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ABSTRACT

We propose a new algorithm for identifying the duration of the initial transient for a regenerative stochastic
process. The algorithm involves re-sampling of the simulated cycles, and therefore has a “bootstrap” flavor.
The paper includes a derivation of the estimator for the duration of the transient that offers theoretical support
for its validity, and provides a preliminary numerical investigation of the estimator’s properties.

1 INTRODUCTION

Consider a real-valued stochastic process Y = (Y (t) : t ≥ 0) for which there exists a (deterministic) constant
α such that

Y (t) , t−1
∫ t

0
Y (s)ds ⇒ α

as t → ∞, where ⇒ denotes weak convergence. The quantity α is then called the steady-state mean of Y , and
the steady-state simulation problem is considered with the efficient Monte Carlo computation of the quantity
α .

One fundamental difficulty associated with steady-state simulation is that the estimator Y (t) is biased as an
estimator of α . In particular, the fact that Y is typically initialized (through a specific choice of the distribution
of Y (0)) with an initial condition that is atypical of equilibrium behavior implies that Y will generally exhibit
an “initial transient” up to the time at which Y equilibrates. Any statistics collected over this initial transient
phase will contaminate the estimation of the steady-state quantity α . As a consequence, it is of significant
interest to identify the duration of the initial transient phase.

A wide variety of methods for estimating the initial transient have been proposed in the steady-state simula-
tion literature. We differentiate such methods from low bias estimation methods, which are intended to produce
estimators with better bias characteristics than those associated with the time-average of Y ; see, for example the
works of Meketon and Heidelberger (1982), Glynn and Heidelberger (1990), Glynn and Heidelberger (1992),
Glynn (1994), Hsieh, Iglehart, and Glynn (2004), and Awad and Glynn (2007). Representative papers that
focus on estimating the initial transient are those of Conway (1963), Fishman (1971), Kelton and Law (1983),
Yücesan (1993), White, Cobb, and Spratt (2000); see Robinson (2007) for a recent survey. Most of the ex-
isting literature lacks a fully rigorous theoretical support. By contrast, the approach introduced here has a
solid theoretical underpinning, as suggested through the derivation provided in Section 2. (A full theoretical
exploration of the method’s theoretical properties will be provided elsewhere.) A different approach, also
with theoretical support, can be found in Awad and Glynn (2010). A discussion of numerical implementation
issues, as well as empirical investigation of the method’s properties, is the subject of Section 3. Section 4
provides some concluding remarks.
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2 OUR PROPOSED ALGORITHM

Throughout this paper, we assume that Y = (Y (t) : t ≥ 0) is a (non-delayed) real-valued regenerative process
with respect to the regeneration times 0 = T (0) < T (1) < · · · < T (n− 1) < T (n) < T (n + 1) < · · · . Then,
τn = T (n)−T (n−1) is the duration of the n’th cycle. Assume further that Y satisfies

E
∫ τ1

0
|Y (s)|ds < ∞

and

Eτ1 < ∞.

In this case, Y is a positive recurrent regenerative process and α can be computed as the ratio of expectations
given by

α =
E

∫ τ1
0 Y (s)ds < ∞

Eτ1
;

see, for example, p.170 of Asmussen (2003).
Furthermore, if τ1 is spread-out (as occurs, for example, if τ1 has a density), then

EY (t) → α

as t → ∞; see p.170 of Asmussen (2003). While there are many ways to define the initial transient period, a
natural definition (for our purposes) is, for ε > 0, to let β = β (ε) be defined by

β (ε) = sup{t ≥ 0 : |EY (t)−α| > ε};

the interval [0,β (ε)] is then the interval over which an ε-transient is present. Our algorithm is intended to
estimate β (ε).

Let ã(t) = EY (t). The function ã = (ã(t) : t ≥ 0) satisfies the renewal equation

a = b+F ∗a,

where b(t) , EY (t)I(τ1 > t), F(dt) , P(τ1 ∈ dt), and ∗ denotes the convolution operator. The solution of this
renewal equation is then given by

ã = U ∗b,

where U = ∑∞
n=0 F(n) and F(n) is the n-fold convolution of F . Hence, β (ε) can be re-expressed as

β (ε) = sup{t ≥ 0 : |(U ∗b)(t)− (U ∗b)(∞)| > ε}.

We now consider the estimation of β (ε) based on a single simulation of Y over [0, t]. Let

N(t) = max{n ≥ 0 : T (n) ≤ t}

be the number of complete regenerative cycles simulated within our single replication of Y . Note that we
may estimate b via

b̂t(·) =











1
N(t)

N(t)−1

∑
i=0

Y (T (i)+ ·)I(τi+1 > ·), N(t) ≥ 1

0, N(t) = 0

and we can estimate F via

F̂t(ds) =











1
N(t)

N(t)−1

∑
i=0

δτi(ds), N(t) ≥ 1

δ1(ds), N(t) = 0,
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where δz(·) is a unit point mass at the point z. Set Ût = ∑∞
n=0 F̂(n)

t , where F̂(n)
t is the n-fold convolution of

F̂t . Our estimator for β (ε) is then given by

β̂t(ε) = sup{s ≥ 0 : |(Ût ∗ b̂t)(s)− (Ût ∗ b̂t)(∞)| > ε}.

Note that the renewal theorem, applied to the empirical renewal equation, guarantees that (Ût ∗ b̂t)(∞) can be
easily computed without any need to resort to numerical computation; in particular,

(Ût ∗ b̂t)(∞) =
1

T (N(t))

∫ T (N(t))

0
Y (s)ds.

We turn next to a discussion of the numerical computation of β̂t(ε) based on the simulation (Y (s) : 0≤ s≤ t).
One possible approach is to recognize that the Laplace transform of ((Ût ∗ b̂t)(s) : s ≥ 0) is easy to compute;
see, for example, p.181 of Resnick (1992). The challenge then lies in efficiently computing the inverse Laplace
transform as a means of recovering ((Ût ∗ b̂t)(s) : s ≥ 0).

However, given the simulation setting within which we are working, it is particularly natural to consider
a sampling-based algorithm for computing (Ût ∗ b̂t)(s). We will re-sample the N(t) completed cycles, and
generate a “bootstrap” version of (Y (s) : s ≥ 0), thereby motivating our use of the term “regenerative bootstrap
estimator” in describing our algorithm. We will now describe our bootstrap algorithm for generating a bootstrap
sample (Y ∗(s) : s ≥ 0) of (Y (s) : s ≥ 0).

Algorithm:

i.) Input: ((Y (T ( j)+ r) : 0 ≤ r ≤ τ j+1) : 0 ≤ j ≤ N(t)−1)
ii.) Initialize n = 1, sum = 0

iii.) Draw τ∗n independently from F̂t(·)
iv.) Update n = n+1, sum = sum+ τ∗n
v.) If (sum < s), then

return to step iii.)

vi.) Output: Set Y ∗(s) = Y (T (k−1)+(s− τ∗1 − τ∗2 −·· ·− τ∗n−1)) conditional on τ∗n = τk.

We can therefore compute a bootstrap estimator of (Ût ∗ b̂t)(s) by running the above algorithm m independent
and identically distributed (iid) times, thereby yielding Y ∗

1 (s),Y ∗
2 (s), . . . ,Y ∗

m(s), so that (Ût ∗ b̂t)(s) can be
estimated via m−1 ∑m

i=1Y ∗
i (s).

3 NUMERICAL EXPERIMENTS

We apply the proposed regenerative bootstrap algorithm to the number-in-system processes for M/M/1 and
M/M/∞ queueing models, respectively. The M/M/1 queue is a model that has structure characteristic of single-
server systems, whereas the M/M/∞ queue can be viewed as being representative of many-server models. In
each model, we compare |(U ∗b)(s)− (U ∗b)(∞)| and |(Ût ∗ b̂t)(s)− (Ût ∗ b̂t)(∞)| for different values of s.

Because this algorithm includes a novel bootstrap component, some discussion of the additional compu-
tational burden it imposes is warranted. As is typical of single run steady-state simulation procedures, it is
important that the simulated time horizon t be large. Of course, this makes N(t) large, so that the population
of completed cycles from which to obtain bootstrap samples is large. To determine the duration of the initial
transient, we need to compute (Ût ∗ b̂t)(s) at a set of different s values. While the best way to determine this
set of s-values requires further research, one obvious heuristic is to select a set of s-values corresponding
roughly to times at which the difference between (Ût ∗ b̂t)(·) is within approximately jε of (Ût ∗ b̂t)(∞). This
suggests using a set of the form s = c(log(1/ε)+ log(1/ j)), where c is a constant and j ranges between
some integer r and 1. From a practical standpoint, it is rarely essential to estimate the precise time at which
the initial transient has completed (e.g. a relative error of 50% may often be acceptable), so that a precise
determination of the “correct” s-values at which to compute (Ût ∗ b̂t)(s) will often be unnecessary.

To compute (Ût ∗ b̂t)(s) using our bootstrap algorithm, each of the m bootstrap simulations involves
drawing cycle durations from F̂t until we reach the maximal s-value. Note that these bootstrap simulations will
often run much faster than did the original single-run simulation, because only the cycle durations are sampled
(rather than all the events within each cycle, as occur in the original simulation) and because the bootstrap
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simulations run only to the maximal s-value. In addition, other variance reduction ideas can be exploited in
the setting of these bootstrap simulations (e.g. one can execute step vi.) of the bootstrap algorithm multiple
independent times and average the answers, rather than execute step vi.) only once) to further improve the
efficiency of the bootstrap simulations.

In this section, we report preliminary numerical results on the use of this regenerative bootstrap algorithm,
using only a “plain vanilla” implementation. Rather than use the logarithmic set of s-values discussed above,
we use an equally spaced grid of s-values. In addition, we have not explored any use of variance reduction
in conjunction with our bootstrap simulations.

3.1 Example 1: M/M/1

Consider a single server queue with Poisson arrivals and independent exponential service times. Let λ be the
arrival rate, µ be the service rate, ρ = λ

µ be the traffic intensity, and Y (t) be the number-in-system at time
t ≥ 0. Assume λ < µ and Y (0) = 0. Then Y is a non-delayed regenerative process with T (n) being the n’th
time that Y visits the origin. The steady-state mean of Y is α = ρ

1−ρ . It is known that

EY (t) =
ρ

1−ρ
− 2

π

∫ π

0

e−γ(x)µt

γ(x)2 sin2(x)dx

where γ(x) = 1+ρ −2
√ρ cosx; see p.27 of Takács (1962). It is reported in Abate and Whitt (1989) that a

simple trapezoidal rule works well for numerically evaluating the above trigonometric integral.
For the numerical experiment, we take λ = 0.3, µ = 0.4, t = 105. The number of bootstrap iterations are

set to be m = 1000 and m = 10000, respectively. The results of the numerical experiment are shown in Table
1, Table 2, and Figure 1.

Table 1: Selected numerical results for M/M/1 model with m = 1000

s (U ∗b)(s) (U ∗b)(∞) |(U ∗b)(s)− (U ∗b)(∞)| (Ût ∗ b̂t)(s) (Ût ∗ b̂t)(∞) |(Ût ∗ b̂t)(s)− (Ût ∗ b̂t)(∞)|
50 2.033 3 0.967 2.350 3.057 0.707
100 2.557 3 0.443 2.637 3.057 0.420
150 2.771 3 0.229 2.652 3.057 0.405
200 2.874 3 0.126 2.869 3.057 0.188

Table 2: Selected numerical results for M/M/1 model with m = 10000

s (U ∗b)(s) (U ∗b)(∞) |(U ∗b)(s)− (U ∗b)(∞)| (Ût ∗ b̂t)(s) (Ût ∗ b̂t)(∞) |(Ût ∗ b̂t)(s)− (Ût ∗ b̂t)(∞)|
50 2.033 3 0.967 2.258 3.057 0.799
100 2.557 3 0.443 2.646 3.057 0.411
150 2.771 3 0.229 2.796 3.057 0.261
200 2.874 3 0.126 2.896 3.057 0.161

3.2 Example 2: M/M/∞

Consider a queue with an infinite number of servers. Assume that the arrival process is Poisson and the service
times for each server are iid exponential random variables. Let λ be the arrival rate, µ the server rate of one
server, and Y (t) be the number-in-system at time t ≥ 0. Assume Y (0) = y0 = ⌊λ

µ ⌋. Then Y is a non-delayed

regenerative process with T (n) being the n’th time that Y visits ⌊λ
µ ⌋. The steady-state mean of Y is α = λ

µ .
It is well known that

EY (t) =
λ
µ

(1− e−µt)+ y0e−µt ;

see, for example, Eick, Massey, and Whitt (1993).
For the numerical experiment, we take λ = 3.5, µ = 0.4, t = 5000. The number of bootstrap iterations

are set to be m = 1000 and m = 10000, respectively. The results of the numerical experiment are shown in
Table 3, Table 4, and Figure 2.
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Figure 1: Comparison of |(U ∗ b)(s)− (U ∗ b)(∞)| (blue squares), |(Ût ∗ b̂t)(s)− (Ût ∗ b̂t)(∞)| for m = 1000 (green
circles), |(Ût ∗ b̂t)(s)− (Ût ∗ b̂t)(∞)| for m = 10000 (red triangles) for M/M/1 model

Table 3: Selected numerical results for M/M/∞ model with m = 1000

s (U ∗b)(s) (U ∗b)(∞) |(U ∗b)(s)− (U ∗b)(∞)| (Ût ∗ b̂t)(s) (Ût ∗ b̂t)(∞) |(Ût ∗ b̂t)(s)− (Ût ∗ b̂t)(∞)|
1 8.247 8.75 0.503 8.246 8.720 0.474
2 8.413 8.75 0.337 8.347 8.720 0.373
3 8.524 8.75 0.226 8.561 8.720 0.159
4 8.599 8.75 0.151 8.561 8.720 0.159
5 8.648 8.75 0.102 8.608 8.720 0.112

Table 4: Selected numerical results for M/M/∞ model with m = 10000

s (U ∗b)(s) (U ∗b)(∞) |(U ∗b)(s)− (U ∗b)(∞)| (Ût ∗ b̂t)(s) (Ût ∗ b̂t)(∞) |(Ût ∗ b̂t)(s)− (Ût ∗ b̂t)(∞)|
1 8.247 8.75 0.503 8.128 8.720 0.592
2 8.413 8.75 0.337 8.412 8.720 0.309
3 8.524 8.75 0.226 8.498 8.720 0.222
4 8.599 8.75 0.151 8.595 8.720 0.125
5 8.648 8.75 0.102 8.615 8.720 0.104

4 CONCLUDING REMARKS

We proposed a sampling-based algorithm for estimating the duration of the initial transient for a regenerative
process. Since it can be shown theoretically all “well-posed” steady-state simulation problem are regenerative
(see Glynn (1994)), our algorithm therefore has a potentially wide scope of applicability. Moreover, its validity
can be supported at a theoretical level and is illustrated by the two numerical experiments we conducted.
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