
Proceedings of the 2010 Winter Simulation Conference

B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

MODEL-DRIVEN ENGINEERING OF SECOND-LIFE-STYLE SIMULATIONS

Gerd Wagner

Institute of Informatics

Brandenburg University of Technology

Cottbus, GERMANY

ABSTRACT

We present a model-driven engineering approach for developing Second-Life-style simulation scenarios

that can be executed with SL/OpenSim. Our approach is based on the Agent-Object-Relationship (AOR)

simulation language, which is a modeling language for expressing platform-independent simulation mod-

els that can be mapped to Java, JavaScript, PHP and SL/OpenSim code.

1 GENERAL INTRODUCTION

Model-driven engineering (MDE) is a software engineering approach that focuses on developing models

rather than code, which can be generated automatically from computationally complete models. The Ob-

ject Management Group (OMG) has proposed the Model-Driven Architecture (MDA), see

<www.omg.org/mda/>, as an MDE approach based on the fundamental idea that the chain of model-

ing goes from a conceptual domain model (called ‘computation-independent model’ in MDA) via a plat-

form-independent design model to one or more platform-specific implementation models (one for each

target technology platform), which can be directly mapped to code.

Since computer simulations are a particular class of software programs, simulation engineering can be

considered a special case of software engineering. Like software engineering, simulation engineering can

benefit a lot from developing conceptual domain models as the basis of platform-independent simulation

models that are finally turned into executable simulation programs using some technology platform.

The standard view in the simulation literature (see, e.g., Himmelspach 2009) is that a ‘simulation

model’ can be expressed either in a general purpose programming language or in a specialized simulation

language. This means, that the term ‘model’ is used rather loosely both for low-level computer programs

and for higher-level executable specifications. There is often no distinction between a conceptual/logical

system model (expressed either as a non-executable conceptual model or as an executable specification in

a high-level simulation language) and its implementation in some target technology platform. Clearly, as

in software engineering, such a distinction would be important for several reasons: as opposed to a low-

level computer program, a high-level simulation model would be more comprehensible and easier to

communicate, share, reuse, maintain and evolve, while it could still be transformed into any platform-

specific implementation code.

The Entity-Relationship and Agent-Object-Relationship simulation languages ERSL and AORSL are

modeling languages for expressing platform-independent simulation models that can be mapped to Java,

JavaScript, PHP and SL/OpenSim code. ERSL is a language for making basic discrete event simulation

models. AORSL, which is a superset of ERSL, is a language for making agent-based discrete event simu-

lation models. Both languages allow rule-based state-change modeling and include constructs for model-

ing the visualization/animation and the user interface of a computer simulation. A Java-based simulation

management system (AOR-JavaSim) has been developed as an open-source project. A JavaScript-based

Web service for AOR simulations is going to be offered by Simulario UG, a recent spin-off of Branden-

791978-1-4244-9864-2/10/$26.00 ©2010 IEEE

Wagner

burg University of Technology (BTU), while a PHP-based simulation platform for multi-user online si-

mulations is currently being developed in a project at BTU

This article presents first ideas of an approach to map AOR simulation models to a fourth target tech-

nology platform: the Second-Life-(SL-)based SL/OpenSim <http://SL/OpenSim.org>. We refer to

this platform by SL/OpenSim. There are different use cases for such a mapping with respect to the role

played by the SL avatar. The first use case is where the avatar just plays the role of an observer of a non-

interactive simulation scenario that is rendered in front of his eyes. The second use case allows the avatar

to interact with a simulation scenario that does not include any agents controlled by other users, while the

third use case allows other agents of the simulation scenario to be controlled by other users who are

represented by their respective avatar.

2 RELATED WORK

As a consequence of the rising interest in ontologies for the Semantic Web beginning around the year

2000, also simulation researchers working in different areas started to investigate the use of ontologies for

simulation. In (Fishwick and Miller 2004), the authors report about two different efforts involving ontol-

ogies: a) the RUBE project aims at providing an XML-based simulation modeling framework supporting

both 2D and 3D models, and b) the DeMO project aims at establishing an ontology for discrete event si-

mulation. Both efforts can be viewed as attempts to establish a model-driven simulation engineering ap-

proach. As explained in (Silver et al. 2009), the main concern of DeMO is to support ontology-driven si-

mulation. The starting point for the DeMO methodology is the conceptual model of a system obtained as

the first step in the process of making a simulation model. This model has to be provided in the form of

an OWL ontology. It is then mapped to an instantiation of the DeMO ontology, which is, in turn, mapped

to an executable simulation model. Thus, the DeMO ontology constitutes a high-level simulation lan-

guage supporting the paradigm of platform-independent modeling.

In (Benjamin, Patki and Mayer 2006), it is recommended to use domain ontologies in the simulation

modeling process for making simulation models unambiguous and consistent. It is argued that in distri-

buted simulation, ontologies may play the role of a vendor/platform-independent modeling language that

facilitates the translation of models into the different simulation platforms involved in a distributed simu-

lation.

So, while there are a number of proposals towards a model-driven approach to simulation engineer-

ing, we are not aware of any work on a platform-independent discrete event simulation modeling lan-

guage that would allow to generate code for all kinds of target platforms from models. Neither are we

aware of any work on generating code for simulations in SL and the SL/OpenSim. In (Crooks et al. 2009)

it is suggested to use the SL/SL/OpenSim platform as an environment for exploring ‘agent-based’ simula-

tion models. The paper reports on three models that have been ported to this environment: the well-known

cellular-automata-style models ‘Game of Life’ and ‘Schelling Segregation Model’, as well as a simple

pedestrian evacuation model. However, no general approach for making simulation models for the

SL/SL/OpenSim platform is presented.

3 INTRODUCTION TO THE ER/AOR SIMULATION LANGUAGE

The ER/AOR Simulation framework, which is available from <www.AOR-Simulation.org>, was

proposed in (Wagner 2004). It supports both basic discrete event simulation models without agents, also

called Entity-Relationship (ER) simulations, and complex agent-based simulation models with agents hav-

ing (possibly distorted) perceptions and (possibly false) beliefs, called Agent-Object-Relationship (AOR)

simulations.

A simulation scenario is expressed with the help of the XML-based AOR Simulation Language

(AORSL). The scenario is then translated to Java source code, compiled to Java byte code and finally ex-

ecuted, as indicated in Figure 1.

792

Wagner

Figure 1: From AORSL to Java byte code

Distinctive features of the ER/AOR Simulation framework are: (1) its high-level rule-based simulation

language AORSL, (2) an abstract simulator architecture and execution model.

A simulation scenario essentially consists of a simulation model, an initial state definition and a user

interface (UI) definition, including an initial state UI, a statistics UI and an animation UI. An ER simula-

tion model consists of: (1) a set of entity type definitions, including different categories of event and ob-

ject types; and (2) a set of environment rules, which define causality laws governing the state changes of

the environment and the causation of follow-up events. An AOR simulation model consists, in addition,

of a set of agent types, message types and action event types included in the entity type definitions.

An entity type is defined by means of a set of properties and a set of functions. There are two kinds of

properties: attributes and reference properties. Attributes are properties whose range is a data type; refer-

ence properties are properties whose range is another entity type.

The upper level ontological categories of AOR Simulation are objects (including agents, physical ob-

jects and physical agents), messages and events, as depicted in Figure 2. According to this upper-level

ontology of AOR Simulation, agents are special objects; for simplicity it is common, though, to say just

'object' instead of using the unambiguous but clumsy term ‘non-agentive object’. Notice that only objects,

but neither events nor messages, have a state that may change over time.

Both the behavior of the environment (its causality laws) and the behavior of agents are modeled with

the help of rules, which support high-level declarative simulation modeling.

3.1.1 Entity-Relationship Simulation

In basic discrete event simulation, which we also call Entity-Relationship (ER) simulation, we deal with

two basic categories of entities: objects and events. A simulation model defines a number of object types

and event types, each of them with one or more properties and zero or more functions (to be used for var-

ious kinds of computations). There are two different kinds of event types: those that define exogenous

events (typically with some random periodicity) and those that define caused events that follow from the

occurrence of other events.

Figure 2: The upper-level ontological categories of ER/AOR simulation (agent-related categories in blue)

The state of the environment (i.e. the system state) is given by the combination of the states of all ob-

jects. Environment rules define how the state of objects is changed by (and which caused events result

from) the occurrence of an event.

793

Wagner

An environment rule is a 6-tuple

<WHEN, FOR, DO, IF, THEN, ELSE>

where: (1) the mandatory WHEN element denotes the type of event that triggers the rule; (2) an optional

block of FOR elements allows to declare rule variables, such that each variable is bound either to a specific

object or to a set of objects; (3) the optional IF element is a logical formula (allowing for variables) ex-

pressing a state condition; and (4) the optional DO, THEN and ELSE elements are containers for an optional

UPDATE-ENV element specifying an update of the environment state followed by an optional SCHEDULE-

EVT element specifying a list of resulting future events.

In each simulation step, all those rules are fired whose triggering event types are matched by one of

the current events. The firing of rules may lead to updates of the states of certain objects and it may create

new future events to be added to the future events list. After this, the simulation time is incremented to the

occurrence time of the next future event (if no continuous changes have been defined for the given mod-

el), and the evaluation and application of rules starts over.

3.1.2 Agent-Object-Relationship Simulation

In the form of agent-based discrete event simulation, which we call Agent-Object-Relationship (AOR) si-

mulation, we deal with three basic categories of entities: objects, agents and events. When we introduce

agents, we have to make further distinctions between different types of events, as depicted in Figure 3. In

particular, we need to consider perception events and action events in order to account for the perception-

action cycle defining the foundation of agent behavior.

Figure 3: The different categories of event types (agent-related categories in blue)

An agent type is defined by means of: (1) a set of (objective) properties; (2) a set of (subjective) self-

belief properties as well as an optional set of (subjective) belief entity types; and (3) a set of reaction

rules, which define the agent's reactive behavior in response to perception events (and internal time

events).

4 INTRODUCTION TO SECOND LIFE AND THE OPEN SIMULATOR

Second Life is a running virtual world launched in 2003, and a leading virtual world technology, devel-

oped by Linden Lab, and made freely available in the form of the open source project SL/OpenSim, the

supporters of which include IBM, Intel and Microsoft.

794

Wagner

4.1 SL Entities

Like AORSL, SL also makes a distinction between objects and agents. However, in SL an agent is not a

special object that interacts with its environment, but rather, together with its associated avatar, it repre-

sents a human user. For avoiding terminological confusion, we will identify the SL term “agent” with

“avatar”. So, the basic entities in SL are avatars and objects, both of which are positioned on a region

(“sim”) that consists of land parcels, as depicted in Figure 4.

Object ("Prim“)

id

name

shape

position

rotation

permissions

PhysicalObject

ActiveObject

PassiveObject

Vehicle

Inventory

1

InventoryItem

*

Avatar

Region ("Sim")

name

1

*
1 *

owner

1 *

LandParcel

*

*

owner0..1

Script

Object

Texture

BodyPart

Gesture

Animation

0..1
attachment

*

TemporaryObject

PhantomObject

linkedPrim

*

1

Figure 4: The main entities of SL

There are different kinds of SL objects: active objects, as opposed to passive objects, have behaviors

defined by scripts written in the Linden Scripting Language (LSL). Physical objects are active objects

subject to the laws of physical kinematics and dynamics (rendered with the help of a physics engine).

Both avatars and objects have an ‘inventory’ containing items such as scripts, objects, textures, etc.

4.2 Communication

Avatars and active objects can communicate with each other via a mechanism for broadcasting simple

string messages, called “chat”. The distance that a broadcast message can be heard depends on the type of

chat used (Whisper, Say, Shout, RegionSay). There is no support for point-to-point communication and

for typed messages. However, using specific channel numbers (and possibly further filtering techniques),

a kind of point-to-point communication can be achieved.

For receiving chat messages, one or more llListen actions, setting one or more filters, have to be

performed first. After that listen events may occur, providing the chat messages received according to

the current filter setting.

795

Wagner

4.3 Perception Events and Timer Events

Active objects can perceive their environment, e.g. via events of the following types:

sensor – provides information on up to 16 objects/avatars found within a specified range; events of this

type have to be triggered by invoking the active perception procedure llSensor

no_sensor – provides the information that there are no objects/avatars within the specified range

touch – provides the information that the object has been clicked by a user/avatar

at_target – occurs when a target position (set before with llTarget) is reached

collision – when a collision with another object occurs

land_collision – when a collision with land occurs

timer – occurs after some time span set before with llTimer

Alle these events can be handled in an object’s script by providing suitable code to be executed in re-

sponse to the occurrence of an event of such a type (such a section of code is often called an event hand-

ler).

5 MAPPING AOR SIMULATION SCENARIOS TO SL/SL/OPENSIM CODE

The main goal of this article is to discuss possible mappings from an AOR simulation scenario to suitable

SL/OpenSim code, such that the mapped scenario can be run with SL/OpenSim. In this approach, the

AOR simulation scenario represents a platform-independent model that can be transformed into various

platform-specific models, including an SL/OpenSim model.

For gathering some first experiences, we have re-implemented two AORSL scenarios as SL/OpenSim

scenarios. The first scenario represents a simple car traffic model with a one-dimensional circular space

model. The second scenario is about bugs moving around in a grid space. This investigation is just a first

step that has resulted in the preliminary mapping shown in Table 1. Further analysis has to be done before

a first complete-enough transformation can be defined.

Table 1: Preliminary mapping

AORSL concept Corresponding SL concept

Object Passive object

Physical object Physical object

Agent Active object

Physical agent Physical object

Out-message event Broadcast (say) with suitable channel and reach

In-message event listen with suitable filter settings

Physical object perception event sensor with suitable filter settings

Collision event collision

Periodic time event timer

Reminder event timer

Reaction rule Event handler

Whenever we want to indicate the vocabulary from which a term comes, we use the XML namespace

prefix syntax. For instance, “sl:agent” and “aors:agent” denote two terms having the same local name

(“agent”) but being distinct due to the fact that they are defined in two different namespaces: the Second

Life vocabulary and the AOR Simulation vocabulary.

For creating the objects and agents of an AOR simulation scenario in an OpenSim world, a special

OpenSim module has to be developed. This module would read an AORSL file and create corresponding

sl:objects, with appropriate LSL scripts (defining their behavior), and add them to the inventory of a

"master object" representing the simulation scenario. This master object is put in-world by the module,

796

Wagner

where it listens to specific commands from an avatar for starting, stopping or resetting the simulation. On

simulation start, the master object creates (“rezzes”) the required sl:objects from its inventory.

6 EVALUATION AND OPEN ISSUES

Our first experiments with using the SL/OpenSim platform for implementing and running discrete event

simulation (DES) scenarios have shown that this platform allows to deploy and publish DES models such

that their runs can be visualized with 3D graphics and observed by any visitor of the region on which they

have been deployed. The added value of using SL/OpenSim for publishing a DES model results from:

• The advanced 3D visualization techniques provided by SL/OpenSim

• The virtual world metaphor as an attractive publication channel for publishing research results and

learning contents, especially when browser-based access of OpenSim worlds will be possible in the

near future (through a combination of JavaScript, WebGL and the 3D context of the canvas element

introduced in HTML 5)

In future work, we plan to consider two more use cases. The second use case are single-user participatory

simulations where a user may interact with a simulation run via user interface events. In this case, the user

interface events (such as clicking the mouse or pressing a key on the keyboard) have to be mapped to the

action repertoire of an SL/OpenSim avatar. The third use case are multi-user participatory simulations

where many users may visit our SL/OpenSim region and interact with a running multi-agent simulation

scenario consisting of a number of passive objects and artificial agents. Here, the goal is to support the au-

thoring of multi-agent simulation scenarios where users can freely choose the agent over which they want

to take control. This requires a modification of the association between a user and her avatar, which is

currently a frozen one-to-one association in SL/OpenSim.

Based on our initial experiments, we have identified the following issues that need further investiga-

tion:

• Typed messages, as used in AORSL, have to be emulated as string messages in LSL

• LSL does not allow to define object types with properties and functions; however, it allows to use an

inventoried object as a blueprint that can be “rezzed” multiple times

• LSL does not support any discrete space model (such as two-dimensional grids, which is the most

popular space model in social sciences)

• LSL does not allow to change the velocity of an object directly, but only via applying an impulse

7 CONCLUSIONS

We have shown how AOR simulation scenarios can be rewritten as SL/OpenSim scenarios. Our approach

facilitates transferring basic and agent-based discrete event simulations to the SL/OpenSim platform. The

most basic use case is the one where such simulations are provided within SL/OpenSim such that they can

be started and observed by any user visiting the world under consideration. This could be useful for teach-

ing. More advanced use cases involve realizing participatory simulation scenarios with SL/OpenSim,

which is a topic for future work.

ACKNOWLEDGEMENTS

The author would like to thank Paul Fishwick for inviting this paper and to Steffen Tülling for imple-

menting the SL/OpenSim scenarios.

797

Wagner

REFERENCES

Benjamin P., M. Patki, and R. Mayer. 2006. Using Ontologies for Simulation Modeling. In L. F. Perrone,

F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, (eds.), Proceedings of the

2006 Winter Simulation Conference, pp. 1151–1159.

Crooks, A., A. Hudson-Smith, and J. Dearden. 2009. Agent Street: An Environment for Exploring Agent-

Based Models in Second Life. Journal of Artificial Societies and Social Simulation 12(4)10

<http://jasss.soc.surrey.ac.uk/12/4/10.html>.

Fishwick, P.A., and J. A. Miller. 2004. Ontologies For Modeling And Simulation: Issues and Approaches.

In R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, (eds.), Proceedings of the 2004 Winter

Simulation Conference, pp. 259–264.

Himmelspach, J. 2009. Toward a Collection of Principles, Techniques and Elements of Modeling and

Simulation Software. Proc. of the 2009 International Conference on Advances in System Simulation.

IEEE Computer Society, 2009, pp. 56–61.

Silver, G. A., K. R. Bellipady, J. A. Miller, W. S. York, and K. J. Kochut. 2009. Supporting Interoperabil-

ity Using the Discrete-Event Modeling Ontology (DeMO). Proceedings of the 2009 Winter Simula-

tion Conference (WSC'09), Austin, Texas, December 2009, pp. 1399–1410.

Wagner, G. 2004. AOR Modeling and Simulation – Towards a General Architecture for Agent-Based

Discrete Event Simulation. In Agent-Oriented Information Systems, Lecture Notes in AI, volume

3030, pp. 174–188. Springer-Verlag.

AUTHOR BIOGRAPHIES

GERD WAGNER is Professor of Internet Technology within the Department of Informatics, Branden-

burg University of Technology. His research interests include agent-oriented modeling and agent-based

simulation, foundational ontologies, (business) rule technologies and the Semantic Web. In recent years,

he has been focusing his research on the development of an agent-based discrete event simulation frame-

work, called AOR Simulation. He can be reached at <http://www.informatik.tu-

cottbus.de/~gwagner/>.

798

