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LARGE-DEVIATION SAMPLING LAWS FOR CONSTRAINED SIMULATION OPTIMIZATION ON
FINITE SETS

Susan R. Hunter
Raghu Pasupathy

Industrial and Systems Engineering
Virginia Tech

Blacksburg, VA 24061, USA

ABSTRACT

We consider the problem of selecting an optimal system from among a finite set of competing systems, based on a
“stochastic” objective function and subject to a single “stochastic” constraint. By strategically dividing the competing
systems, we derive a large deviations sampling framework that asymptotically minimizes the probability of false selection.
We provide an illustrative example where a closed-form sampling law is obtained after relaxation.

1 INTRODUCTION

The simulation-optimization (SO) problem is a nonlinear optimization problem where the objective and constraint
function(s) involved are observable only through a stochastic simulation. Numerous SO variations based on the structure
of the domain of the objective function, the nature of the constraint set, and the type of requested solution have recently
received great attention within the simulation literature. (See Henderson and Nelson (2006) for a comprehensive
reference list and examples to motivate SO’s wide applicability.) Our interest is limited to a simple subclass of these SO
variations — SO problems where the domain of the objective function is a “small” finite set, and a single observable
constraint is imposed. Currently available solutions within the subclass of SO problems on “small” finite spaces seem to
organize themselves based on the presence (or lack) of objective/constraint function(s) and the distributional assumptions
on the simulation output. Table 1 places the current work within this larger problem context.

Table 1: Example papers in the area of simulation optimization on finite sets can be categorized by the nature of the
distributional assumption and the presence of objective function or constraints. The problem considered in this paper
falls in the bottom right-hand cell, for which there is currently no example paper.

Distributional Optimization: Feasibility: Constrained Optimization:
Assumption only objective(s) only constraint(s) objective(s) & constraint(s)

Normal Kim and Nelson (2006) Batur and Kim (2010) Andradóttir and Kim (2010)
General Glynn and Juneja (2004) Szechtman and Yücesan (2008) ?

The rows of Table 1 divide the research in this area into papers by the required distributional assumption. For
instance, the first row of the table includes papers that make a normality assumption on the simulation output. These
papers also happen to be, almost invariably, in contexts where a solution to the SO problem is required in finite time and
with a stipulated probabilistic guarantee. In contrast, the second row represents a much more recent line of work that
relaxes the distributional assumption on the simulation output, but provides only asymptotic guarantees on attainment of
the correct solution. Since Glynn and Juneja (2004) show that a failed normality assumption may provide misleading
allocations, this more general line of research can be applied in cases of distributional uncertainty, albeit with sacrifices
on finite-time guarantees.

The work we present in this paper resides in the bottom right-hand cell of Table 1, and to our knowledge is
the first to attempt this SO variation. It lies alongside a relatively new line of research on constrained ranking
and selection (R&S), most notably explored by Andradóttir and Kim (2010), and follows directly as an extension of
previous large deviations work in ordinal optimization by Glynn and Juneja (2004) and feasibility determination by
Szechtman and Yücesan (2008). Specifically, our work adds a constraint to the work of Glynn and Juneja (2004),
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to begin literature in the bottom right-hand cell of Table 1. Like Andradóttir and Kim (2010), we are concerned
with finding the best feasible system in the presence of a single constraint. Also, like Glynn and Juneja (2004) and
Szechtman and Yücesan (2008), we derive conditions for the limiting optimal allocation in the context of general
light-tailed distributions.

1.1 Problem Statement

We consider a finite set i = 1, . . . ,r of systems, each with an unknown objective value hi ∈ R and unknown constraint
value gi ∈ R. Given a constant γ ∈ R, we wish to select the system with the lowest objective value hi, subject to a
single constraint gi ≥ γ , assuming at least two systems are feasible. Formally, we consider

arg min
i=1,...,r

hi

s.t. gi ≥ γ,

where a unique solution exists, hi and gi are expectations, and estimates of hi and gi may observed through simulation
as sample means. In this context, we derive a framework for asymptotically optimal sample allocation which minimizes
the probability of false selection, that is, the probability of returning to the user a system other than the best feasible
system.

1.2 Organization

In Section 2 we discuss the notation and assumptions for the paper. In Section 3 we derive an expression for the rate
function of the probability of false selection, and in Section 4 we present both a general sampling framework, as well
as a sampling framework for a user-specified sampling allocation to the best system. Section 5 contains concluding
remarks. For brevity, we present results without proofs.

2 PRELIMINARIES

For notational convenience, we refer to the feasible system with the lowest objective value as system 1. We introduce
the following notation to partition the set of r systems into four mutually exclusive and collectively exhaustive subsets:

{1} : the set consisting of the unique best feasible system, {1} = {i : gi > γ, hi < h j ∀ j ≤ r}
Γ : the set of suboptimal feasible systems, that is, Γ = {i : gi ≥ γ, i 6= 1},

Sb : the set of infeasible systems that have better (lower) objective values than system 1, that is,
Sb = {i : gi < γ, h1 ≥ hi}, and,

Sw : the set of infeasible systems that have worse (higher) objective values than system 1, that is,
Sw = {i : gi < γ, h1 < hi}.

To be falsely selected as the best feasible system, systems in Γ must pretend to be optimal, systems in Sb must
pretend to be feasible, and systems in Sw must pretend to be both optimal and feasible. The careful construction of
these sets ensures systems are distinguishable from the quantity on which their potential false evaluation as the “best”
system depends. Therefore no system will require all of the simulation budget. A similar assumption is made in
Szechtman and Yücesan (2008).

To estimate the unknown quantities hi and gi, we assume we may obtain replicates of the output random variables
(Hi,Gi) from each system, where

Assumption 1. (1) for a particular system, Hi and Gi are independent; and (2) the systems are independent of each
other, that is, the output random variables (Hi,Gi) are mutually independent for all i ≤ r.

We use the observations of the output random variables to form estimators Ĥi = (αin)−1 ∑αin
j=1 Hi j and Ĝi = (αin)−1 ∑αin

j=1 Gi j

of hi and gi, respectively, where αi > 0 denotes the proportion of the total sample n which is allocated to system i. Let

ΛĤ
i (θ) = logE[eθ Ĥi ] and ΛĜ

i (θ) = logE[eθ Ĝi ]

be the log-moment generating functions of Ĥi and Ĝi, respectively. Let the effective domain of a function f (x) be
denoted by D f = {x : f (x) < ∞}, and its interior by D◦

f . We assume the following.

Assumption 2. For each system,
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(1) the limits

ΛH
i (θ) = lim

n→∞

1
αin

ΛĤ
i (αinθ) and ΛG

i (θ) = lim
n→∞

1
αin

ΛĜ
i (αinθ),

exist as exended real numbers for all θ ;
(2) the origin belongs to the interior of DΛH

i
and DΛG

i
, that is, 0 ∈ D◦

ΛH
i

and 0 ∈ D◦
ΛG;

(3) ΛH
i (θ) and ΛG

i (θ) are strictly convex and C∞ on D◦
ΛH

i
and D◦

ΛG
i

, respectively;

(4) ΛH
i (θ) and ΛG

i (θ) are steep, that is, for any sequence {θn} ∈DΛH
i

that converges to a boundary point of DΛH
i

,

limn→∞ |ΛH ′

i (θn)|= ∞, and likewise, for θn ∈DΛH converging to a boundary point of DΛG
i
, limn→∞ |ΛG ′

i (θn)|=
∞.

Assumption 2 implies that Ĥi → hi with probability one (w.p.1) and Ĝi → gi w.p.1 (see Remark 3.2.1, Bucklew (2003)).
By the Gärtner-Ellis theorem, for each system, Ĥi and Ĝi satisfy the large deviations principle with good rate functions

Ii(x) = sup
θ∈R

{θx−ΛH
i (θ)} and Ji(y) = sup

θ∈R

{θy−ΛG
i (θ)},

respectively. We note that Assumption 2(3) is stronger than we typically need for the Gärtner-Ellis theorem. However
we require ΛH

i (θ) and ΛG
i (θ) to be strictly convex and C∞ on D◦

ΛH and D◦
ΛG , respectively, so that Ii(x) and Ji(y)

are strictly convex and C∞ for x ∈ FH◦
i = int{ΛH ′

i (θ) : θ ∈ D◦
ΛH

i
} and y ∈ FG◦

i = int{ΛG ′

i (θ) : θ ∈ D◦
ΛG

i
}, respectively.

Without loss of generality, let h1 < h2 ≤ . . . ≤ hr. We further assume

Assumption 3. (1) the interval [h1,hr] ⊂ ∩r
i=1F

H◦
i , and (2) γ ∈ ∩r

i=1F
G◦
i .

Assumption 3(1) ensures that Ĥi may take any value in the interval [h1,hr] and that P(Ĥ1 ≥ Ĥi) > 0 for 2 ≤ i ≤ r.
Assumption 3(2) ensures there is a nonzero probability that a feasible system will be estimated-infeasible and a nonzero
probability that an infeasible system will be estimated-feasible, that is, P(Ĝi ≥ γ) > 0 for i ∈ Sb ∪Sw and P(Ĝi < γ) > 0
for i ∈ {1}∪Γ. We note that Assumptions 1(2), 2, and 3(1) are similar to the assumptions of Glynn and Juneja (2006).

3 RATE FUNCTION OF PROBABILITY OF FALSE SELECTION

The probability of false selection (FS), that is, the probability that we return to the user a system other than system 1,
is the probability that the optimal system is incorrectly categorized as infeasible, or the optimal system is categorized
as feasible, but another estimated-feasible system has a lower estimated objective value. Let Γ̂ = {i : Ĝi ≥ γ, i 6= 1} be
the estimated set of suboptimal feasible systems. Then the probability of false selection is

P{FS} = P{(Ĝ1 < γ)∪ ((Ĝ1 ≥ γ)∩ (Ĥ1 ≥ min
i∈Γ̂

Ĥi))}

= P{Ĝ1 < γ}+P{Ĝ1 ≥ γ}P{Ĥ1 ≥ min
i∈Γ̂

Ĥi} (1)

= P{FS1}+P{FS2},

where FS1 denotes the event that the optimal system is categorized as infeasible, and FS2 denotes the event that the
optimal system is correctly classified as feasible, but is “beaten” in objective function value by another estimated-feasible
system. Consistent with Dembo and Zeitouni (1998), we interpret the minimum over the null set as infinity. We wish
to obtain an expression for the rate at which the probability of false selection tends to zero with increasing computing
budget n. We will first derive expressions for the rate functions of P{FS1} and P{FS2}, and combine these results to
find the rate function of P{FS}.

Under Assumptions 1, 2, and 3 (2), the rate function for P{FS1} is straightforward. By application of the
Gärtner-Ellis theorem, we find the following.

Lemma 1. The rate function for P{FS1} is given by

lim
n→∞

1
n

logP{FS1} = −α1J1(γ).

Therefore the rate at which the probability that system 1 is incorrectly classified as infeasible goes to zero is governed by
the constant J1(γ). We note that a similar result holds for any i ∈ Sb ∪Sw, such that limn→∞

1
n logP{i ∈ Γ̂} = −αiJi(γ).
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Considering the rate function for P{FS2}, we note that since Ĝ1 → g1 w.p.1 and g1 ≤ γ , then P{Ĝ1 ≥ γ} → 1.
Therefore the rate function of P{FS2} will be governed by the rate function of P{Ĥ1 ≥ mini∈Γ̂ Ĥi} in (1). Since
the estimated set of feasible systems Γ̂ may contain worse feasible systems (i ∈ Γ), better infeasible systems (i ∈ Sb),
and worse infeasible systems (i ∈ Sw), we strategically consider the rate functions for the probability that system 1 is
beaten by a system in Γ̂∩Γ, Γ̂∩Sb, or Γ̂∩Sw separately. By rewriting the probability that system 1 is beaten by an
estimated-feasible system as a sum of probabilities over the partitioned sets, we are able to employ the “principle of
the largest term,” which states that if ai

n, i = 1, . . . ,k are sequences in R
+ such that n−1 logai

n → ai for all i ≤ k, then
n−1 log(∑k

i=1 ai
n)→ maxi ai (see, e.g., Lemma 2.1, Ganesh, O’Connell, and Wischik (2004)). Specifically, this principle

states that if each term ai
n represents a probability tending to zero as n tends to infinity, then the slowest converging

term dominates the limit of the scaled sum. Therefore the rate function of P{FS2} will be dominated by the slowest
converging probability that system 1 will be beaten by an estimated-feasible system in Γ, Sb, or Sw. Lemma 2 states
this result formally, assuming for now that the required limits exist.

Lemma 2. The rate function for P{FS2} is given by the minimum rate function of the probability that (1) system
1 is beaten by a worse, feasible, and estimated-feasible system; (2) system 1 is beaten by a better, infeasible, and
estimated-feasible system; or (3) system 1 is beaten by a worse, infeasible, and estimated-feasible system. That is,

lim
n→∞

1
n

logP{FS2} =

−min

(

− lim
n→∞

1
n

logP{Ĥ1 ≥ min
i∈Γ̂∩Γ

Ĥi}, − lim
n→∞

1
n

logP{Ĥ1 ≥ min
i∈Γ̂∩Sb

Ĥi},− lim
n→∞

1
n

logP{Ĥ1 ≥ min
i∈Γ̂∩Sw

Ĥi}

)

. (2)

We now individually consider each of the terms on the right hand side of equation (2), and show that these limits
exist. First, we consider the rate function of the probability that system 1 is beaten by a worse feasible system. Since
Ĝi → gi w.p.1 for all i, then in the limit, Γ̂ = Γ. Therefore in the limit, we expect the set of feasible systems will operate
as in the case of unconstrained ordinal optimization, which is considered in Glynn and Juneja (2004). The following
lemma shows that this is, in fact, the case.

Lemma 3. The rate function for the probability that system 1 is estimated-feasible and beaten by a worse, feasible,
and estimated-feasible system is

lim
n→∞

1
n

logP{Ĥ1 ≥ min
i∈Γ̂∩Γ

Ĥi} = −min
i∈Γ

(

inf
x

(α1I1(x)+αiIi(x))
)

.

We note that, intuitively, we may add the rate functions I1(x) and Ii(x) because of the assumed independence between
systems (Assumption 1(2)). Loosely speaking, in the prior lemma, the rate function of the probability that system 1
is beaten by a worse feasible system is dominated by the suboptimal feasible system which is “best” at pretending to
be the best feasible system. In this case, the rate at which feasible systems become feasible does not affect the rate
function.

We now consider the rate function of the probability that system 1 is beaten by a better infeasible system. Since
the only hurdle to a better, infeasible system being declared optimal is feasibility, we find that the rate function is
dominated by the better infeasible system which is “best” at pretending to be feasible. Lemma 4 states this result
rigorously.

Lemma 4. The rate function for the probability that system 1 is estimated-feasible and beaten by a better, infeasible,
and estimated-feasible system is

lim
n→∞

1
n

logP{Ĥ1 ≥ min
i∈Γ̂∩Sb

Ĥi} = −min
i∈Sb

αiJi(γ).

Therefore the rate at which better infeasible systems are declared “better” does affect the rate function. Informally, in
the limit, we are only concerned with the better infeasible system that jumps into the feasible set most easily.

Finally, we consider the rate function for the probablility that system 1 is beaten by a worse, infeasible system.
Systems which are infeasible and worse must pretend to be both feasible and optimal. Therefore the rate function
includes both optimality and feasibility terms, where the addition between these terms is a result of the independence
between the objective function and constraints (Assumption 1(1)).
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Lemma 5. The rate function for the probability that system 1 is estimated-feasible and beaten by a worse, infeasible,
and estimated-feasible system is

lim
n→∞

1
n

logP{Ĥ1 ≥ min
i∈Γ̂∩Sw

Ĥi} = −min
i∈Sw

(

inf
x

(α1I1(x)+αiIi(x))+αiJi(γ)
)

.

As before, we find that the rate function is dominated by the worse infeasible system which is “best” at pretending to
be feasible and optimal.

Combining Lemmas 2 through 5 and applying the principle of the largest term, we arrive at the following theorem.

Theorem 1. The rate function for the probability of false selection, that is, the probability that we return to the user
a system other than system 1 is given by

lim
n→∞

1
n

logP{FS} =

−min(

1 declared
infeasible
︷ ︸︸ ︷

α1J1(γ),

1 declared feasible
︷ ︸︸ ︷

min
i∈Γ

(inf
x

(α1I1(x)+αiIi(x)))
︸ ︷︷ ︸

1 beaten by worse
feasible system

, min
i∈Sb

αiJi(γ),

︸ ︷︷ ︸

1 beaten by better
infeasible system

min
i∈Sw

(inf
x

(α1I1(x)+αiIi(x))+αiJi(γ))

︸ ︷︷ ︸

1 beaten by worse infeasible system

).

4 OPTIMAL ALLOCATION STRATEGY

We now wish to derive an optimal allocation strategy that asymptotically minimizes the probability of false selection.
We first present a general allocation framework, followed by a relaxed framework which allows the user to specify the
allocation to system 1.

4.1 General Optimal Allocation Framework

From Theorem 1, an asympotically optimal allocation strategy will result from maximizing the rate at which P{FS}
tends to zero with increasing n. Thus we wish to allocate the αi’s to solve the following optimization problem:

max min

(

α1J1(γ), min
i∈Γ

(

inf
x

(α1I1(x)+αiIi(x))
)

, min
i∈Sb

αiJi(γ), min
i∈Sw

(

inf
x

(α1I1(x)+αiIi(x))+αiJi(γ)
))

s.t.
r

∑
i=1

αi = 1

αi ≥ 0.

By Glynn and Juneja (2006), infx(α1I1(x)+ αiIi(x)) is a concave, strictly increasing, C∞ function of α1 and αi. Let
x(α1,αi) = arg infx(α1I1(x)+αiIi(x)). Then for α1 > 0 and αi > 0, x(α1,αi) is C∞ since I(·) is (Glynn and Juneja 2006).
Likewise, the linear functions α1J1(γ) and αiJi(γ) and the sum infx(α1I1(x)+αiIi(x))+αiJi(γ) are also concave, strictly
increasing, C∞ functions of α1 and αi. Hence the minimum of concave, strictly increasing functions is also concave and
strictly increasing, and we have a concave optimization problem. Equivalently, we may rewrite the concave program as,

max z s.t.

αiJi(γ) ≥ z, i ∈ {1}∪Sb

α1I1(x(α1,αi))+αiIi(x(α1,αi)) ≥ z, i ∈ Γ
α1I1(x(α1,αi))+αiIi(x(α1,αi))+αiJi(γ) ≥ z, i ∈ Sw

r

∑
i=1

αi = 1

αi ≥ 0.

Since our problem is concave with differentiable objective function and constraints, the Karush-Kuhn Tucker conditions
are sufficient for global optimality. Therefore an allocation ααα= (α1,α2, . . . ,αr) that satisfies the conditions in the
following theorem will be asymptotically optimal.

999



Hunter and Pasupathy

Theorem 2. If ααα∗ > 0,∑r
i=1 α∗

i = 1 minimizes the asymptotic probability of false selection, then it satisfies

∑
i∈Γ

I1(x(α∗
1 ,α∗

i ))

Ii(x(α∗
1 ,α∗

i ))
+ ∑

i∈Sw

I1(x(α∗
1 ,α∗

i ))

Ii(x(α∗
1 ,α∗

i ))+ Ji(γ)
= 1; (3)

α∗
i Ji(γ) = α∗

1 I1(x(α∗
1 ,α∗

j ))+α∗
j I j(x(α∗

1 ,α∗
j )) = α∗

1 I1(x(α∗
1 ,α∗

k ))+α∗
k [Ik(x(α∗

1 ,α∗
k ))+ Jk(γ)],

for all i ∈ Sb, j ∈ Γ, k ∈ Sw. (4)

Equation (4) tells us that we must allocate sampling within and between the sets Γ,Sb, and Sw to equate the rate
functions of the systems in these sets. In other words, we use ααα as a dial that allows us to equate the rates at which
the probabilities of these systems beating system 1 go to zero. Equation (3) tells us how to allocate sampling between
system 1 and all of the other systems. We note that in this equation, we sum over i ∈ Γ and i ∈ Sw, but not i ∈ Sb.
These sets, Γ and Sw, are the sets in which α1 appears in the rate function. Systems in Γ∪Sw must beat system 1 to
be falsely selected as optimal, while systems in Sb must only pretend to be feasible when the estimated value of gi

is compared to a constant. We note that when considering only systems in {1}∪Γ, this result reduces to the result
presented in Glynn and Juneja (2004).

4.2 Optimal Allocation for a Specified α1

Since the optimal allocation presented in Theorem 2 may be difficult to solve, we consider a relaxation in which we
fix α1 and optimize across the remaining αi’s. Let ααα ′∗ = (α1,α∗

2 , . . . ,α∗
r ). Then the following corollary follows from

Theorem 2.

Corollary 1. If ααα ′∗ > 0,∑r
i=2 α∗

i = 1−α1 minimizes the asymptotic probability of false selection, then

α∗
i Ji(γ) = α1I1(x(α1,α∗

j ))+α∗
j I j(x(α1,α∗

j )) = α1I1(x(α1,α∗
k ))+α∗

k [Ik(x(α1,α∗
k ))+ Jk(γ)],

for all i ∈ Sb, j ∈ Γ, k ∈ Sw. (5)

We now consider the case in which the random variables corresponding to both the objective and constraint have normal
distributions.

Example 1. Normal.

Let Hi ∼ N(hi,σ2
hi
) and Gi ∼ N(gi,σ2

gi
) for all i ≤ r. Then

Ii(x) =
(x−hi)

2

2σ2
hi

and Ji(γ) =
(γ −gi)

2

2σ2
gi

.

Differentiating to find the value of x at which infx(α1I1(x)+αiIi(x)) is achieved yields

x(α1,αi) =
h1

1+

(

αiσ2
h1

α1σ2
hi

) +
hi

1+

(

α1σ2
hi

αiσ2
h1

)

Then the rate functions are,

αiJi(γ) =
αi(γ −gi)

2

2σ2
gi

, i ∈ {1}∪Sb, (6)

α1I1(x(α1,αi))+αiIi(x(α1,αi)) =
α1αi(h1 −hi)

2

2(αiσ2
h1

+α1σ2
hi
)
, i ∈ Γ, (7)

α1I1(x(α1,αi))+αi[Ii(x(α1,αi))+ Ji(γ)] =
α1αi(h1 −hi)

2

2(αiσ2
h1

+α1σ2
hi
)
+

αi(γ −gi)
2

2σ2
gi

, i ∈ Sw. (8)
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Taking partial derivatives with respect to αi, we find

∂
∂α1

[α1I1(x(α1,αi))+αiIi(x(α1,αi))] = I1(x(α1,αi)) =
α2

i σ2
h1

(h1 −hi)
2

2(αiσ2
h1

+α1σ2
hi
)2

,

∂
∂αi

[α1I1(x(α1,αi))+αiIi(x(α1,αi))] = Ii(x(α1,αi)) =
α2

1 σ2
hi
(h1 −hi)

2

2(αiσ2
h1

+α1σ2
hi
)2

.

The general solution for the optimal allocation in the normal case does not have a closed-form expression. In the
unconstrained normal case, Chen et al. (2000) and Glynn and Juneja (2004) simplify the optimal allocation by allowing
α∗

1 ≫ α∗
i . However it is not clear what this approximation means in terms of problem parameters. For example, to

take the limit as α∗
1 → 1 and maintain the KKT conditions for optimality, problem parameters such as σh1 must change

to maintain the optimality and feasibility of the new allocation. It may be shown that the relative rates of change of
these parameters force (3) not to hold. We circumvent this problem by removing the optimal allocation requirement
between system 1 and all other systems, that is, fixing α1 and optimizing with respect to αi, i ∈ {2, . . . ,r}. We thus fall
within the purview of Corollary 1. Using (5), we then have,

α∗
i

α∗
j

=
α1I1(x(α1,α∗

j ))I(h1<h j) −α1I1(x(α1,α∗
i ))I(h1<hi) +α∗

j I j(x(α1,α∗
j ))I(h1<h j) +α∗

j J j(γ)I( j/∈Γ)

α∗
j Ii(x(α1,α∗

i ))I(h1<hi) +α∗
j Ji(γ)I(i/∈Γ)

=

α1α∗
j σ2

h1
(h1 −h j)

2

(α∗
j σ2

h1
+α1σ2

h j
)2

I(h1<h j) +
α2

1 σ2
h j

(h1 −h j)
2

(α∗
j σ2

h1
+α1σ2

h j
)2

I(h1<h j) +
(γ −g j)

2

σ2
g j

I( j/∈Γ)

α1α∗
i σ2

h1
(h1 −hi)

2

(α∗
i σ2

h1
+α1σ2

hi
)2

I(h1<hi) +
α2

1 σ2
hi
(h1 −hi)

2

(α∗
i σ2

h1
+α1σ2

hi
)2

I(h1<hi) +
(γ −gi)

2

σ2
gi

I(i/∈Γ)

. (9)

Now let α1 → 1 in (9). Since 1−α1 = ∑r
i=2 α∗

i , then α∗
i → 0 for all i ∈ {2 . . . ,r}. Then

α∗
i

α∗
j
≈

(

h1 −h j

σh j

)2

I(h1 < h j)+

(

γ −g j

σg j

)2

I( j /∈ Γ)

(
h1 −hi

σhi

)2

I(h1 < hi)+

(
γ −gi

σgi

)2

I(i /∈ Γ)

,

where equality holds for all i, j ∈ Sb. When considering only feasible systems, these results reduces to those presented
by Glynn and Juneja (2004).

5 CONCLUDING REMARKS

The constrained SO problem on small finite sets is an important SO variation about which little is currently known.
Questions surrounding the relationship between sampling and error-probability decay, sampling rates to ensure optimal
convergence to correct solution, and minimum sample size rules that probabilistically guarantee attainment of the
correct solution remain largely unexplored. Following recent work by Glynn and Juneja (2004) for the unconstrained
SO context and Szechtman and Yücesan (2008) for the context of detecting feasibility, we take the first steps toward
answering these questions.

To identify the relationship between sampling and error-probability decay, we strategically divide the competing
systems into four sets: best feasible, feasible and worse, infeasible and better, and infeasible and worse. Such strategic
division facilitates expressing the rate function of the probability of false selection as the minimum of rate functions
over these four sets. Finding the optimal sampling allocation then reduces to a concave maximization problem, akin
to Glynn and Juneja (2004). Interestingly, at least for the specific context considered, identifying the optimal sampling
allocation, i.e., solving the concave maximization problem, is not “harder” than in the unconstrained context.

We are currently pursuing various directions as part of ongoing research. For example, is there an agreeable
relaxation of the concave maximization problem that allows the identification of a general closed-form allocation? In
addition to serving as an approximate solution for implementation, such allocation may also be useful as a starting
solution for an algorithm that yields a consistent estimator for the optimal solution of the concave maximization problem.
Other unanswered questions of interest include removing the independence requirement between the objective function
and constraint, and extending our optimization framework to more than one constraint.
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