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ABSTRACT 

Particular applications require analysts to estimate plant throughput from external observables via inverse 

modeling techniques.  For example, auditors, law enforcement personnel, and financial planners might 

need to perform these types of analyses.  Researchers at the SimCenter at The University of Tennessee 

Chattanooga have elected to model several simple basic production models as well as a fictional bicycle 

factory to do a preliminary investigation into the viability of implementing an inverse model using a dis-

crete-event simulation software package.  The fictional bicycle model will eventually include several si-

mulation features such as a discrete event component, a flow portion, an agent based part, equation based 

power portion, and optimization.  The results indicate that the approach is viable and that inverse model-

ing can be used to estimate internal activities.  Future work will involve more detailed models with larger 

parameter sets. 

 

1 INTRODUCTION 

Many applications rely on inverse modeling.  Laboratory analysis, instrumentation applications, machine 

health monitoring, and vibration analysis 
(Gladwell 2004) are all examples of tradition inverse problems.  

These applications generally have a strong mathematical focus and rely heavily on computer solution.  

Most often, processes are modeled as continuous in time with data collected on evenly-spaced intervals 

with at most a finite number of variations in the time step.  A new area of research is the application of 

inverse techniques to the modeling of systems containing processes that exhibit behaviors that have inhe-

rently uneven time intervals.  This so called discrete event systems appear often in industrial arenas, man-

ufacturing, call centers, server/client problems, health care, and other service-oriented businesses.  They 

are often modeled directly using any of a number of discrete event simulation software packages (Zapata, 

Suresh and Reklaitis 2007). 

2 APPROACH 

2.1 Basic Inverse Models 

A classic inverse problem in a manufacturing environment would be the estimation of internal plant pa-

rameters based on some measured output.  For example, one might measure the flow of waste effluent 

from a factory, employ a physics-based model to describe the postulated internal processes, and then es-

timate values of specific model parameters that provide some agreement between the time profile of the 

modeled effluent stream and the time profile of the effluent stream measured from the plant.  If the phys-
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ics-based model is a realistic representation of the internal processes and a valid solution to the parameter 

estimation problem is obtained, then one might have a reasonable representation of the internal processes 

of the factory.  There are caveats, of course, for example solution uniqueness is always a concern when 

inverse solutions are sought as well as is the rate of convergence to a solution.. 

 

Consider a simple inverse problem in a discrete-event simulation model.  One has a process consisting of 

two serial activities.  Items enter to be processed at time intervals obtained from a random distribution 

(e.g. exponential), enter a queue, and then are processed first by activity one, exit to an intermediate 

queue, and are finally processed by activity two.  This system is modeled in ExtendSim software 

<http://www.extendsim.com/index.html> in figure 1. 

 

 

 
 

Figure 1: Simple two-activity system used in basic inverse example. 

 

 

A simple test of inverse analysis in a discrete-event simulation paradigm consists of assuming that a delay 

time has been specified for items in each of the two activities (e.g. via direct observation or inference), 

measuring the actual delay time of items in the activities, and optimizing the values of the actual delays in 

the modeled activity until a specific cost (profit) is minimized (maximized).  Since ExtendSim has a built-

in optimizer this is easy to implement within the simulation environment.  Other variables are important 

in this basic analysis: 1) the number of constraints in the cost (profit) function versus the number of para-

meters in the inverse solution and 2) the affect of random variation in parameters.  More parameters than 

constraints is under constrained, more constraints than parameters is over constrained.  It is anticipated 

that over/under constraining and random variation will impact both solution uniqueness and rate of con-

vergence.  Table 1 summarizes the models, cost functions, and parameters tested in the basic inverse 

models. 
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Table 1: Set of basic inverse models. 

Model Iden-

tifier 

Num-

ber of 

Activi

ties 

Parameters Cost Function Comment 

Base 2 Delay1 & De-

lay2 

(dT1-SetPt1)
2
+(dT2-SetPt2)

2
 Direct inversion, deterministic 

model only 

Base with 

Random 

2 Delay1 & De-

lay2 

(dT1-SetPt1)
2
+(dT2-SetPt2)

2
 Direct inversion, stochastic 

model 

Under con-

strained with 

Random 

4 Delay1, De-

lay2, Delay3, 

Delay4 

(dT1-SetPt1)
2
+(dT2-SetPt2)

2
 More parameters than con-

straints, stochastic model 

Over con-

strained with 

Random 

4 Delay1 & De-

lay2 

(dT1-SetPt1)
2
+(dT2-SetPt2)

2 
+  

0.01(dT3-SetPt3)
2
+ 

0.01(dT4-SetPt4)
2
 

More constraints than parame-

ters, stochastic model, note 

weights on set points 3 & 4 

Note: Delayi = model delay in activity i; dTi = measured model delay at activity i; SetPti = the desired de-

lay (set point) at activity i. 

 

 These inverse models were used in preliminary analyses to determine if an inverse approach using 

ExtendSim’s built-in optimizer was feasible, to establish whether random variables would make the anal-

ysis fail (e.g. no convergence), and to determine if under or over constrained conditions created problems. 

2.2 Fictional Bicycle Plant 

As a more rigorous evaluation of the inverse discrete event modeling approach using ExtendSim soft-

ware, a fictional bicycle factory was simulated.  (See for example Kress 2007.)  The fictional bicycle shop 

is a facility that manufactures new bicycles from raw materials.  The prototypical bicycle needs to have a 

frame and two wheels (among other less important items such as seat, brakes, and handlebars!).  The 

frame consists of two parts, and a wheel consists of a rim, tire, and spokes. 
 

 
Figure 2: Fictional bicycle factory block diagram.  Italicized words indicate particular model features as-

sociated with the block. 
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 This bicycle is assembled using different labor personnel in a series of steps that require time, mate-

rials, power, and labor.  In addition, the handlebars of the bicycle are to be anodized for appearance and 

durability.  The manufacturing process is illustrated in figure 2 on the following page.  This simulation 

has several unique discrete event modeling features including: basic discrete event portions, continuous 

flow portions, agent based section, an analytical equation-based part, and an optimizer.  Combining these 

features exercises a broad spectrum of ExtendSim’s capabilities and creates a more difficult case for the 

inverse solver. 

3 RESULTS 

3.1 Basic Model Verification and Validation 

A basic model with only one variable parameter was used for verification and validation of the model and 

approach.  Figure 3 on the following page shows a flow diagram illustrating how the simple model was 

used for verification and validation.  The system was established with a randomly varying parameter.  The 

magnitude of the random variations was one of the independent variables.  The optimizer was then used 

to match an estimator’s parameter to the system’s parameter.  The randomly varying parameter changed 

from run to run and the estimator attempted to establish a fixed value.  If the optimizer was estimating the 

values of  a variable parameter in a real system, one would hope that the estimated value would be repre-

sentative of the system parameter’s statistical distribution; for example, a mean.  Thus, the error between 

the system parameter’s mean value and the estimated parameter was calculated for various levels of pa-

rameter variation.  This is shown in figure 4 on the following page. 

 

 

 
Figure 3: Schematic of the verification and validation basic model with randomly varying system and op-

timizer/estimator. 

 

 

System with randomly 
varying parameter(s) 

Estimator Parameters 
and Outputs 

Estimator with fixed 
and optimizer-

controlled parame-
ter(s) 

Optimizer 
Minimum Cost = 

f(estimator parameters, 
estimator outputs, system 
parameters, system out-

puts) 

Optimizer-controlled Feedback 

System Parameters 
and Outputs 
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Figure 4: Error between system parameter mean as a function of system randomness level for basic model 

verification and validation. 

 

Note that with no system randomness, error was essentially zero, being primarily a function of the optimi-

zation stopping criteria. 

3.2 Basic Model Results 

The optimizer was set up to perform the inverse analysis for the four simulations described in table 1.  

Run parameters were set to have the optimizer make five runs per case and to examine fifty cases before 

checking convergence.  Termination was set at either a maximum number of runs or when the difference 

between the best and worse of the top ten cases is within ninety five percent.  Table 2 on the following 

page illustrates a typical result from the inverse analysis showing the top ten delays for an inverse solu-

tion with the over constrained and random simulation.  The set points were set to 2 for delay number 1 

and for 1 on delay number 2.  The cost function was that established in the fourth row of table 1 with set 

points uniformly randomly selected between 1.9 and 2.1 and 0.9 and 1.1 for activity 3 and activity 4 re-

spectively.  Note that the costs associated with activities 3 and 4 are weighted two orders of magnitude 

lower than those costs for activities 1 and 2.  Figure 5 shows the minimum cost for the over constrained 

random simulation as a function of time.  Notice how the cost function generally decreases as time in-

creases becoming monotonic as the number of samples (i.e. time) increases.  Finally, figure 6 on the fol-

lowing page compares the time to execute for the four different inverse model scenarios of table 1. 

 

Table 2: The ten minimum cost results from the optimizer for the over constrained and random inverse 

model. 

Delay 1 Delay 2 Minimum Cost 

2.057445955 0.97078475 0.001792878 

2.054829589 0.971002603 0.001882526 

2.056285571 0.97100526 0.002452868 

2.055117767 0.971057697 0.002529458 

2.056285571 0.97100526 0.002601504 

2.074828576 0.970558299 0.002642186 

2.057236062 0.970935182 0.002743123 

2.054548752 0.971064065 0.002763853 

2.054548752 0.971064065 0.002923926 

2.065574867 1.040252161 0.007365218 
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Figure 5: Minimum cost as a function of time for the over constrained random case (line 4 in table 1). 

 

 

Execution Time (hr:min:sec)

0:00:00
0:28:48
0:57:36
1:26:24
1:55:12
2:24:00
2:52:48
3:21:36
3:50:24

Base Base with Random Underconstrained

with Random

Overconstrained with

Random

 
 

Figure 6: Execution times for the basic inverse models described in table 1. 

 

3.3 Bicycle Model 

Typical results for number of operations calculated from the bicycle development model are shown in 

Figure 7. 

 

 This simulation used a customer with an initial inventory of 100 bicycles and an estimated sales rate 

(consumption) of one bicycle per day.  Sales that reduced the inventory below 100 bicycles were imme-

diately followed by orders for new bicycles in batches of five.  The simulation was run for 70 days and it 

was assumed that each operation in the assembly required one of the same pieces of equipment (e.g. an 

assembly fixture or stand).  Figure 7 shows the maximum number of concurrent operations required to 

fulfill the customer’s demands.  Note the set of operations includes both assembly and disassembly as 

well as “decision” operations where the disassembled parts are assessed relative to their reusability (e.g. 

Frame is Scrap operation).   
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Figure 7:  Maximum Number of Concurrent Operations in the Bicycle Shop Model 

 

 Initial results with the optimization show that the technique can estimate system internal parameters 

depending upon which outputs are measured and which parameters are being estimated.  For example, ta-

ble 3 illustrates estimation of one of the variable activity delays by measuring power consumed.  (Note 

the “Power Consumption” block in figure 2.)  The power consumption model had three levels of coupling 

between the power consumed and the product throughput: low, moderate, and high.  For low coupling, 

power consumed was a weak function of throughput representing a factory with a base load largely de-

termined by factors other than the manufacturing process.  High coupling represented a factory where 

consumed power was highly dependent upon throughput.   Moderate coupling was in between high and 

low representing a system with balanced base load and throughput-proportional load. 

 

Table 3: Estimation of an internal system process activity delay having randomly varying delay time by 

measuring system power consumption that is dependent upon the product throughput. 

System Parameter Variation (%) Power Consumption Coupling Estimated parameter Error (%) 

0 Low 0.1 

0 Moderate 0.07 

0 High 0.09 

10 Low 0.7 

10 Moderate 0.83 

10 High 0.40 

 

 Estimated parameter error does not seem to be affected by coupling at this level.  As long as there is 

some relationship between power consumed and throughput, then the estimator was able to determine the 

parameter even with 10% variability. 

4 CONCLUSIONS 

The discrete event inverse analysis approach is certainly capable of evaluating the internal delays for the 

basic models.  In these cases, small order model mismatches (under constrained or over constrained) and 

random numbers do not interfere with the solution progress.  The solution may take longer; however, it 

still provides a viable answer.  In the case of the more complex models such as the bicycle factory, much 

depends upon the data collected and coupling between model segments.  In any simulation, it is possible 

to estimate internal parameters to some extent; however, convergence rate, accuracy, and uniqueness all 

depend upon the system and data.  Details of this interdependence are a topic of further work. 
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