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ABSTRACT

The application of dynamic Bayesian networks (DBNs) is a recently introduced approach to simulation
metamodeling where the probability distribution of simulation state is represented as a function of
time. The DBN metamodels reveal the time evolution of simulation and enable alternative what-if
analyses unlike previous metamodels that imitate the simulation model as an input-output mapping.
In earlier studies, the analysis of DBNs is restricted to discrete time instants selected beforehand in
the construction phase of the metamodel. This paper introduces an extension to the framework of
DBN metamodeling that employs multivariate interpolation and allows the analysis in continuous
time. In practice, an approximation for the probability distribution of the simulation state is calculated
by interpolating between conditional probabilities given by the DBN. The utilization of multivariate
interpolation in the context of DBN metamodeling is illustrated by examples dealing with Poisson
arrival processes and air combat simulation.

1 INTRODUCTION

Discrete event simulation (DES) is a flexible and widely used methodology for analyzing complicated
real-world systems that include stochastic elements (Law 2006). In most cases, however, conducting
analysis directly with the simulation model is complicated and analyzing raw simulation data is inconve-
nient. Therefore, simulation data are often analyzed using simulation metamodels, i.e., auxiliary models
representing the simulation model as an input-output mapping (Friedman 1996). There exists various
approaches to simulation metamodeling: regression models (Blanning 1974, Kleijnen 1979), spline
models (Barton 1998), artificial neural networks (Fonseca, Navaresse, and Moynihan 2003), radial ba-
sis functions (Hussain, Barton, and Joshi 2002), Kriging or spatial correlation models (Kleijnen 2009),
frequency domain models (Schruben and Cogliano 1987), response surfaces as in (Barton 1998) and
(Kleijnen and Sargent 2000), and game models (Poropudas and Virtanen 2009a). These metamod-
els are used for simplifying and interpreting simulation models, conducting sensitivity and what-if
analyses (Friedman 1996), and optimizing simulation output (Cheng and Currie 2004).

The metamodels listed above are mappings between simulation input and output that overlook
the changes in the simulation state during DES. This deficiency has been overcome by using dynamic
Bayesian networks (DBNs) (Dean and Kanazawa 1990) as simulation metamodels allowing the study
of time evolution of simulation (Poropudas and Virtanen 2007, Poropudas and Virtanen 2010). In
DBN metamodels, the simulation output under consideration is a time series representing the changes
in the state of DES. The DBNs are constructed to represent the time dependence of the probability
distribution of the simulation state, i.e., its time evolution. In what-if analyses, DBNs are used to
calculate the probability distributions conditional on a fixed value of the simulation state at a given
time instant. Such analyses display the dependence between the specified simulation state and the
state of the simulation at other time instants. Similar analyses could also be performed based on
raw simulation data but the utilization of DBNs makes the analysis less time consuming and more
efficient compared to the repeated re-screening of the data (Poropudas and Virtanen 2007). A detailed
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discussion on the construction of DBN metamodels based on simulation data as well as their analysis
possibilities is available in (Poropudas and Virtanen 2010).

The existing DBN metamodels operate in discrete time despite the continuous nature of DES. They
are used to study the probability distribution of the simulation state only at discrete time instants that
must be fixed during the construction of the DBN. Note that, specific time instants can be included in
the DBN during its construction phase, if it is known in advance that they are relevant to the analysis of
the simulation model. However, if the time instants of interest are not known in the construction phase,
the construction procedure has to be repeated in order to focus on other time instants. Furthermore,
the inclusion of extraneous time instants in the model increases its size unnecessarily.

This paper extends the analysis of DBN metamodels into continuous time. The extension is
based on probabilities calculated using the DBN and multivariate interpolation. An approximation
for the probability distribution of the simulation state at an arbitrary time instant is acquired by
calculating the closest known probabilities with the DBN and interpolating between these values. The
interpolation gives approximate results effortlessly and without a need to access simulation data or
construct additional DBN metamodels.

The presented extension can be used in the analysis of continuous time simulations as well as
other continuous time phenomena. Another approach for the analysis of continuous time stochas-
tic processes would be the utilization of continuous time Bayesian networks (CTBNs) as pro-
posed in (Nodelman, Shelton, and Koller 2002). The CTBNs can also be constructed based on data
(Nodelman, Shelton, and Koller 2003) but, unfortunately, their application area is restricted to time-
homogenous Markov-processes (Nodelman, Shelton, and Koller 2002). Such limitations do not apply
to the DBN metamodels discussed in this paper. In addition, they offer similar analysis possibilities
as the CTBNs.

This paper is structured as follows. A short introduction to construction principles of DBN
metamodels is given in Section 2. In addition, the utilization of DBNs for describing the evolution
of simulation and conducting what-if analyses is reviewed. Section 3 introduces the extension of
DBN metamodels into continuous time by using multivariate interpolation. Then, the entire duration
of the simulation can be taken into account when applying DBNs in simulation studies. Both the
formulation and utilization of the interpolation are presented. The use of the extended DBN metamodels
is illustrated in Section 4 where two simulation models are analyzed. Finally, conclusions are given
in Section 5.

2 SIMULATION METAMODELING USING DYNAMIC BAYESIAN NETWORKS

2.1 Construction Based on Simulation Data

In a DES model, simulation state S(t) at time t ∈ [t0, t f ] is defined using time dependent random
variables x1(t), . . . ,xn(t). Now, it is assumed that each state variable xk(t), where k ∈ K = {1, . . . ,n},
has a discrete set of values Xk. These variables are taken as the variables of DBN metamodel and
simulations are performed to produce necessary simulation data, i.e., time series representing the
values of the state variables during the simulation. Let us denote the probability of the value i ∈ Xk
of the variable xk(t), where k ∈ K and t ∈ [t0, t f ], by pk

i (t) := P(xk(t) = i). The probabilities pk
i (t) as

functions of time are estimated from the simulation data and now they are called probability curves.
The DBN metamodel is a discrete time model that represents the simulation state at time instants

t ∈ T = {t0, t1, . . . , t f }. Once finished, the constructed metamodel produces the probability distribution
of the simulation state at the time instants T . To study probabilities involving time instants not included
in the DBN, one has to use an approximation such as piecewise linear interpolation

p̂k
i (t) := pk

i (t−)+
t − t−

t+− t−

[

pk
i (t+)− pk

i (t−)
]

, (1)

where t− = max{v ∈ T | v ≤ t} and t+ = min{v ∈ T | v ≥ t}. In order to achieve the best representation
for the simulation model, the time instants T have to be selected deliberately. Thus, the construction
of the DBN metamodel involves an optimization problem regarding the placement of the time instants.

In the optimization problem, the number of time instants is fixed and the time instantsT = {t0, . . . , t f }
are selected so that the approximation error is minimized (Poropudas and Virtanen 2010). This results
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(a) Equidistant time instants.
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(b) Optimized time instants.

Figure 1: Grey lines present the probability curves pi(t) = P(x(t) = i), where i ∈ {0,1,2}, estimated from simulation data. The
approximation of the probabilities p̂i(t) is calculated using interpolation based on the probabilities corresponding to the time instants
t ∈ T = {t0, t1, . . . , t5}.

in an optimization problem of the form

min
T

M(T ), where M(T ) := max
k∈K, i∈Xk, t∈[t0,t f ]

∣

∣

∣
pk

i (t)− p̂k
i (t)

∣

∣

∣
. (2)

The problem is solved using, e.g., a genetic algorithm (Goldberg 1989). Figures 1(a) and 1(b) illustrate
the time evolution of a simulated system with one state variable x(t) and three values of the simulation
state X = {0,1,2}. Note that the probability curves behave approximately linearly between the
optimized time instants of the DBN. Additionally, all the discussed probabilities are estimated from
the simulation data, i.e., so far there is no need for a DBN.

x1(t0)

x2(t0)

x3(t0)

x1(t1)

x2(t1)

x3(t1)

x1(t2)

x2(t2)

x3(t2)

U(t0) U(t1) U(t2)

Figure 2: Example DBN metamodel representing the simulation state at time instants t ∈ T = {t0, t1, t2}. The simulation state
at time t ∈ T is represented by a time slice consisting of three simulation state variables U(t) = {x1(t),x2(t),x3(t)}. Each node
is associated with a conditional probability table. Together, the structure of the DBN and the probability tables give the joint
probability distribution of the simulation state variables U =

⋃

t∈T U(t).

A DBN is a graphical presentation for the joint distribution of a sequence of random variables
(see, e.g., Dean and Kanazawa 1990, Jensen and Nielsen 2007). In order to study the time evolution
of the simulation, a DBN metamodel is constructed based on the simulation data to represent the
joint distribution of simulation state variables during the course of the simulation. In the DBN, the
simulation state at time t ∈ T is represented by a time slice U(t) = {x1(t), . . . ,xn(t)} (see, e.g., Figure
2).

Once the variables and the optimal time instants have been chosen, the structure of the DBN is
determined. The DBN consists of nodes representing the random variables xk(t), where k ∈ K, used
in the definition of the simulation state. The arcs between the nodes denote dependencies between
the variables. In the construction of the DBN metamodel, an initial network structure is designed
by a subject matter expert and additional arcs may be added based on the dependencies found in the
simulation data.

To complete the DBN metamodel, a conditional probability table is estimated from the simulation
data for each node. The conditional probability tables contain the conditional probability distribution
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of the corresponding variable for each combination of the values of its predecessors. Together with the
network structure, the probability tables are used to describe the joint distribution for the simulation
state variables U =

⋃

t∈T U(t) (Pearl 1991, Jensen and Nielsen 2007).
The DBN metamodel is validated by comparing the conditional probabilities given by the DBN

with probability curves estimated directly from the simulation data. The conditional probabilities
calculated with the DBN should match the probability curves which can be examined visually. If no
inaccuracies are detected, the DBN metamodel is taken as a valid representation for the simulation
model.

In the construction, a number of available easy-to-use software (Korb and Nicholson 2004) such
as Genie (Decision Systems Laboratory 2010) and Hugin (Andersen, Olesen, and Jensen 1990), can
be utilized. The construction and validation of DBN metamodels are presented in full detail in
Poropudas and Virtanen 2010.

2.2 Utilization of DBN Metamodels in Simulation Studies

In the following, it is assumed that S(t) = x(t), i.e., only one variable is needed to define the
simulation state. The DBN metamodel is constructed based on simulation data involving the values of
this variable during the simulation. The DBN can be used to calculate the joint distribution of values
of the variable x(t) at time instants t ∈ T that consists of the probabilities P(x(t0) = i0, . . . ,x(t f ) = i f )
for the combinations of the values i0, . . . , i f ∈ X . Furthermore, the DBN produces the marginal
and conditional probability distributions for the variable at various time instants. The probabilities of
interest include, e.g., P(x(t) = j), P(x(t) = j,x(s) = i), P(x(t) = j| x(s) = i), and P(x(t f ) = j| x(s) = i),
where s, t, t f ∈ T and i, j ∈ X .

The probabilities P(x(t) = j) depict the time evolution of the simulation state. In other words,
the DBN is used to calculate the probability of the state variable having a given value j ∈ X at
time instant t ∈ T . In what-if analyses, the DBN is used to determine conditional probabilities, e.g.,
P(x(t) = j| x(s) = i) or P(x(t) = j| x(s) = i,x(r) = k) where s, t,r ∈ T and i, j,k ∈ X . Note that
the fixed values of the random variables in the conditional probabilities correspond to observing
the values of these variables. Thus, the conditional probabilities reveal the dependence between the
observed simulation state and the time evolution of the simulation. On the other hand, the conditional
probabilities such as P(x(t) = j| x(s) = i) can be interpreted as transition probabilities from state i at
time s to state j at time t.

The simulation data can also be used to calculate probabilities representing the time evolution of
the simulation, i.e., P(x(t) = j), as well as conditional probabilities such as P(x(t) = j| x(s) = i).
In practice, the probabilities are estimated by screening the simulation data for replications that
fulfill the imposed conditions and, thus, the analysis of several alternative conditions may be time
consuming. The unnecessary re-screening of the simulation data may be circumvented by using the
DBN metamodel to calculate the probabilities.

Overall, the DBN metamodels expedite the analysis of the time evolution and allow the utiliza-
tion of the available software tools such as GeNIe (Decision Systems Laboratory 2010) or Hugin
(Andersen, Olesen, and Jensen 1990). Yet, it should be noted that there exists a limitation to the
simulation studies using DBN metamodels. If the interesting time instants are not included in the
DBN, i.e., s, t,r /∈ T , the DBN can not be directly used to calculate the conditional probabilities. If
it is known in advance that some given time instant t is of interest, this time instant can be added as
constraint to the set of time instants T in the optimization problem (2). This ensures that the said time
instant is included in the constructed DBN and can be incorporated in the analysis. However, this is not
an effective solution for all time instants t ∈ [t0, t f ] as a new DBN would have to be constructed for each
relevant time instant. In the following, this shortcoming is tackled using multivariate interpolation.

3 INFERENCE IN CONTINUOUS TIME USING DBN METAMODELS

3.1 Multivariate Interpolation

In the construction of a DBN, the location of time instants is optimized in order to find a good
piecewise linear fit to probability curves. The actual probability curves are approximately linear
between the time instants if there are enough time instants and they have been selected correctly. The
DBN metamodel is used to calculate probabilities p j(t) := P(x(t) = j) where t ∈ T , which are in
the following referred to as the exact probabilities. For other time instants t ∈ [t0, t f ], approximative
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probabilities are produced using interpolation. The interpolation formula presented in Eq. (1) can be
re-written in a more generalizable form as a first order Lagrange interpolating polynomial (see, e.g.,
Phillips 2003)

p̂ j(t) :=
1

d(t−, t+)

t+

∑
τ=t−

(d(t−, t+)−d(t,τ))p j(τ), (3)

where t− and t+ are defined as in Eq. (1) and d(t,τ) := |t − τ| is the distance between time instants
t and τ . This interpolation describes the time evolution of the simulated system within [t0, t f ] and
approximates the probability of a given value of the simulation state at time t ∈ [t0, t f ].

Similar reasoning is applicable also in the approximation of conditional probabilities such as
p j|i(t|s) := P(x(t) = j| x(s) = i) or p j|i,k(t|s,r) := P(x(t) = j| x(s) = i,x(r) = k) where t,s,r ∈ [t0, t f ]
but not necessarily t,s,r ∈ T . The DBN provides the exact probabilities p j|i(t−|s−), p j|i(t+|s−),
p j|i(t−|s+), and p j|i(t+|s+) where

s− = max{v ∈ T | v ≤ s}, s+ = min{v ∈ T | v ≥ s},
t− = max{v ∈ T | v ≤ t}, t+ = min{v ∈ T | v ≥ t}. (4)

Thus, the time instants in Eq. (4) are the time instants closest to s and t for which the exact probabilities
can be calculated using the DBN. This calculation is efficient and takes only a fraction of the time
needed to estimate the conditional probabilities from the simulation data.

An approximation for p j|i(t|s), denoted by p̂ j|i(t|s), is calculated using the exact probabili-
ties produced by the DBN and a first order Lagrange interpolating polynomial with two variables
(Phillips 2003)

p̂ j|i(t|s) =
1

d(s−,s+)d(t−, t+)

s+

∑
σ=s−

t+

∑
τ=t−

(d(s−,s+)−d(s,σ))(d(t−, t+)−d(t,τ))p j|i(τ|σ). (5)

The resulting approximation is applied for inference regarding all time instants s ∈ [s−,s+] and
t ∈ [t−, t+]. If time instants beyond these intervals are to be studied, the appropriate values for the
closest time instants are found using Eq. (4). Then, the DBN is used to calculate the corresponding
probabilities and a new interpolation is obtained using Eq. (5).

When the time instants s, t ∈ T , the approximation matches the exact probabilities given by the
DBN, i.e., p̂ j|i(t|s) = p j|i(t|s). Furthermore, the bivariate interpolation in Eq. (5) reduces to the
univariate interpolation in Eq. (3), if one of the variables belongs to T . For example, if s = s− ∈ T ,
Eq. (5) gives

p̂ j|i(t|s−) :=
1

d(t−, t+)

t+

∑
τ=t−

(d(t−, t+)−d(t,τ))p j|i(τ|s−).

It holds that ∑ j∈X p̂ j|i(t|s) = 1 for all i, j ∈ X and t,s ∈ [t0, t f ]. This is not necessarily true for other
interpolation methods such as higher order interpolating polynomials or splines (Phillips 2003) which
makes their use in interpolation of probabilities undesirable.

The interpolation with two variables presented in Eq. (5) is an extension of the previously used
linear interpolation to two dimensions. The interpolation is generalized in similar manner to higher
dimensions in order to approximate probabilities conditional on more observed simulation states such
as p j|i,k(t|s,r). The probabilities are approximated by adding more variables into the interpolation
(Phillips 2003) which gives in the case of three variables

p̂ j|i,k(t|s,r) :=
1

d(s−,s+)d(r−,r+)d(t−, t+)

×
s+

∑
σ=s−

r+

∑
ρ=r−

t+

∑
τ=t−

(d(s−,s+)−d(s,σ))(d(r−,r+)−d(r,ρ))(d(t−, t+)−d(t,τ))p j|i,k(τ|σ ,ρ),
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where r− and r+ are defined similarly to Eq. (4). The interpolation can also be used to approximate
probabilities such as p j,k|i(t,r|s) := P(x(t) = j,x(r) = k|x(s) = i).

3.2 Simulation Analysis Using DBN Metamodels and Interpolation

The multivariate interpolation extends the utilization of DBN metamodels from the discrete time
instants T = {t0, t1, . . . , t f } to the time interval [t0, t f ] describing the entire duration of the simulation.
By using the multivariate interpolation, all what-if analyses discussed in Section 2.2 can be performed
without restrictions to the time instants under consideration. For example, conditional probabilities
such as p j|i(t|s) and p j|i,k(t|s,r), where s, t,r ∈ [t0, t f ] and i, j,k ∈ X , can be approximated in order to
study dependence between simulation states at different times.

If conditional probabilities are approximated with n fixed values of state variables, the interpolation
necessitates the calculation of 2n conditional probabilities using the DBN. For example, for any given
pair of values i, j ∈ X of the simulation state variable at the given time instants s, t ∈ [t0, t f ], four
probabilities are calculated using the DBN and the interpolation (1) is used to produce the approximation
p̂ j|i(t|s) for the conditional probability p j|i(t|s).

Despite the increased number of calculations compared to calculating a single probability, the
combination of DBNs and multivariate interpolation is faster than alternative methods for calculat-
ing conditional probability distributions. Such methods include estimating probabilities based on
simulation data or constructing a new DBN metamodel with time slices representing the time in-
stants of interest. The repeated screening of the simulation data has proved to be time consuming
(Poropudas and Virtanen 2007, Poropudas and Virtanen 2010) and the construction of a new DBN
takes the same amount of computational effort as the construction of the original DBN metamodel.
Thus, combining DBN metamodels with multivariate interpolation is the most effective and preferable
technique for calculating the required probabilities.

4 EXAMPLE ANALYSES

4.1 Poisson-process with Time-Dependent Arrival Intensity

In the first example, the simulated system is a Poisson arrival process (Taylor and Karlin 1998) where
the state of the simulation S(t) is determined by a single state variable x(t) which represents the number
of arrivals up to time t ∈ [0.00,10.00]. The arrival intensity λ (t) is time-dependent and defined as

λ (t) =

{

0.40 2.00 ≤ t < 6.00,
1.20 8.00 ≤ t < 10.00,
0.00 otherwise.

(6)

To gather the necessary simulation data, the system is simulated 10000 times. In the process under
consideration, the value of the state variable has no theoretical upper limit. During the simulation, the
highest observed number of arrivals was 13. Thus, in the DBN, the set of possible values of the state
variable is defined as X = {0,1, . . . ,13}. A DBN metamodel is constructed and validated using the
principles discussed in Section 2.1. The resulting DBN is presented in Figure 3. The DBN represents
the simulation state at 13 time instants. The simulation state at a given time instant depends on the
previous state which is signified by the arcs between the nodes of the network.

x(0.00) x(2.00) x(2.53) x(3.05) x(3.65) x(4.07) x(4.76) x(6.00) x(8.00) x(8.39) x(8.91) x(9.51) x(10.00)

Figure 3: DBN metamodel for the Poisson process with the time-dependent arrival intensity. The DBN consists of 13 time slices repre-
senting the simulation state x(t) at the time instants T = {0.00, 2.00, 2.53, 3.05, 3.65, 4.07, 4.76, 6.00, 8.00, 8.39, 8.91, 9.51, 10.00}.

In the following, the DBN metamodel is utilized for studying the time evolution of the simulation
as well as for conducting what-if analyses. The probabilities given by the DBN are combined with the
interpolation (3) to obtain the approximations of the probabilities p̂ j(t) at an arbitrary time instant.
These probabilities and the respective probability curves estimated directly from the simulation data
are presented in Figure 4(a) for values j ∈ {0,1,2,3}. Figure 4(a) implies that the DBN recreates
the probability curves accurately for the entire time interval [0.00,10.00]. It is also noted that the
probability curves remain constant in the time intervals where the arrival intensity is zero. The
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probability p̂0(t) is equal to 1 at the beginning of the simulation and drops after time t = 2.00 as the
arrivals cumulate. Overall, the approximation gives an identical description for the progress of the
simulation when compared with the original simulation data.
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(a) Probabilities p j(t) and their approximations p̂ j(t) where
j ∈ {0,1,2,3}.
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(b) Conditional probabilities p j|1(t|4.50) and their approxima-
tions p̂ j|1(t|4.50) where j ∈ {0,1,2,3}. The black markers
correspond to the assumption that x(4.50) = 1.

Figure 4: Probabilities and conditional probabilities for values of the simulation state in the Poisson arrival process. The grey
lines depict the probability curves, the circles denote the exact probabilities given by the DBN, and the other lines denote the
approximations given by the interpolation.

In what-if analysis, the state of the simulation is fixed at some time instant and the conditional
evolution of the simulation is studied by updating the probability distribution of the simulation state
at other time instants. For example, if it assumed that x(4.50) = 1, the conditional probabilities of the
values of the simulation state are calculated to study how this condition affects the simulation. The
conditional probability curves p j|1(t|4.50) where j ∈ {0,1,2,3} and the respective approximations
p̂ j|1(t|4.50) are presented in Figure 4(b). Note that the interpolation is based on the exact probabilities
given by the DBN as well as the assumption that x(4.50) = 1. Overall, the approximations give an
accurate representation for the conditional probabilities estimated from the simulation data. This fact
is also demonstrated in Table 1 where the conditional probabilities p j|1(8.50|4.50) estimated from
the simulation data are compared with the approximations p̂ j|1(8.50|4.50) for all values j ∈ X . The
final row of Table 1 presents the probability p1(4.50) and its approximation. The comparison of the
conditional probability distributions implies that the interpolation gives a good approximation for the
simulation data even though the time instants 4.50 and 8.50 do not belong to T .

Table 1: Probabilities p j|1(8.50|4.50), where j ∈ {0,1, . . . ,13}, calculated based on the simulation data and the
corresponding approximations p̂ j|1(8.50|4.50) given by the DBN.

value Simulation data Approximation
j p j|1(8.50|4.50) p̂ j|1(8.50|4.50)

0 0.000 0.001
1 0.293 0.307
2 0.367 0.350
3 0.219 0.211
4 0.086 0.088
5 0.026 0.028
6 0.001 0.003
7 0.001 0.001
≥ 8 0.000 0.001

p1(4.50) 0.366 0.356

There is a slight non-linearity in the conditional probability p̂2|1(t|4.50) between the time instants
4.50 and 6.00 (see, Figure 4(b)). The non-linearity makes the approximation of the conditional
probabilities within this time interval less accurate which is also seen in Table 2 where the conditional
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probability curves p j|1(5.00|4.50) are compared with the approximation p̂ j|1(5.00|4.50). Nevertheless,
even in this case, the probabilities given by the interpolation correspond quite well with the probabilities
estimated from the simulation data. Thus, one can conclude that the presented interpolation yields a
good approximation with little computational effort.

Table 2: Probabilities p j|1(5.00|4.50), where j ∈ {0,1, . . . ,13}, calculated based on the simulation data and the
corresponding approximations p̂ j|1(5.00|4.50) given by the DBN.

value Simulation data Approximation
j p j|1(5.00|4.50) p̂ j|1(5.00|4.50)

0 0.000 0.000
1 0.816 0.838
2 0.167 0.127
3 0.016 0.029
4 0.001 0.005
5 0.000 0.001
≥ 6 0.000 0.001

p1(4.50) 0.366 0.356

4.2 Air Combat Simulation

In the second example, a DBN metamodel is used to analyze simulation data produced by simulating 1
vs. 1air combat iswithaDESmodel calledX-Brawler (L-3 Communications Analytics Corporation 2002).
The sides of the air combat are named blue and red. The state of the simulation at time t is described
by two variables S(t) = {x1(t),x2(t)}. The variables x1(t) and x2(t) are indicator variables for ”blue
is alive at time t” and ”red is alive at time t”, respectively. As the state variables are binary, the set
of their values is X = {0,1}. The state variables describe the state of the air combat as

• neutral, i.e., both sides are alive, x1(t) = 1 and x2(t) = 1
• blue advantage, i.e., blue is alive and red has been killed, x1(t) = 1 and x2(t) = 0
• red advantage, i.e., blue has been killed and red is alive, x1(t) = 0 and x2(t) = 1
• mutual disadvantage, i.e., both sides have been killed, x1(t) = 0 and x2(t) = 0

The maximum duration of the simulation is set as 500 (seconds). The combat is simulated 10000
times in order to gather the necessary simulation data. Then, a DBN metamodel for the simulated air
combat is constructed and validated as in Section 2.1. The final DBN is presented in Figure 5. The
structure of the DBN indicates that the values of the state variables depend on the previous values of
both variables which is designated by the arcs in Figure 5. The additional dependencies found in the
simulation data are denoted by white arrowheads.

x1(0) x1(128) x1(129) x1(152) x1(162) x1(177) x1(191) x1(211) x1(251) x1(278) x1(313) x1(433) x1(460) x1(487) x1(500)

x2(0) x2(128) x2(129) x2(152) x2(162) x2(177) x2(191) x2(211) x2(251) x2(278) x2(313) x2(433) x2(460) x2(487) x2(500)

Figure 5: DBN metamodel for the simulated air combat. The DBN consists of 15 time slices representing the simulation state at
the time instants T = {0, 128, 129, 152, 162, 177, 191, 211, 251, 278, 313, 433, 460, 487, 500}.

Once constructed, the DBN metamodel is utilized for analyzing the time evolution of the air
combat and conducting what-if analyses. The time evolution is studied by considering probabilities
p( j1, j2)(t) := P(x1(t) = j1,x2(t) = j2), where j1, j2 ∈ X , as a function of time. Figure 6(a) presents the
probability curves p( j1, j2)(t) and the exact probabilities given by the DBN as well as the corresponding
approximations p̂( j1, j2)(t). The approximations coincide with the probability curves, i.e., they lead
to similar inference and produce an identical portrayal of the progress of the simulation.

The simulation begins in the neutral state, i.e., at the beginning of the simulation both sides are alive
(see, Fig 6(a)). After 128 seconds, the probability of blue advantage rises as blue has an opportunity
to shoot down red. Then, after t = 162 also red may have shot down its opponent and the probability
of red advantage increases. After 278 seconds the air combat is over and the probabilities of the
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(a) Probabilities p( j1, j2)(t) and the approximations p̂( j1, j2)(t),
where j1, j2 ∈ X = {0,1}.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
il
it
y

Simulation time

p̂(1,1)|1(t|225)

p̂(0,1)|1(t|225)

p̂(1,0)|1(t|225)

p̂(0,0)|1(t|225)

(b) Conditional probabilities p( j1, j2)|1(t|225) and the approx-
imations p̂( j1, j2)|1(t|225), where j1, j2 ∈ X = {0,1}.

Figure 6: Probabilities and conditional probabilities for the state of the air combat as a function of time. The grey lines depict
the probability curves, the circles denote the exact probabilities given by the DBN, and the other lines denote the approximations
given by the interpolation.

states of the simulation remain approximately constant. At the end of the simulation, the probability
of blue advantage is 0.444, red advantage 0.476, mutual disadvantage 0.008, and neutral 0.073. In
this way, the progress of the simulation may be studied effortlessly using the probabilities given by
the DBN.

Next, what-if analysis is conducted in order to study dependencies between the values of the
simulation state at different time instants. For example, one can assume that blue is alive at time instant
t = 225, i.e., x1(225) = 1. Then, the DBN is used with interpolation to calculate the approximations
of the conditional probabilities p̂( j1, j2)|1(t|225) for time instants t ∈ [0,500] and j1, j2 ∈ X . The
approximations are presented in Figure 6(b) alongside the conditional probability curves estimated
from the simulation data. In this case, the interpolation produces a good match with the probability
curves.

The conditional probabilities in Figure 6(b) show that the initial jump in the probability of blue
advantage is almost twice as large compared to the unconditioned situation in Figure 6(a), i.e., the
assumption that blue is alive at time t = 225 increases also the probability of blue shooting down red
at the beginning of the air combat. On the other hand, the probability of red advantage remains almost
nil up to time t = 251 as blue is assumed to be alive at time t = 225. Additionally, the probability of
red advantage remains low throughout the remainder of the simulation, i.e., if red has not shot blue
down by this time instant, it is unlikely to do so in the following air combat. The assumption that
blue is alive at time t = 225 alters the probability distribution of the final simulation state so that the
probability of blue advantage is 0.792, red advantage 0.073, mutual disadvantage 0.006, and neutral
0.129. Overall, the application of the DBN eases the calculation of conditional probabilities and gives
an effective way for conducting what-if analyses.

Finally, the DBN is applied for what-if analysis regarding the probability distribution of the final
simulation state. Now, the value of x1(s) is set equal to 1, i.e., it is assumed that blue is alive at
time s ∈ {125,150,175,200,225,250,275,300}. Then, the conditional probability distribution of the
final simulation state is calculated. Table 3 presents both the conditional probabilities p( j1, j2)|1(500|s)
estimated based on the simulation data and the respective approximations p̂( j1, j2)|1(500|s) given by
the DBN. The table also includes the probabilities p(1,·)(s) := P(x1(s) = 1) and their approximations
p̂(1,·)(s). The both probabilities imply that the probability of the survival of blue is a decreasing
function of time. It is also evident that the approximation concurs with the probabilities estimated
from the simulation data. The final row of Table 3 displays the unconditional probability distribution of
the final simulation state. The conditional probabilities p̂(1,0)|1(500|s) and p̂(1,1)|1(500|s) increase with
the value of s. Thus, the longer blue survives, the more favorable it finds the probability distribution
of the final simulation state. If blue survives the initial 300 seconds of the simulation, it has a 0.962
probability of surviving the air combat. Furthermore, if blue survives up to the time instant s = 300,
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Table 3: Probability distribution of the final air combat state p( j1, j2)|1(500|s), where j1, j2 ∈ X = {0,1}, conditional
on blue being alive at the time instants s ∈ {125,150,175,200,225,250,275,300} estimated based on the simulation
data. The approximations p̂( j1, j2)|1(500|s) are calculated using the DBN and interpolation. The final row represents the
unconditioned probability distribution of the final state.

Simulation data Approximation
p( j1, j2)|1(500|s) p̂( j1, j2)|1(500|s)

s p(1,·)(s) (1,0) (0,1) (0,0) (1,1) p̂(1,·)(s) (1,0) (0,1) (0,0) (1,1)

125 1.000 0.442 0.477 0.007 0.074 1.000 0.444 0.476 0.008 0.073
150 0.989 0.447 0.471 0.007 0.075 0.989 0.449 0.471 0.008 0.073
175 0.898 0.493 0.418 0.007 0.083 0.888 0.500 0.410 0.008 0.082
200 0.580 0.763 0.101 0.008 0.128 0.587 0.755 0.114 0.009 0.123
225 0.556 0.796 0.068 0.003 0.134 0.559 0.792 0.073 0.006 0.129
250 0.546 0.811 0.052 0.001 0.136 0.545 0.811 0.054 0.003 0.132
275 0.539 0.820 0.042 0.000 0.138 0.539 0.822 0.043 0.001 0.134
300 0.536 0.825 0.037 0.000 0.139 0.536 0.827 0.037 0.001 0.135

- - 0.442 0.477 0.007 0.074 - 0.444 0.476 0.008 0.073

the conditional probability p̂(0,1)|1(500|300) is only 0.037, i.e., the probability of the simulation ending
in state red advantage is small. Overall, Table 3 illustrates that the DBN metamodel is an accurate
representation of the simulation model as the probability distributions given the interpolation and
estimated from the simulation data are nearly identical. Therefore, the conditional evolution of the
simulation narrated by the approximated probabilities is consistent with the simulation data even
though the discussed time instants do not belong to T .

5 CONCLUSIONS

By using DBN metamodels, the time evolution of DES can be analyzed in a transparent manner. The
DBN metamodeling concept has also proved to be an effective way for conducting various what-if
analyses. The previously proposed analysis capabilities of DBNs are confined into discrete time, i.e.,
the analysis of only a discrete set of time instants has been attainable. In this paper, the combination
of DBN metamodeling and multivariate interpolation is applied to describe the time evolution of
DES. This extension of DBN metamodeling utilizes first order Lagrange interpolating polynomials
for approximative inference in continuous time. The paper illustrated the combination of DBNs and
interpolation with two example analyses. According to these examples, the interpolation method
discussed in this paper gives a simple and intuitive approximation for the probability distribution
of the simulation state. The approximation can be calculated efficiently and it provides an accurate
representation for the original simulation data. Thus, when compared with the brute force analysis
of the simulation data, the proposed metamodeling concept leads to more effective inference with
similar results and implications.

Simulation studies using DBN metamodels can be performed with software designed for the
analysis of Bayesian networks. Unfortunately, multivariate interpolation is beyond the scope of
such software and, thus, interpolation calculations presented in this paper have been carried out using
MATLAB (Mathworks 2010). In order to promote and alleviate future studies, it might be worthwhile
to develop an automated tool designed for construction and utilization of DBN metamodels together
with multivariate interpolation.

In the earlier Bayesian networks literature, stochastic continuous time phenomena have been
studied using CTBNs that are DBNs describing processes that evolve over continuous time. The
presented multivariate interpolation schema extends their application area of discrete time DBNs into
continuous time and offers a potential alternative for CTBNs. In future, the performance of DBNs and
interpolation could be compared with CTBNs constructed from data that is produced by simulation
of a suitable system, viz., a time-homogenous Markov process. This comparison would give a more
comprehensive understanding about the advantages and disadvantages of these alternative approaches.
However, one should note that, unlike CTBNs, the proposed combination of DBNs and interpolation
is not limited to time-homogenous Markov-processes.

The DBN metamodels have also been used in simulation-based optimization as a part of influence
diagram metamodels (Poropudas and Virtanen 2009b). In such metamodels, the DBN reveals the
consequences of decision alternatives, i.e., the time evolution of a simulated system at discrete
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time instants with given values of simulation parameters. Clearly, the application of multivariate
interpolation could also be applied for representing the effects of simulation parameters within the
simulation-optimization framework in continuous time.

To summarize, the DBN metamodels present the time evolution of simulation which can not be
analyzed using other simulation metamodels. The DBNs expedite simulation analyses as they remove
the need for repetitive re-screening of simulation data in the estimation of conditional probabilities.
The computational advantages of the DBNs enable various alternative what-if analyses providing
additional insight into the behavior of the simulated system. The addition of multivariate interpolation
to the application of DBN metamodels eliminates the limitation of discrete time and allows one to
study the progress of simulation in continuous time.
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