monte carlo approximations
of stochastic programs. SIAM Journal on Optimization 11 (1): 70–86.

AUTHOR BIOGRAPHIES

SUJIN KIM is an assistant professor in the Department of Industrial and Systems Engineering at the National University
of Singapore. She received her Ph.D. degree in Operations Research from Cornell University in 2006. Before she
joined the National University of Singapore, she was a visiting assistant professor in the Department of Industrial
Engineering at Purdue University. Her research concerns simulation methodology and stochastic simulation-based opti-
mization, with applications in electric power and health service systems. Her e-mail address is <iseks@nus.edu.sg>.

DALI ZHANG is a post-doc research fellow at Department Industrial and Systems Engineering, National University
of Singapore. His research interest is the area of Monte Carlo sampling methods, random search algorithm and
stochastic game theory, and the applications in electricity markets, risk analysis and logistics. His email address is
<isezd@nus.edu.sg>.

1011

