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ABSTRACT

We introduce a new method for discrete-decision-variable optimization via simulation that combines the stochastic
branch-and-bound method and the nested partitions method in the sense that we take advantage of the partitioning
structure of stochastic branch and bound, but estimate the bounds based on the performance of sampled solutions as
the nested partitions method does. Our Empirical Stochastic Branch-and-Bound algorithm also uses improvement
bounds to guide solution sampling for better performance.

1 INTRODUCTION

For large-scale and complicated stochastic optimization problems, a closed-form objective function may not exist,
and therefore it has to be estimated through simulation. Optimization via simulation (OvS) provides solutions to
this type of problem. Andradottir (1998), Fu (2002), and Fu, Glover, and April (2005) give extensive overviews of
the OvS literature. Most algorithms for discrete-decision-variable optimization via simulation (DOvS) are based on
adaptive random search. The two research threads that are the roots of our work are the Nested Partitions (NP) and
the Stochastic Branch-and-Bound (SB&B) methods.

NP is a globally convergent framework proposed by Shi and Olafsson (2000). At each iteration, the algorithm
identifies a most promising region. When a better solution is found inside the current most promising region, the
region is partitioned for further exploration. If a better solution is found outside of the current most promising
region, NP backtracks to its super region or to the whole feasible region. The intention of NP is to concentrate
computational effort where good solutions appear to be, and the search is guided by the estimated performance of
randomly sampled solutions.

Branch-and-Bound algorithms (B&B) are widely used to solve deterministic combinatorial optimization prob-
lems. Norkin, Ermoliev, and Ruszczynski (1998) and Norkin, Pflug, and Ruszczynski (1998) adapt the B&B idea
to the stochastic setting. Their SB&B algorithm iteratively partitions the feasible region into smaller and smaller
subregions; estimates bounds on the objective function for these subregions by solving bounding problems; and
selects as the record set the subregion with the maximum or minimum (depending on the problem) bound. Global
convergence can be proven for problems with a finite number of feasible solutions. The SB&B algorithm assumes that
it is possible to estimate the bounds more and more precisely with increasing simulation effort. Papers applying SB&B
include Gutjahr, Hellmayr, and Pflug (1999), Gutjahr, Strauss, and Wagner (2000), and Doerner et al. (2006). Un-
fortunately, complicated DOvVS problems may not have solvable bounding problems.

In our research, we combine SB&B and NP in the sense that we take advantage of the partitioning structure of
SB&B, but estimate bounds based on the performance of sampled solutions, as NP does. Our Empirical Stochastic
Branch-and-Bound (ESB&B) algorithm also uses bounds to guide solution sampling for better performance. ESB&B
is globally convergent.
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The paper is organized as follows. Section 2 reviews SB&B and NP, presents ESB&B and states the convergence
theorem. Section 3 describes how ESB&B uses bounds to guide solution sampling. Section 4 displays experimental
results, while Section 5 concludes the paper. Details not found in this paper are available in Xu (2009).

2 EMPIRICAL STOCHASTIC BRANCH-AND-BOUND
First we define the DOvS problem. Our goal is to find x that solves

Xg&Mﬁ (1)

where X is a finite set defined as the intersection of the integer lattice with a hypercube in R?, given by
L <x;i <u, li,xij,u; € 7., i=1,2,....q;
and D is a subregion in R? given by the inequalities
D={xecR%:g;(x)<0,j=1,2,...,p}.
We assume D is convex, and therefore X[\ D is convex and finite.
In this paper we consider stochastic problems where u(x) = E[Y(x)], and p(x) can only be estimated by

generating observations of Y (x) via simulation. Like the NP method, ESB&B can also be applied to deterministic
problems; adjustments can be found in Xu (2009).

2.1 SB&B and NP

In the classical branch-and-bound algorithm, X is iteratively divided into subregions X generating a partition 2.
Let u*(XP) denote the optimal objective function value of the subproblem that is restricted to X’:

WX = max ux), x"e
xeX” D

where p*(XP) = —oo if x € XP\D = 0. Then clearly the optimal value of Problem (1) equals u*(X) =
maxyrc o /,L*(XP ). Norkin, Ermoliev, and Ruszczynski (1998) makes the following assumptions:

Assumption 1. For each subregion X! C X, there exists functions L:2X — R and U : 2X — R such that

L(X") WX < U,
LXP) = u(xX) for some x €X’,

IN

and if XF is a singleton then L(XF) = u*(XP) = U(XP).

In a stochastic problem these bounds can only be calculated exactly in some special cases. Therefore, SB&B
is based on the availability of statistical estimates, 11 and &, of U and L, respectively, that can be generated and
refined through iterations of the algorithm.

Assumption 2. For each subregion XP C X, there exists sequences of estimators n* and EX, k=1,2,..., such that
limy_.. N*(XP) = U(XP) a.s. and limy_... EF(XP) = L(XP) a.s. as k — oo,

The SB&B algorithm works as follows: A record set is selected at each iteration as the subregion with the
greatest (estimated) upper bound. An approximate solution is chosen as an element of the subregion with the greatest
(estimated) lower bound. The record set is partitioned into smaller subregions, and the estimates of the upper and
lower bounds are refined. A new record set and approximate solution are selected and the algorithm continues.
Below we give a more detailed description of the SB&B algorithm.
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SB&B Algorithm

Step 0. Initialization: Set iteration counter k = 0, initial partition and record set &) = R® = {X}, and calculate
the bounds n°(X) and &°(X).

Step 1. Partitioning: ~ Select an approximate solution x* € X* = argmax{E¥(XP) : XP € 2, }. If the record set
R¥ is a singleton, then set &/ = 27 and go to Step 2. Otherwise construct a partition of the record
set, & (R), from which infeasible subregions have been cleaned. Define the new full partition by
P, = (Z\RYU 2/ (RY). Elements of &2, will also be denoted by X’

Step 2. Bounding:  For all regions X € &/ calculate estimates n**1(XF) and £F1(XP) for U(XF) and L(XP),
respectively.

Step 3. Updating partition and record set: ~ Update record set R*! = argmax{n**!(X?) : X¥ € 2/}, and parti-
tion Py = . Set k=k+1 and go to Step 1.

There are two potential drawbacks to the direct application of SB&B. First, there needs to be bounding functions
L and U and convergent estimators of them. Second, there is overhead needed to retain and refine a larger and
larger partition structure as the algorithm progresses since no partition is ever eliminated from consideration as in
deterministic branch and bound.

The first drawback can be addressed using a sampling-based upper bound. We can simply choose the solution
with the greatest accumulated sample average through the current iteration and use this average as the estimate of
the upper bound. Then to avoid the need to carry along information on an increasing number of partitions, we
could modify the definition of the new partition to be & = (Z\RX)|J 2 (R*). In words, we only maintain the
most recently refined partition, and aggregate all other solutions into a single “surrounding region.” With these two
refinements we have a version of the NP method similar to Pichitlamken and Nelson (2003).

While we adopt the concept of sampling-based bounds, we believe that there is substantial value in retaining
the partitioning. In the remainder of the paper we describe and evaluate our ESB&B algorithm, which combines
the partitioning structure of SB&B with the sample-based bounds of NP. ESB&B also allocates solution sampling
by looking at the potential of the regions to yield better solutions using another sort of bound, and this is different
from either SB&B or NP.

2.2 ESB&B

ESB&B estimates bounds as NP does using the estimated objective function values of the solutions that have been
simulated. Specifically, at each iteration k£, ESB&B randomly samples a number of feasible solutions; call this set
S¥. Tt also maintains a set G* of all solutions that have been sampled through iteration k. ESB&B simulates the
solutions in S¥ and computes bounds using their estimated performance. In the next iteration, ESB&B allocates a
number of solutions to be sampled from each region in the current partition based on the region’s estimated potential
to contain good solutions. This expands Step 2 of SB&B into three sub-steps. And at each iteration, ESB&B
chooses the solution with the best estimated performance as the current best solution.

Algorithm ESB&B

Step 0. Initialization: Set iteration counter k = 0, initial partition and record set &) = R® = {X}, and calculate
the bounds n°(X) and £°(X).

Step 1. Partitioning: If the record set R is a singleton, then set P, = P and go to Step 2. Otherwise construct
a partition of the record set, f@,’c’ (Rk), from which infeasible subregions have been cleaned. Define the new
full partition by & = (2, \R*)U 2/ (R*). Elements of 2, will also be denoted by X”.

Step 2. Bounding:

Step 2.1. Solution sampling: For each region X* € 7 (R¥), randomly sample ¥ solutions. For regions
XP € 2, \R¥, sample (X’) solutions (the function 6(-) is described below). Aggregate all the sampled
solutions into a set, S¥. Let 6K = &K~ 1Sk

Step 2.2. Bound estimation: Simulate Anp observations from each solution in S* that has not been
encountered before, and simulate Any additional observations from each solution that has been en-
countered before. For all regions X € 22!, calculate estimates n**!(X?) and EXF1(XP) for U(XP)
and L(XFP), respectively.
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Step 2.3. Sample allocation: ~ Compute the number of solutions to be sampled, 6(X”) for all X* € 27,
for the next iteration, based on information in G,

Step 3. Updating partition and record set: ~ Update the record set R*"! = argmax{n**1(X?) : X¥ € 22/}, and
partition Z = 2. Set k=k+1 and go to Step 1.

Whenever we terminate the algorithm (usually when some simulation budget is reached), we select as the best
solution X* the one with the maximum cumulative sample average.

Partitioning divides the record set, which is convex and finite, into disjoint subregions, each of which is convex.
In our implementation of ESB&B, solution sampling is done using the MIX-D algorithm. See Xu (2009) for a
detailed description of the partitioning and solution sampling schemes.

Bound estimation estimates the upper and lower bounds of all regions. Rather than solving bounding problems,
as SB&B does, ESB&B uses the estimated objective function values of solutions that have been simulated. To
describe how this is done, we first define some notation. Let n(x) denote the number of replications obtained from
solution x through iteration k. The observed performance of x can be represented as Y;(x) = p(x) + &(x). For fixed
X, we assume that the stochastic noise &(x) is independent and identically distributed (i.i.d.) for all s, which is true
if the index s represents replications. Let

1 n(x)

T Yi(x X) +&(x)

s=1

be the accumulated sample mean of all observations of solution x for n(x) > 0. For each region X” € 22/, we select
the solution in S* with the greatest accumulated sample average through the current iteration, and use this average
as the estimate of the upper and lower bounds:

NI X = (XP) = max {T(x)}.

xexXPnsk

We then choose the region with the greatest estimated upper bound as the record set for next iteration:

R = arg max {nkH(XP)}.
xPez|

We also define n* = maxyrc {n*1(XP)} as the greatest estimated upper bound, which is also the estimated
objective function value of the current best solution. Notice that these simple sampling-based bounds can be used
for any problem. However, problem-specific bounds that satisfy Assumption 2 can be used to improve performance.

Step 2.3 in ESB&B assesses the potential of each region and uses this information to guide sampling. This step
improves performance of the algorithm without affecting convergence. Before going into the details of the sample
allocation step, we state the convergence of ESB&B algorithm in the following theorem (refer to Xu (2009) for
proof).

Theorem 1. Denote by X* the solution set of (1). With probability one there exists an iteration number ko such
that for all k > ko, the record sets RF are singletons and RF ¢ X*,

3 ESTIMATING PARTITION POTENTIAL FOR SAMPLE ALLOCATION

In step 2.3 of ESB&B we assess the potential of each region X € 9,2\Rk+1, and allocate a total of ¥y solution
samples among these regions based on their potential, giving more solutions, on average, to regions with greater
potential. This step improves algorithm performance. The particular scheme used in this step does not affect
convergence as long as each solution has a non-zero probability of being sampled.

We assess “potential” using one of two approaches: either by estimating an upper confidence bound (UCB) on
the true value of the best solution in the region, or by estimating the probability that a solution with value better
than the current sample best solution is in the region. For each of the two approaches, we also have two ways to
produce the estimate: Using either an extension of the empirical Chebyshev bound of Saw, Yang, and Mo (1984),
or by assuming the objective function values in the region are approximately normally distributed. The empirical
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Chebyshev bound is provably correct for deterministic problems and was extended by us to noisy problems under
certain restrictions on the distribution of the noise. The normal-distribution bound is always an approximation. In
this paper we simply state how the bounds are calculated and used; derivations can be found in Xu (2009).

First we define some additional notation. For a generic region X* € 2], let m = |XP N &*| be the total number of
solutions in the region that have been sampled and simulated through iteration k. Let ¥ = m™! Yexrnak Y (x) denote
the sample mean of all solutions in the region, S§ = (m—1)"!' ¥, yr~et (Y (x) —¥)? denote the sample variance of
the estimates, and let S3 = V™' ¥ ek Z?(:XI) (Y5(x) — ¥ (x))? be the pooled sample variance within the region, where
V=Y exrnek (n(x) —1). Also define the effective degrees of freedom n* such that 1/n* =m 2 ¥ yrrar 1/n(X).
Notice that m, ¥, S3, S3, v, and n* are statistical measures of a specific region X’ at iteration k. We omit k for
simplicity.

We compute 8(X), the number of solution samples allocated to region X”, using the two methods described in
the following paragraphs. These methods apply to stochastic problems; readers interested in deterministic problems
can refer to Xu (2009) for adjustments.

3.1 UCB-Based Sample Allocation

The number of solutions to be sampled for all regions, 8 = {6(XF)}, is the outcome of a multinomial distribution
with parameters ¥ and ¢. The probability vector ¢ is generated by assigning a probability @(XF) to each region
XP. This probability is in turn determined by the UCB of the region X”. A region with greater UCB tends to be
assigned more solution samples. The outline of the algorithm is as follows.

Algorithm SA-UCB

Step 1 For each XF € 2,\RK"!, compute the UCB ¢ (XP).
Step 2 Let&min = minXPE(@li\Rk+1 E(XP),XP. =argmin{{(XF) : XP € 2/\RF1}, and Ty = pre@L\Rkﬂ (E(XP) = Cin)-

Step 3 Assign a probability ¢(XP. ) =g, where € is a small positive number, and @(XF) = %fwn(l —€)

for all other X%,

Step 4 Let ¢ = {@(X")} be the vector of ¢(XF). Draw a sample, 6 = {6(XF)}, from a multinomial distribution
with parameters ¥ and ¢. Assign 6(XF) samples to region X”.

We choose € such that the probability assigned to region Xgm is half the probability assigned to the region with
the second smallest UCB.

We implement the following two different types of UCB, and compare their performance in the numerical study
section. Notice that the bounds and statistical measures are all for a specific region X’ at iteration k, which we
omit for simplicity.

3.1.1 Chebyshev Bound

The UCB is

> 1 HN-o vSp
=V +ASyy/1+—+—2~=L,
¢ ¥ - —

where A is computed from the empirical Chebyshev Inequality of Saw, Yang, and Mo (1984), which implies A
solves

nA?

n+1

(n+1)(n—1+22)
o)

Also t1_q,y is the (1 — o0)-quantile of the t distribution with v degrees of freedom.
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3.1.2 Normal Bound

The UCB is

CZYthl—a/Z,m—lSY 1+%+

It is worth mentioning that the bounds above do not account for the situation where all the solutions in the
region have been sampled. In such cases we compute the bound as follows:

_ S
= max {Y(X)+f1a,n(x>1 £ }

xexPn&k n(x)

We use o = 0.05 and o = 0.2 in the implementation.
3.2 Probability-Based Sample Allocation

We compute the number of samples for all regions, 8 = {0(X")}, as the outcome of sampling a multinomial
distribution with parameters ¥ and ¢. The probability vector ¢ is generated by assigning a probability @(XF) to
each region X”. This probability is a function of the estimated probability that X¥ contains a solution with objective
function value better than the estimated objective function value of current best solution, n*. A region with higher
probability of containing better solution tends to be assigned more solution samples. The outline of the algorithm
is as follows.

Algorithm SA-Pr
Step 1 For all XP € 2/\R*!, compute a probability p(XF) = Plu(xmur1) > n*].
Step 2 Let Ty = Syre oy gkt p(XP). Assign a probability ¢(XP) = p(XF)/T, for all XF.

Step 3 Let ¢ = {@(XF)} be the vector of ¢(XF). Draw a sample, § = {6(XF)}, from a multinomial distribution
with parameters ¥ and ¢@. Assign 6(XF) samples to region X”.

We implement the following two probability estimates and compare their performance in the numerical study
section. Notice that the probabilities and statistical measures are all for a specific region X’ at iteration k, which
we omit for simplicity. In each case we find p that solves the equation.

3.2.1 Chebyshev Probability

Let
\‘(n+1)(n71+lz)J 7
A2 * _
p= * 1 , where A= n )
n+ Syr/1+ %
3.2.2 Normal Probability
Find o, cp that solve
Y
H—aym—1 = -0y = 1 s

and let p = o1 + 0.

Similar to the bound-based sample allocation, the probabilities above do not account for the situation where
all the solutions in the region have been sampled. In such cases we compute the probability as follows: for all
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Table 1: Parameters used in the numerical experiments.

Experiment # of Trials \ 0) \ Ang \ Angy \ Or \ Vo \ O ‘
Miller & Shaw Figure 1 200 | 3 1 1] 10| 10| 10
Miller & Shaw Figure 2 200 | 3 1 1] 10] 20| 10
Miller & Shaw Figure 3 200 | 3 1 1]20] 20| 10
Miller & Shaw Figure 4 200 | 3 1 1] 10| 20| 10
Miller & Shaw Figure 5 200 | 3 10 2| 10| 20| 10
Bowl Table 2 100 | 3 1 1130 3015
Buffer Allocation Figure 6 100 | 2 4 1| 10| 10| 5

x € XP N &K, compute a(x) that solves

. _ =Y
l—OC(X),n(X)—l Sp/m7

and let p = max{a(x) : x € XF N &k,
4 EVALUATION

In this section, we compare the performance of ESB&B with the NP algorithm of Pichitlamken and Nelson (2003)
on three test problems: Miller and Shaw, bowl with flexible dimension, and buffer allocation. We consider
different sample allocation schemes for ESB&B: Chebyshev probability-based (Cpr), normal probability-based
(Npr), Chebyshev bound-based (Cbd), and normal bound-based (Nbd). To compare different algorithms, we measure
their performance against simulation effort (the number of simulation replications), rather than iterations. In each of
the following subsections, we first characterize the test problem, and then give results and observations. Parameters
used in the numerical experiments are summarized in Table 1 (number of trials, number of subregions for partition
(w), number of simulations for newly sampled solutions (Anfr), number of simulations for previously sampled
solutions (Ang), number of samples for subregions of record set for ESB&B (9), total number of samples for all
the other regions for ESB&B (¥p), and number of solutions per region for NP (9)).

4.1 Miller and Shaw Problem

This test problem is a modification of the multimodal function F, used in Miller and Shaw (1995). We rescale F,
and add up two copies of it to make the problem 2-dimensional:

sin®(0.057x sin®(0.057x
Hi(x1,x0) = ( ) + ( 2) ()

22(”{;)10)2 22<x28—01())2

0 < x; < 100, x;€Z, i=1,2.

This problem has a global optimum (10, 10) with objective value 2. The response surface is bumpy, with 25
local optima. Normally distributed noise with zero mean and standard deviation 0.3 is added to (2) to make the
problem stochastic. We study both the deterministic and stochastic versions of the problem.

First we examine the effect of the number of solutions per region (g solutions for each subregion of record
set, and a total of ¥y solutions for all the other regions) on the relative performance of ESB&B compared with NP
for the deterministic problem. We look at two sample allocation schemes here, Cpr and Npr. We fix the number
of samples per region at 10 for NP. Figure 1 shows the objective function value of the estimated optimal solution
at each time point (averaged over 200 searches) for ¥ = 10 and 9 = 10. Figure 2 is for ¥g = 10 and ¥y = 20,
and Figure 3 is for ¥ =20 and ¥p = 20. From these three figures we can see that ESB&B with both Cpr and
Npr sample allocation schemes has better performance compared with NP as ¥p increases. The intuition is that,
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Figure 1: Objective value of current optimal estimate at each time point for the Miller & Shaw problem: ¥ = 10 and ¥y = 10.
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Figure 2: Objective value of current optimal estimate at each time point for the Miller & Shaw problem: ¥ = 10 and 9y = 20.

when a “good” region (which contains good solutions) happens to appear inferior because of bad samples, enough
samples from the region for the following iterations allows the algorithm to correct the mistake.

Next, we study the performance of different sample allocation methods. Figure 4 shows the performance of
ESB&B compared with NP for Npr, Cpr, Nbd, and Cbd. It suggests that normal probability-based sample allocation
tops all the other methods.

We then examine the performance of different sample allocation methods with a noisy objective function. Figure
5 demonstrates the advantage of the normal probability-based method over the others. It can also be seen that
ESB&B has an even greater advantage over NP when the problem is stochastic, for all types of sample allocation
schemes.

4.2 Bowl Problem with Flexible Dimension

This test problem is designed to illustrate the impact of dimension, and the interaction between dimensions. It is
formulated as follows:

Wa(xp,x2,...,x4) = 1000exp {—0.001(x1,xz, .. 7)c,,_v)/Zl_l()cl,)cz, ... ,xd)} 3)

1/d
— < < mT €T, i=1,2,....d,

\

N
=

N
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Figure 3: Objective value of current optimal estimate at each time point for the Miller & Shaw problem: ¥ = 20 and ¥y = 20.
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Figure 4: Objective value of current optimal estimate at each time point for the Miller & Shaw problem: all sample allocation
methods, deterministic case.

where m = 20,000 is the total number of feasible solutions, d is dimension, and X is a d-by-d matrix that determines
the correlation between different dimensions of decision variable. This problem has a surface shaped like the
probability density function of a multivariate normal distribution. It has a single global optimum (0,0, ...,0) with
objective value 1000. The feasible region is a hyperbox, where the bounds are rounded to the nearest integer
if necessary. Defining the feasible region this way keeps the number of feasible solutions (nearly) the same as
dimension changes, allowing us to isolate the impact of dimension from that of the number of feasible solutions.
To make the problem stochastic a normally distributed noise with standard deviation 0.3 x |tz (x)| is added to (3).
This problem is similar to the test problem in Xu, Hong, and Nelson (2010).
We use the correlation matrix

L op p P
p 1 P p
HES ,
p P 1 p
pp p 1
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Figure 5: True value of current optimal estimate at each time point for the Miller & Shaw problem: all sample allocation
methods, stochastic case.

Table 2: Number of simulation replications to find the optimal solution for the bowl problem with flexible dimension.

d=2 d=3 d=4

p=0]p=05]p=09[ p=0] p=05] p=09] p=0]p=05] p=09
NP 3200 3900 9600 3400 20100 18300 2600 4100 25900
NPr 1100 1800 1000 2500 3000 7000 1700 3000 11500
NPr — NP —2100 | —2100 | —8600 | —900 | —17100 | —11300 | —900 | —1100 14400
% difference | —66% —54% —90% | —26% —85% —62% | —35% —27% —56%
CPr 1500 2100 1200 3700 4100 5900 2100 4100 15800
CPr — NP —1700 | —1800 | —8400 300 | —16000 | —12400 | —500 0 | —10100
% difference | —53% —46% —88% 9% —80% —68% | —19% 0% —39%

where p is the common correlation coefficient. A larger p indicates higher correlation among dimensions, which
in this case makes the problem less separable. This makes it harder to search for the optimum for both ESB&B
and NP, since both algorithms partition by dimension.

Here we only report results for the deterministic problem, for which both ESB&B and NP stay at the optimum
once it is found. We thus use the number of iterations to find the optimum as the performance measure (averaged
over 100 searches, recorded every 100 iterations). Table 2 lists the performance measure for NP, ESB&B with
Npr and ESB&B with Cpr, the absolute and percentage difference between NP and ESB&B-NPr, and NP and
ESB&B-CPr. The numbers reveal two trends: 1) The advantage of ESB&B over NP increases in p, but 2) this
increasing trend becomes unclear as dimension increases. We can explain these trends as follows: under higher
correlation, both algorithms tend to make more mistakes in selecting a good region. ESB&B hence outperforms NP
as it is able to jump directly from region to region, while NP has to backtrack and then search all the way down.
However, this trend gets dominated by dimension as dimension increases.

4.3 Three-Stage Buffer Allocation Problem

This test problem is to find the optimal design of a three-stage flow line with finite buffer storage spaces in front of
stations 2 and 3. Each station % has a single server, whose service time is exponentially distributed with rate py,
h=1,2,3. There are an infinite number of jobs in front of station 1. If the buffer in front of station 4 is full, station
h—1 is blocked. The goal is to find the service rate for all stations, as well as the buffer space before stations 2
(by) and 3 (b3), to maximize the throughput of the line. The total buffer spaces and service rate is limited by the
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Figure 6: True value of current optimal estimate at each time point for 3-stage buffer allocation problem.

following constraints:

mi++u < 20
by+b3 < 20
—br—by; < =20
1<y, < 20, h=1,2,3
1<b, < 20, h=2,3
‘LL;”bh € Z.

The number of feasible solutions is 21,660. There are two optimal solutions: (i;, Uy, U3,b2,b3) =(6,7,7,12,8)
and (7,7,6,8,12) with expected throughput of 5.776 (the optima are obtained from the balance equations of the
underlying Markov chain; see Buzacott and Shantikumar (1993)). To reduce the initial condition bias, the throughput
is estimated after the first 2000 units have been produced, and it is averaged over the subsequent 50 units released. We
sample 5 solutions per region for NP, and set ¥z = ¥ = 10 for ESB&B. Figure 6 depicts the true performance of the
current optimal estimate at each time point, averaged over 100 searches. It indicates that ESB&B has an advantage
over NP, with normal probability-based and Chebyshev bound-based sample allocation methods performing the best.

5 CONCLUSIONS

In this paper we proposed an Empirical Stochastic Branch-and-Bound algorithm, which keeps the partition structure
of the Stochastic Branch-and-Bound algorithm, while estimating bounds based on sampling. The algorithm uses
the estimated performance of the observed best solution to guide searching; and computes empirical bounds, which
indicate the potential of regions, to control sampling. This research provides a framework to apply SB&B where
there is no solvable bounding problem.

The ESB&B algorithm converges asymptotically to the global optimum. Numerical study shows that ESB&B
outperforms NP in general. The advantage is maximized when the problem is noisy, or there is significant interaction
between different decision variables. A normal probability-based sample allocation scheme exhibits the most
potential.

To make this framework more adaptive, we can balance the effort in sampling and simulation by adjusting the
following four parameters: number of samples for current best region, number of samples for other regions, initial
number of simulations for new samples, and incremental number of simulations for re-sampled solutions. We can
also adjust the number of subregions and the number of samples as the algorithms goes along and regions become
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smaller. A combination of different empirical bounds, at different stages of searching, is a possible direction, as
well as designing new empirical bounds to guide sampling.
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