
Proceedings of the 2010 Winter Simulation Conference 
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds. 

 
 
 

IMPROVED METHODS AND MEASURES FOR COMPUTING DYNAMIC PROGRAM 
SLICES IN STOCHASTIC SIMULATIONS 

Ross Gore 
Paul F. Reynolds, Jr. 

 
University of Virginia 
���������		
����� 

P.O. Box 400740 
Charlottesville, VA, 22901 USA 

 
 
 
ABSTRACT 

Stochastic simulations frequently exhibit behaviors that are difficult to recreate and analyze, owing large-
ly to the stochastics themselves, and consequent program dependency chains that can defy human reason-
ing capabilities.  We present a novel approach called Markov Chain Execution Traces (MCETs) for effi-
ciently representing sampled stochastic simulation execution traces and ultimately driving semi-
automated analysis methods that require accurate, efficiently generated candidate execution traces.  The 
MCET approach is evaluated, using new and established measures, against both additional novel and ex-
isting approaches for computing dynamic program slices in stochastic simulations. ����������	
��
��	r-
formance is established.  Finally, a description of how users can apply MCETs to their own stochastic si-
mulations and a discussion of the new analyses MCETs can enable are presented. 

1 INTRODUCTION 

The daunting nature of quantifying, analyzing and understanding uncertainty in model design and simula-
tion outcomes is evident in the results of epidemiology studies conducted this century. Epidemiologists 
have addressed the question of government level actions and reactions regarding the spread of infectious 
diseases such as smallpox and bird flu. Should a comprehensive vaccination program be initiated? How 
and to what degree should infected individuals be isolated, and for how long? The range of answers to 
these questions is broad and full of conflict. Recently, Elderd, Dukic and Dwyer (2006) have shown ana-
lytically that just four of the potentially hundreds of critical independent variables in these studies induce 
extreme sensitivity in model predictions, leading to serious conflict regarding remedial approaches in-
volving billions of dollars and millions of people. Subject matter experts (SMEs) must be given additional 
capabilities to understand the behavior of their simulations so that results can be used effectively and with 
confidence. 

Exploring a behavior in a simulation with uncertainty - a stochastic simulation - is typically time con-
suming and mostly manual.  Generally the objective of an exploration is to identify the program state-
ment(s) that cause a simulation behavior of interest. Thus, any improvements in this search process can 
greatly decrease the cost of exploration. 

In traditional exploration techniques users apply debuggers, e.g., the Eclipse debugger (Eclipse Foun-
dation 2010), partially automated debuggers (Duccasse 1999), and fault localization tools (Jones and Har-
rold 2005) to identify program statements in the simulation source code that lead to the behavior of inter-
est. These techniques rely on program slicing to identify the program statements that could impact the 

753978-1-4244-9864-2/10/$26.00 ©2010 IEEE



Gore and Reynolds 
 

behavior under exploration. Unfortunately, the program slicing methods employed in these tools are not 
the best choice for stochastic simulation analysis, as we argue next.  

Program slicing is a decomposition technique that extracts statements relevant to a particular compu-
tation within the program or simulation (Weiser 1984). A program slice provides the answer to the ques-
tion, �What program statements affect the computation of variable v in line number l?� (Binkley and Gal-
lagher 1996). In a program x, a program statement s is relevant to a variable v in line number l if s lies on 
the path, according to data and control flow dependences, to the computation of v in line number l. For a 
program x, that employs random variables (a stochastic program), and a specified input i, it is possible 
that for some executions x(i), s will be relevant to the computation of v in line number l and for other ex-
ecutions x(i), s will not be relevant to the computation of v in line number l. Current methods and meas-
ures of relevance are unable to capture this variability. This is the stochastic simulation � dynamic pro-
gram slicing problem.  

In order to accurately and realistically evaluate the effectiveness of candidate solutions to the stochas-
tic simulation � dynamic program slicing problem, we present two new measures: cumulative relevance 
and expected relevance. Also, we present several different methods to address the stochastic simulation � 
program slicing problem and evaluate them, using our two new measures as well as the established meas-
ure of efficiency, all for three published stochastic simulations. 

The most promising method, by our measures, is one first presented here: Markov Chain Execution 
Traces (MCETs).  MCETs form a Markov Chain model of a sample of execution traces for a stochastic 
simulation given a specified input. Once an MCET is created a trajectory through that MCET can be si-
mulated yielding an execution trace that is representative of the observed executions. The resulting trace 
is representative in the sense that: 1) every program statement that occurs in the samples has the possibili-
ty of being included, 2) the order and the control-flow structure of the statements in the trace reflect that 
of the samples and 3) the trace is likely to contain program statements and control flow structures from 
most of samples. 

Work related to the MCETs and program slicing is presented in Section 2. Section 3 provides the de-
tails of how MCETs are constructed and how a trajectory through the MCET is simulated to create a rep-
resentative execution trace. In Section 4, the details of established and new methods to address the dy-
namic program slicing � stochastic simulation problem and the two new evaluation measurers are 
presented. Section 5 describes the evaluation of these methods for three published stochastic simulations. 
Finally, in Section 6, we summarize our contributions and discuss future work. 

2 RELATED WORK 

MCETs draw on the areas of Markov chains, software testing and program slicing. In this section we re-
view work in each of these areas and describe how it relates to MCETs. 

2.1 Markov Chains 

A Markov chain is composed of a set of states, S � s1,s2...sn��  where S � n  and P, a n x n transition 

probability matrix, P �
p11 ...  p1n

pi1 pij  pin

pn1 ... pnn

��

��

��
��
��

	�


�

��
��
��

. Each entry, pij , in P represents the probability of moving from the 

current state si to the next state s j . Each move is called a step.  The probability of stepping from si to s j  
depends only on the current state si, not on any  previous state (Meyn and Tweedie 2009).  Markov 
chains have been successfully applied in modeling and simulation for likelihood ratio gradient estimation 
(Glynn 1987), simulation optimization (Olafsson and Shi 1999) and rare-event simulation (Heidelberger 
1995). One of the applications that closely resembles MCETs is the use of Markov Chains to generate 
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�
	����������
��
	�
	�	������	���	��������	��� (Kenner and Joseph 1984, Hartman 1996).  MCETs employ 
Markov chains in a similar manner to generate representative execution traces of stochastic simulations. 

2.2 Statistical Software Testing 

Markov Chains have also been shown to be a valuable resource in the statistical software testing commu-
nity. It is impossible to test most modern software systems completely because the application of every 
input combination or scenario (exhaustive testing) is often infeasible. The implication for testing is that 
only a small subset of the possible input space can be exercised before release. As a result statistical test-
ing is used to explore software functionality (Whittaker and Thomason 2000). In statistical testing of 
software all possible uses of the software, at some level of abstraction, are represented by a statistical 
model. The application of Markov Chains as the statistical model enables the generation of test cases that 
are representative of real-world use cases once the software is deployed.  Within the statistical software 
testing community the application of Markov Chains has enabled several new analyses (Whittaker and 
Thomason 2000). We expect MCET will create similar opportunities within the stochastic simulation 
community. These opportunities are discussed as opportunities for future work in Section 6. 

2.3 Static and Dynamic Program Slicing 

Program slicing is a decomposition technique that extracts statements relevant to a particular computation 
within the program (Weiser 1984). An important distinction is that between static and dynamic slices. 
Figure 1 (a) shows an example program that reads an integer input n, and computes the sum and the aver-
age of the first n positive numbers. If the sum of the first n integers is evenly divisible by n the program 
assigns -1 to x. Otherwise the program assigns sum to x. The criterion for a static slice is a 2-tuple con-
sisting of {line number of statement s, the name of variable v}, where v is the variable of interest and s is 
the statement of interest. Figure 1 (b) shows a static slice of this program using criterion {13, x}. Slices 
are computed by identifying consecutive sets of transitively relevant statements, according to data and 
control flow dependences (Tip 1995). Only statically available information is used for computing slices; 
hence, this type of slice is referred to as a static slice. 
 

Figure 1(a): a) An example program. (b) A static slice of the program using criterion {13 ,x}. (c) A dy-
namic slice of the program using criterion {n = 4, 13, x}. 

 
In the case of dynamic program slicing, only the dependences that occur in a specific execution of 

the program are taken into account. A dynamic slicing criterion specifies the input; it consists of {input, 
line number of statement s, name of variable v}. The difference between static and dynamic slicing is that 

1 read(n);
2 i := 1;
3 x := 0;
4 sum := 0;
5 average := 0;
6 while i<= n
7   sum := sum + i;
8 i := i + 1; 
9 end
10 if (sum mod n == 0)
11 x := -1;

else
12 x := sum;
13 print (x);
14 average := sum/n;
15 print (average);

1 read(n);
2 i := 1;
3 x := 0;
4 sum := 0;
6 while i<= n
7   sum := sum + i;
8 i := i + 1; 
9 end
10 if (sum mod n == 0)
11 x := -1;

else
12 x := sum;
13 print (x);

1 read(n);
2 i := 1;
3 x := 0;
4 sum := 0;
6 while i<= n
7   sum := sum + i;
8 i := i + 1; 
9 end
10  // (sum mod n == 0)
11   x := -1;

13 print (x);
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dynamic slicing assumes fixed input for a program, whereas static slicing does not make assumptions re-
garding the input. Figure 1(c) shows a dynamic slice of the program in Figure 1(a) using the criterion {n = 
4, 13, x}. Note that for input n = 4, the assignment x := sum is executed, and the assignment x := -1 is not 
exe���	�!��"	���#� $���� ���� ��%�&'��*
���"��#� ����	�	���+/� ���� ����	�	����&� ���<���
	��$�'� ��� �����	��
from the dynamic slice because the assignment of x := -1 is not executed.  

It is beneficial to distinguish between a dynamic program slice and an execution trace. An execu-
tion trace includes each execution of a statement, in the order the statements are executed, for a specified 
input to the program i. Within an execution trace most statements are included multiple times since most 
statements in a program are executed multiple times. In contrast, a dynamic program slice only contains 
one entry for each statement in the program that is relevant to the computation specified by the dynamic 
program slicing criterion. A dynamic program slice can be described as the intersection of a static pro-
gram slice given the slicing criterion and an execution trace for the input specified in the dynamic pro-
gram slicing criterion.  
 Previous researchers have used static and dynamic program slicing separately and in combination 
to enable program debugging. In debugging, one is often interested in a specific execution of a program 
that exhibits anomalous behavior, which in part matches our goal of exploring the behavior of a stochastic 
simulation. Dynamic slices are particularly useful here, because they only reflect the actual dependencies 
of that execution, resulting in smaller slices than static ones (Korel and Rilling 1997).  

3 MARKOV CHAIN EXECUTION TRACES 

When a behavior is first observed in a stochastic simulation, the prospect of exploring and then explaining 
that behavior can be daunting. Most users apply debugging techniques mentioned earlier, such as classic 
debuggers (Eclipse Foundation 2010), partially automated debuggers (Duccasse 1999), and fault localiza-
tion tools (Jones and Harrold 2005) to identify program statements that lead to the behavior. The process 
is time-consuming and cumbersome due to the mismatch of the stochastic behaviors of simulations and 
the assumption of deterministic behavior in the existing tools. We realized that a research artifact that 
could automatically generate execution traces that were representative of an observed sample of execu-
tions was needed. Thus, Markov chain execution traces (MCETs) were born. MCETs enable an improved 
solution to the stochastic simulation � dynamic program slicing problem when evaluated against new and 
existing methods. The MCET approach is not computationally intensive because the number of execution 
trace samples required to create a MCET is relatively small. Efficiency of the MCET approach to compu-
ting a dynamic program slice compared to existing approaches is evaluated and discussed in Section 5.  

3.1 Generating a Markov Chain of Execution Traces 

The method for generating MCETs is a straightforward application of modeling a sample of execution 
traces with Markov Chains. Generating a MCET assumes a stochastic simulation, an input i to the simula-
tion and an integer n, where n specifies the number of execution traces samples to generate. Next, the sto-
chastic simulation is executed n times with input i. For each execution, the execution trace is stored. Once 
all n executions are completed and the corresponding execution traces are stored, the Markov chain is 
formed. Recall a Markov chain is a set of n states, S, and a n x n matrix of transition probabilities, P. Each 
unique statement in the observed execution traces is a state in the Markov chain. For example, the pro-
gram in Figure 1 would result in at most 15 states in the Markov Chain because there are only 15 unique 
statements in the program. Next, the probability matrix is created using the sequence of statements in the 
n observed execution traces. Each entry, pij , in the matrix P represents the frequency with which the 
statement represented by state s j  immediately follows the statement represented by state si in the ob-
served execution traces.  The Markov chain of the sampled execution traces has the following properties:  

1. Each statement observed in the sample of execution traces is represented. 
2. States transition from one to another with the same probability observed in the sample of ex-

ecution traces. 
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3. The transition from one state, si, to another state, s j  only depends on si, not any other state. 
 Next, we describe simulating a trajectory through the MCET to generate representative execution 
traces.  

3.2 Simulating a Trajectory through the MCET 
Assuming the construction of the MCET, simulating a trajectory as described in the following steps re-
sults in a representative execution trace (RET). 

1. The median length, l,  of the n sampled execution traces is computed. 
2. The trajectory begins at the start state of the Markov chain. The start state is the statement which 

begins each execution trace of the observed samples. The statement represented by the start state 
is added to RET. 

3. The next state, s j , is chosen at random from the states connected to the current state, si, using the 
probability transitions in matrix P. The statement represented by s j  is added to RET. 

4. Step 3 is repeated until RET � l  or an end state, an si with no outgoing edges is reached. 
 The resulting RET is referred to as representative due to its length and the three properties of the 
MCET driving the creation of the RET. The properties guarantee that every statement in the observed ex-
ecution traces can be included in the RET. Furthermore, due to the nature of the transition probabilities in 
the MCET the order of statements and control-flow structure in the RET reflects the order of statements 
and structure in the observed execution traces. Finally, statements from most of the observed execution 
traces are included in the RET because each transition in the generating process only depends on the cur-
rent statement. Because the length of the RET is bounded by l, the algorithm terminates and the RET has 
the median length of the observed traces or reflects the termination of an observed trace.  

4 MEASURES AND METHODS  

We begin by presenting new measures for evaluating the effectiveness of approaches to the stochastic si-
mulation � dynamic program slicing problem.  Following that, we present alternative methods for ad-
dressing the problem, including one that uses MCETs and RETs. 

4.1 Measures for the Stochastic Simulation � Dynamic Program Slicing Problem 
The program in Figure 2(a) highlights the stochastic simulation � dynamic program slicing problem. The 
program is not meant to be representative of a real stochastic simulation, but to demonstrate the problem. 

Figure 2: (a) A stochastic program. (b) One possible dynamic slice of the program using criterion 
{n=13,7,x}. (c) Another possible dynamic slice of the program using the same criterion. 
 
 <
��� �"	���	
����������#� ��	>� �"	�*	"����
��# the example program in Figure 2(a) is stochastic. 
Figures 2(b) and 2(c) show the two possible dynamic program slices using criterion {n = 13, 7, x} for the 

1 read(n); 
2 x := 0;
3 rand := randNum(0, 1);
4 if (rand >= .998 &&
          rand <= .999)
5     x := rand +n;
      else
6         x := n;
7     print(x);

1 read(n); 
2 x := 0;
3 rand := randNum(0, 1);
// (rand >= .998 &&
//     rand <= .999) == true
5     x := rand +n;
      else
7     print(x);

1 read(n); 
2 x := 0;
// (rand >= .998 &&
//     rand <= .999) == false

6     x := n;  
7     print(x);
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program in Figure 2(a). Figure 2(b) shows the dynamic program slice, when the random number genera-
tor does not generate a number between .998 and .999. Figure 2(c) shows the dynamic program slice 
when the random number generator does generate a random number between .998 and .999. Assuming a 
uniform random number generator the dynamic program slice for the program in Figure 2(a) is the pro-
gram slice shown in Figure 2(b) approximately 99.9% of the time and the program slice shown in Figure 
2(c) 0.1% of the time. When 2(b) is executed, statements 1, 2, 4, and 6 are relevant to the output value of 
x in statement 7. However, when 2(c) is executed, statements 1, 2, 3, 4 and 5 are relevant to the output 
value of x in statement 7. Current methods and measures of relevance are unable to capture this. 

A continuous measure of the relevance of a program statement s to a variable v in line number l can 
be proposed to evaluate how well new and existing approaches address this problem. Each execution, x(i), 
of a stochastic simulation can be considered a Bernoulli trial Y such that: if s is relevant to the computa-
tion of v in line number l in the execution x(i), Y =1 and if s is not relevant to the computation of v in line 
number l, Y=0. Thus for each execution x(i), s is relevant to the computation of v in line number l with 

probability p. For a set of N executions an unbiased estimator p
�

, of the probability that statement s is re-
levant to the computation of v in line number l for program x with input i
#  of x(i) where s is relevant to v in line number l

N
. Let T be the complete set of statements in the source 

code of program x, the total relevance in x(i), given v and l is the sum of the relevance, 
�

pk , of all the 

statements tk   T; symbolically this is: p
�

k
k�1

T

� .  

Using the continuous definition of relevance and the definition of total relevance for a program x, 
given an i, v and l, cumulative relevance and expected relevance can be defined. Let S be the set of state-

ments returned by the slicing tool, s j  be a statement in S and p j

�
 be the estimate of the probability that s j  

is relevant to the computation of interest. The cumulative relevance of S is the sum of the p j

�
of all s j S 

divided by the total relevance for the program ; symbolically the cumulative relevance is: 

�

pj
j�1

S

�
�

pk
k�1

T

�
. 

The expected relevance of S is the sum of the p j

�

 of all s j S; divided by the cardinality of S; symboli-

cally the expected relevance is:  
p
�

j
j�1

S

�
S .  

Cumulative and expected relevance are strongly related to the recall and precision measures em-
ployed in information retrieval method evaluations (Baeta-Yates and Riberio - Neto 1999). In the infor-
mation retrieval community a recall score of 1.0 means that the set of search results includes all the re-
sults relevant to a query, however, recall does not measure how many of the search results were not 
relevant to the query. Similarly, a cumulative relevance score of 1.0 means all the statements in the pro-
gram x that are relevant to the behavior are included in S, but does not measure how many statements in-
cluded in S are not relevant to the behavior.  

A precision score of 1.0 means that every result in the set of returned search results is relevant to the 
search query, however, precision does not measure how many relevant search results were not returned. 
Similarly, an expected relevance score of 1.0 means each statement included in S is relevant to the beha-
vior but does not measure how many relevant statements were not included in S (Baeta-Yates and Riberio 
� Neto 1999). 
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These measures will be used to define effectiveness in the evaluation of the new and existing ap-

proaches to the stochastic simulation � dynamic program slicing problem for three published stochastic 
simulations. Next, these approaches and how each relates to the program in Figure 2 are presented. 

4.2 Static Program Slice Method 
The static program slice method is a commonly used approach to dynamic program slicing employed in 
debugging tools. The method returns the set of statements S that are included in a static program slice of 
the simulation. Given the program in Figure 2, a static program slice would result in statements {1, 2, 3, 
4, 5, 6} being included in the set of statements, S. The method is implemented using the Kaveri static 
program slicing tool (Jayaraman, Ranganath and Hatcliff 2005). 

4.3 Single Dynamic Program Slice 
The single dynamic slice method is another commonly used approach to dynamic program slicing em-
ployed in existing debugging tools. The method returns the set of statements S that are included in a sin-
gle dynamic program slice of the simulation. Given the program in Figure 2, a single dynamic program 
slice would result in statements {1, 2, 4, 6} being returned if rand is not between .998 and .999 or the 
statements {1, 2, 3, 4, 5} if rand is between .998 and .999 being returned. The method is implemented 
using the JSlice dynamic program slicing tool (Wang 2007). 

4.4 Set-union of Dynamic Program Slices Method 

The set-union of dynamic program slices method employs n execution traces of the simulation for a speci-
fied input i. The set of execution traces is: ET � et1,...eti,...etn� � . A static program slice of the simula-
tion, SPS, is also computed. For each execution trace in ET, eti ,  the set of statements common to eti  and 
SPS is computed; this is dpsi, the dynamic program slice for eti . The result is, 
DPS � dps1,...,dpsi,...dpsn� �, a set of dynamic program slices that corresponds to each respective entry 
in ET . The set-union of dynamic program slices method computes a set S by removing the union of all 
unique program statements included in DPS. Given the program in Figure 2, the method returns state-
ments {1, 2, 3, 4, 5, 6}. It is implemented using the JDI libraries (Java 2010) and the Kaveri static pro-
gram slicing tool (Jayaraman, Ranganath and Hatcliff  2005). 

4.5 Set-intersection of Dynamic Program Slices 

The set-intersection of dynamic program slices method employs n execution traces of the simulation for a 
specified input i. The set of execution traces is: ET � et1,...eti,...etn� � . A static program slice of the si-
mulation, SPS, is also computed. For each execution trace in ET, eti ,  the set of statements common to 
eti  and SPS is computed; this is dpsi, the dynamic program slice for eti . The result is 
DPS � dps1,...,dpsi,...dpsn� �, a set of dynamic program slices that corresponds to each respective entry 
in ET . The set-intersection of dynamic program slices method computes a set S by removing the inter-
section of all program statements in DPS. Given the program in Figure 2, the method returns statements 
{1, 2, 4}. It is implemented using the JDI libraries (Java 2010) and the Kaveri static program slicing tool 
(Jayaraman, Ranganath and Hatcliff 2005). 

4.6 Markov Chain Execution Trace (MCET) Method 

The MCET method employs n execution traces of simulation for a specified input i to form a MCET and 
generate a RET. The MCET Method extracts each unique statement from the RET and includes these 
statements in the set of statements, S, returned by the method. Given the program in Figure 2, the method 
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could return several sets of statements including {1,2,4,6}, {1,2,3,4,6}, {1,2,3,4,5} and {1,2,4,5}. It is 
implemented using the Java JDI libraries (Java 2010), Kaveri static program slicing tool and the Indus 
static analysis libraries (Jayaraman, Ranganath and Hatcliff  2005). 

5 EVALUATION 
In order to evaluate the effectiveness and efficiency of the approaches in Section 4 to the stochastic simu-
lation � dynamic program slice problem we performed an evaluation using three published stochastic si-
mulations. This section describes the evaluation and presents the results and the analysis of it. 

5.1 The Dunham SEIR Disease Spread Simulation 

The Dunham simulation predicts disease spread by modeling interactions on a 2-D torus. At each time 
step, infectious individuals in proximity to susceptible individuals within a specified radius spread their 
infection with a given probability (Dunham 2005). The predictions of the simulation for a population of 
size 100 for a period of 100 days is evaluated. 

5.2 Queueing Simulation 

Examples from queueing theory are pervasive throughout modeling and simulation (Law and Kelton 
2000). The following queueing simulation is used in the evaluation: A finite population of customers ar-
rive to a set of first in, first out (FIFO) service stations. Each service station is equipped with a queue. The 
arrival rate of each customer and the assignment of a customer to a service station are uniformly distri-
buted. Each customer is also assigned a uniformly distributed required service time. If too many custom-
ers are in the queue to which a customer is assigned, the customer may choose not to join the queue and 
leave without being serviced. If the customer has already joined the queue but has been waiting too long 
for service, the customer may choose to leave the queue without service or join the queue for another ser-
vice station. Given this model the average wait time for 100 customers is evaluated (Allen 1990). 

5.3 Self-Driven Particle Simulation 

In the self-driven particle simulation particles interact on a 2-dimensional torus according to a simple 
rule. Particles move at a constant speed, and their orientation is set to be the average orientation of all par-
ticles within an interaction radius plus a random term. Under most parameterizations particles form clus-
ters given  the set of rules. The median number of particles in a cluster is evaluated (Phet 2010). 

5.4 The Variables and Measures 

The evaluation manipulated one independent variable: the method used to compute the dynamic program 
slice. Each of these methods is described in Section 4. To compare these methods we use two dependent 
variables: effectiveness and efficiency. To evaluate effectiveness we use the harmonic mean, or F1 meas-
ure of cumulative relevance and expected relevance. The F1 measure equally weights expected relevance 
and cumulative relevance and is commonly used in  the information retrieval community to combine re-
call and precision (Baeta-Yates and Ribeiro-Neto 1999). Formally, the F1 measure is: 

2*
cumulative relevance *  expected  relevance� �
cumulative relevance +  expected  relevance� �. To evaluate efficiency we recorded the timing of 

each presented method. Time is measured in wall clock seconds and includes both computation and I/O. 

5.5 Experimental Design and Analysis Strategy 
Each method is run for each stochastic simulation yielding a set of statements S representing the dynamic 
program slice for the behavior of interest. For the three methods that employ a set of execution traces to 
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compute S, n=10 execution traces are used. The expected and cumulative relevance for the S returned by 
each method is calculated using a monte-carlo function. The monte-carlo function is constructed by run-
ning each stochastic simulation many times and computing the frequency with which each statement in 
the simulation source code is relevant to the behavior of interest. The Monte-Carlo function appeals to the 
law of large numbers to accurately compute the relevance of each statement in the source code (Berg 
2004). For this evaluation each simulation was run 1,000 times to create the monte-carlo function. The 
number 1,000 was chosen due to our familiarity with the structure of the simulation and the relevance of 
the statements within the simulation. Due to the existence of pathological examples it is impossible to 
specify a number large enough to guarantee proper construction of a monte-carlo function for all stochas-
tic simulations. However, based on stochastic simulations we have observed in practice most monte-carlo 
functions can be constructed using �10,000 simulations runs. 

5.6 The Evaluation Results and Analysis 

The results of the evaluation concerning the effectiveness dependent variable are presented in Table 1 and 
Figure 3. In Table 1 the cumulative relevance and expected relevance for each approach, for each stochas-
tic simulation is recorded. The results in Figure 3 depict the F1 measure computed from the  data in Table 
1. Overall, Figure 3 shows that the static program slice method is the least effective. This is expected. The 
static program slice method employs conservative analysis resulting in a set of statements that has perfect 
cumulative but poor expected relevance. This is due to the inclusion of many statements that while rele-
vant to the behavior of interest for some input are not relevant to the behavior for the specified input. 

Table 1: The cumulative and expected relevance of each method for the stochastic simulations. 

Cumulative Relevance, Expected Relevance Dunham SEIR Queueing Sim. S.D. Particle
MCET method 0.9886, 0.9475 0.9487, 0.9507 0.9633, 0.9541 
Set-intersection dynamic program slice method 0.9306, 1.0000 0.6076, 1.0000 0.9028, 1.0000 
Set-union dynamic program slice method 1.0000, 0.9045 0.9990, 0.9031 0.9851, 0.7591 
Dynamic program slice method 0.9334, 0.9999 0.7688, 0.9812 0.9013, 0.9987 
Static program slice method 1.0000, 0.4136 1.0000, 0.7053  1.0000, 0.4597 

 
For two of the three simulations (The Dunahm SEIR and Self-driven Particle) both the single dynam-

ic program slice and the set-intersection dynamic program slice method perform well. This is due to a 
path in the simulation that is followed with high probability and touches most of the statements relevant 
to the behavior of interest. As a result the single dynamic program slice and the set-intersection dynamic 
program slice methods are likely to capture the statements along this high probability path. Since these 
statements are along a high probability path, the expected relevance of these statements is high. Also, 
since the path touches most of the relevant statements in the source code, the cumulative relevance is 
high. However, when a simulation contains several equally likely paths, as the Queueing simulation does, 
the dynamic program slice and set-intersection dynamic program slice method cannot have high cumula-
tive relevance. Instead, the set-union dynamic program slice method is likely to uniformly sample all 
paths, yielding a set of statements with high cumulative and expected relevance. 
 The MCET method is the most effective approach for each of the simulations. The success of the 
MCET Method is due to the use of Markov Chains to generate representative execution traces that  bal-
ance the approaches used in the set-intersection dynamic program slice method and the set union dynamic 
program slice method. By generating representative execution traces the MCET method is able to include 
statements with high relevance from the different sampled executions. These properties are reflected 
through the cumulative and expected relevance measures of the MCET method for each of the three simu-
lations. While the MCET method does not outperform the other methods in either measure, the evenly 
weighted harmonic mean of the two measures, the F1 measure, outperforms all the other methods. The 
complete efficiency results for the three stochastic simulations can be found in (Gore 2010). In summary, 
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the dynamic program slice method is the most efficient method, followed by the static program slice 
method which is ~5x slower. The use of sampling decreases the efficiency of the three new approaches 
causing each to be ~10x slower. Given these results the dynamic program slice method appears to be an 
effective and efficient solution to the dynamic program slicing � stochastic simulation problem. The me-
�"�����	ffectiveness closely approaches the effectiveness of the leading solution, the MCET method for 
two of the three simulation and it is ~10x faster than the MCET method. However, the evaluation results 
of the dynamic program slicing method are misleading. 

Figure 3: The F1 measure of each method for the stochastic simulations. 

First, the choice of stochastic simulations favors the dynamic program slice method. As discussed 
earlier, two of the three simulations in the evaluation contain a path that is followed with high probability. 
As a result, a single dynamic program slice is likely to capture statements along that path yielding a very 
effective, very efficient solution. However, if more simulations without high probability paths, simula-
tions similar to the Queueing simulation, had been included the dynamic program slice method would ap-
pear less effective. While the method works well for simulations with high probability paths it is not an 
effective general purpose approach to computing dynamic program slices for stochastic simulations. 

Second, the evaluation of efficiency only includes computation and I/O time. It does not include the 
user time, the amount of time a user would spend using the resulting set either directly or indirectly 
(through the use of a tool employing the approach). Since the MCET method computes the most effective 
dynamic program slice for each simulation it is the only tool that minimizes user time. The tradeoff be-
tween computation and I/O time and user time is well established in the simulation community. Most si-
mulation optimization algorithms require exponential computational time to minimize or maximize a giv-
en function but require minimal user time (Fu 2002). This property makes these algorithms effective and 
popular in practice. We expect it to make the MCET method effective and popular as well.  

Furthermore, the decrease in efficiency for the MCET method is bounded by the number of samples, 
n, used in the method. A user (or tool) that employs the methods can reduce n to improve efficiency and 
still gain some effectiveness over existing approaches. Given this reasoning, the MCET is the leading ap-
proach to computing dynamic program slices in stochastic simulations. 

6 CONCLUSION 
Simulation has become the tool of scientific analysis under circumstances where it is infeasible or imprac-
tical to study a system directly (Whipple 1996, Arthur 1999, Elderd, Dukic and Dwyer 2006). Everyday 
policy debates involving stochastic simulations raise the perfectly legitimate question of whether decision 
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makers can use simulation-based predictions with confidence. How can policy makers make informed de-
cisions involving billions of dollars and millions of people in confidence when methods, measures and 
tools to explore these predictions are lacking? This need has motivated the design and development of 
MCETs. 
 MCETs generate an execution trace of a stochastic simulation that is representative of a group of 
sampled execution traces. The execution trace is representative in the sense that: 1) every program state-
ment that occurs in the observed samples has the possibility of being included, 2) the order and the con-
trol-flow structure of the statements in the execution trace reflect that of the observed samples and 3) the 
execution trace is likely to contain program statements and structure from most of the observed samples.  
We have shown that MCETs offer a more effective solution to the stochastic simulation - dynamic pro-
gram slicing problem when evaluated through expected and cumulative relevance. While the MCET solu-
tion is not as efficient as existing approaches its inefficiency is bounded, it keeps expected user time at 
acceptable levels, and we conclude its significant improvement in effectiveness in the general case over 
more efficient solutions is an acceptable tradeoff for the extra computation time and I/O required. 
 MCETs are a new research artifact. Thus, their utility in analyzing behaviors of stochastic simulations 
is an ongoing investigation. However, based on their effectiveness in our solution to the stochastic simu-
lation - dynamic program slicing problem we expect that they will significantly improve informed analy-
sis of stochastic simulations. In future work, we expect to demonstrate how MCETs can be employed to 
improve software testing methods and measures for statement and path coverage of stochastic simula-
tions. Also, we will explore how fault localization tools, currently only applicable to deterministic pro-
grams, can be adapted to stochastic simulations by employing representative execution traces. 
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