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ABSTRACT

Distributed Denial of Service (DDoS) attacks on the Internet are used by attackers to be a nuisance, make a political
statement (e.g. the 2009 attack against Estonia), or as a weapon of an Internet extortionist. Effective defense against
these is a crucial study area, where advanced simulation techniques play a critical role, because of the enormous number
of events involved. This paper considers a methodology for evaluating a game-theoretic defense against DDoS. We
first describe a basic form of the defense, note the performance limitations suffered by a naive implementation, and
then consider methodologies in which a parallelized approach may accelerate performance.

1 INTRODUCTION

A Distributed Denial-of-Service attack (DDoS attack) is an attack launched from multiple computers in a network
to flood the resources of a targeted system, and thus making it less accessible to the intended users. The computers
launching attacks are called zombies, which could be regular hosts that have been compromised by the attacker.
Many network-based countermeasures against DDoS have been proposed and simulated; a survey can be found in
(Peng, Leckie, and Ramamohanarao 2007). In this work we consider issues related to evaluating the pushback defense,
a mechanism first proposed in (Mahajan et al. 2002).

As described in (Mahajan et al. 2002, Ioannidis and Bellovin 2002), pushback is a mechanism that allows routers
in a network to cooperate in aggregate-based congestion control (ACC). An aggregate is defined to be a collection of
packets that share a common property or parameter, such as ICMP ECHO packets or packets with the same destination
IP address. The properties or parameters used to identify an aggregate are called attack signatures. Based on aggregates,
traffic and packets are divided into three different categories: “bad”, “poor”, and “good”. Bad traffic is that generated
by the attackers. Poor traffic is from legitimate users but shares the same attack signatures. Finally, good traffic does
not match the attack signatures but may suffer from the congestion. In local ACC, an individual router identifies the
aggregates that causes the congestion and tries to cut down the throughput of these aggregates. In pushback, a router
can request adjacent upstream routers to rate-limit some aggregates. This way, the system can save the bandwidth that
would otherwise be wasted if packets in these aggregates were dropped downstream. Furthermore, if the DDoS attack
traffic comes from a few upstream links, pushback helps protect poor traffic from congestion due to attack traffic.

From now on, we will use “Attacker” to refer to the DDoS attacker and all the zombies under its control, and
“System” to refer to all the routers taking part in the pushback mechanism. When the Attacker launches DDoS attacks,
it has at its disposal a number of strategies to choose from. Among these are the set of zombies, the set of targeted
computers, and the attack protocols and traffic patterns. Similarly, the System can also change the pushback parameters
such as the congestion checking time, the target drop rate, and the aggregate pattern. For each pair of strategies of the
Attacker and the System, the payoffs for each of them can be formulated based on the bandwidth occupied by Attacker,
the bandwidth used by the legitimate users, and the costs of attacking and defending. It thus can be seen that there is
a game situation between the Attacker and the System, where each player tries to maximize its own payoff against all
the possible strategies of the opponent.

In (Liu, Zang, and Yu 2005), DDoS attacks are modeled as a Bayesian game among the Attacker, the System, and
legitimate users. With such a game formulation, in order to compute a Nash equilibrium pure or mixed strategy, each
player has to have full knowledge of payoff. The paper also mentions a repeated mechanism where at each step, each
player makes the best response to current strategies of other players. Although this mechanism allows each player to
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proceed without necessarily knowing others’s payoff matrices, it works well only when the game has a pure strategy
Nash equilibrium.

We examine a repeated game model based on the fictitious play (FP) process for pushback defense. In a FP process,
each player observes all the actions up to present and makes estimate of the mixed strategy of the opponent’s actions.
At each stage, she updates this estimate and plays the pure strategy that is the best response to the estimate. It can be
seen that in a FP process, if one plays a fixed strategy (either of the pure or mixed type), the opponent’s strategy will
converge to the best response to this fixed strategy. Furthermore, it has been shown that, for many classes of games,
such a FP process will finally render both players playing the Nash equilibrium.

The rest of the paper is organized as follows. In Section 2, we present the setup and mathematical basis of the
fictitious play model. Next, we present the implementation details of the simulations in Section 3. The simulation
results are shown in Section 4, and a discussion concerning methodology for parallelization in Section 5. Finally, some
concluding remarks will end the paper.

2 FICTITIOUS PLAY MODEL

In this section we present an overview of static games and fictitious play, where player P1 has m and player P2 has n possi-
ble actions (pure strategies) (Shamma and Arslan 2004, Shamma and Arslan 2005, Nguyen, Alpcan, and Başar 2009,
Nguyen, Alpcan, and Başar 2010b).

2.1 Static Games

We first introduce a one-shot nonzero-sum version of the games, which we will refer to as static games. In equations
written for the generic player Pi, i = 1,2, we use k to denote m or n. Denote by p1 ∈ ∆(m) and p2 ∈ ∆(n) a pair of
mixed strategies for P1 and P2, respectively, where ∆(k) is the simplex in R

k (R is the set of real numbers), i.e.,

∆(k) ≡

{

s ∈ R
k|s j ≥ 0, j = 1, . . . ,k,

k

∑
j=1

s j = 1

}

. (1)

For a static game, player i selects an integer action vi according to the mixed strategy pi. The (instant) payoff for player

Pi is vT
i Miv−i, where we use v( j)

i , j = 1, . . . ,k, to indicate the jth vertex of the simplex ∆(k) (For example, when k = 2,

v(1)
i = [1 0]T for the first action, and v(2)

i = [0 1]T for the second action)1. For a pair of mixed strategies (p1, p2), the
utility functions are given by the expected payoffs:

Ui(pi, p−i) = E
[

vT
i Miv−i

]

= pT
i Mi p−i, (2)

where Mi is the payoff matrix of Pi, i = 1,2 (Note that M1 is of dimension m× n and M2 n×m.) This standard
formulation of the payoff functions leads to a FP process that will be referred to as classical FP.

Now, the best response mappings β1 : ∆(n)→
{

v(1)
1 ,v(2)

1 , . . . ,v(m)
1

}

and β2 : ∆(m)→
{

v(1)
2 ,v(2)

2 , . . . ,v(n)
2

}

are defined
as:

βi(p−i) = arg max
vi∈
{

v(1)
i ,v(2)

i ,...,v(k)
i

}

Ui(vi, p−i). (3)

Note that given p−i, the best response mapping can be set-valued, i.e., there may be multiple vertices of the simplex
∆(k) that yield the maximum value of the payoff function.

Finally, a (mixed strategy) Nash equilibrium is defined to be a pair (p∗1, p∗2)∈ ∆(m)×∆(n) such that for all p1 ∈ ∆(m)
and p2 ∈ ∆(n)

Ui(pi, p∗−i) ≤Ui(p∗i , p∗−i). (4)

In a static game, as both players act simultaneously, each player cannot observe the action of the other. Their choice
of actions (or probabilities of actions – mixed strategies) is based on their knowledge of both payoff matrices.

1As standard in the game theory literature, the index −i is used to indicate those of other players, or the opponent in this case.
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2.2 Fictitious Play Process

From the static game described in Subsection 2.1, we define the (discrete-time) FP process as follows. The game is
now repeated at times τ ∈ {0,1,2, . . .}. The empirical frequency pi(τ) of player Pi is given by

pi(τ +1) =
1

τ +1

τ

∑
j=0

vi( j) (5)

Using induction, we can prove the following recursive relation:

pi(τ +1) =
τ

τ +1
pi(τ)+

1
τ +1

vi(τ). (6)

Player i, i = 1,2, then employs the following algorithm:
1: Given payoff matrix Mi.
2: for τ ∈ {0,1,2, . . .} do
3: Update the empirical frequency of the opponent p−i(τ +1) using (6).
4: Pick the optimal pure strategy (strategies) using (3).
5: If there are multiple optimal strategies, randomize over the optimal strategies with equal probabilities.
6: end for

Algorithm 1: Fictitious Play Algorithm.
Thus, in terms of information, there are two main features that distinguish a FP process from the corresponding

static game (the static game with the same payoff formulation). First, each player can make decisions without necessarily
knowing the other’s payoff matrix. Second, each player has to be able to observe the other’s actions. For several
classes of games, however, it has been shown that such a FP process will finally render both players playing their Nash
equilibrium strategies.

3 IMPLEMENTATION

3.1 Test Topology

A straightforward simulation based approach is packet-based; most discrete-events move packets through routers and
switches. While this reflects the real-world, it does call for the generation and transmission of many many packets. We set
to out implement pushback using a common networking simulator, PRIME (Liu 2006, Liu 2007, Liljenstam et al. 2005).
We configured a network that contains essentially only the routers involved in moving traffic from attackers to the
victim, illustrated in Figure 1. Of the 64 hosts, U1 to U64, there are 8 zombies and 56 legitimate users. Both zombies
and users send packets to servers S1 and S2. The routers Ri. j, i = 0,1,2,3, are organized in a hierarchical manner
where the subscript i denotes the level, and the subscript j denotes the router in a level. In the Attacker’s side, a central
controller controls all the zombies in the network using control messages. Similarly, in the System’s side, a master
router controls the (slave) routers taking part in the pushback mechanism with pushback control messages.

Each router employs a version of the IP protocol with modifications for enforcing pushback (Mahajan et al. 2002),
(Ioannidis and Bellovin 2002).
Every router checks for congestion after each specified time interval which we refer to as theCongestion Checking Interval.
A router is considered to be in congestion if Incoming Data Rate > (1+Target Drop Rate)×Outgoing Bandwidth.
Here, Target Drop Rate is the acceptable rate of dropping packets for the router. If a router detects congestion, it
looks through the log of dropped packets that it maintains to identify an attack signature. Since the source ip-address
of a packet can be spoofed by the Attacker, we only use the destination ip-address as the attack signature. Thus,
the router identifies the most frequently occurring destination ip-address in the dropped packets log as the signature.
For the sake of efficiency, the log is of a fixed size and new log records overwrite older ones if the log is full. In
subsequent checks for congestion, if the router detects that incoming traffic which does not match the signature is still
greater than (1+Target Drop Rate)×Outgoing Bandwidth then each time it adds the next-most frequently occurring
destination ip-address in the log to the current signature. Each signature has a timestamp which is updated every
time the router detects congestion. A router also sends the identified signatures to its immediately upstream routers
and uses signatures received from downstream routers as attack signatures. Traffic through the router which matches
the signature (Signature Traffic) is filtered out. The maximum signature traffic allowed to pass through the router
is Outgoing Bandwidth× (1+Target Drop Rate)−Non Signature Tra f f ic. A router also periodically checks if any
of the attack signatures has expired after a specified time interval (which we refer to as Refresh Interval). Routers
periodically send update messages for signatures to upstream routers. Routers use update messages from downstream
routers to update the timestamp of the signatures received from downstream routers.
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Networks A1 A2 A3 A4 A5 Users’ Datarates
Network I 91.73 Mbps 55.04 Mbps 27.52 Mbps 2.75 Mbps 0.275 Mbps 1.93 Mbps
Network II 13.76 Gbps 5.504 Gbps 2.752 Gbps 0.275 Gbps 30.58 Mbps 124.42 Mbps

Table 1: Attacker’s actions (Datarates generated by all 8 zombies) and collective users’ datarates.

Experiments revealed that the volume of simulation traffic forced selection of unrealistically low bandwidths for
the links the simulation were to run fast enough to evaluate the defense in a timely fashion (2 Mbps for the Edge
bandwidths, 20 Mbps for the Backbone bandwidths). To address this, we created another model where all traffic is
described in terms of flows; in these an event occurs when a flow’s rate changes at a router, not when a packet crosses
it. Flow rates will be constructed to represent aggregated background flows. This choice also makes the simulation
more friendly to parallel execution, in a way that we later describe. In this case we were able to use much more realistic
bandwidths, OC3 for the Edge (155.52 Mbps) and OC48 on the Backbone links (2.488 Gbps).

Figure 1: Network Topology.

3.2 Game Formulation

The Attacker’s pure strategies are given by Aatt = {A1, . . . ,A5}, where Ai, i = 1, . . . ,5 are the collective attack datarates
(generated by all 8 zombies). The System consists of all the routers taking part in pushback defense, {R1, . . . ,Rr}. The
pushback behavior of a router is represented by three parameters: Congestion Checking Interval, Re f resh Interval,
and Target Drop Rate. The action space of the System, Asys = {S1, . . . ,S6}, is the same for both Networks I and II,
and is specified in Table 2. For each pair (Ai,S j), i = 1, . . . ,5, j = 1, . . . ,6, the payoff of the Attacker is given by

Uatt = α
Bao

BN
+(1−α)

(

1−
∑L

l=1 B(l)
lo

∑L
l=1 B(l)

lw

)

, (7)
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Actions Congestion Checking Interval (s) Refresh Interval (s) Target Drop Rate
S1 2 5 0.05
S2 2 10 0.05
S3 4 5 0.05
S4 2 5 0.03
S5 6 10 0.05
S6 2 5 0.07

Table 2: System’s actions.

where B(l)
lo is the bandwidth occupied by the legitimate user l, and B(l)

lw is the bandwidth required by the legitimate
user l, l = 1, . . . ,L, where L is the number of legitimate users (56 in our simulations), Bao is the bandwidth occupied
by the Attacker, and BN is the bandwidth capacity (BN = 2 Mbps for Network I and BN = 155.52 Mbps for Network
II). α ∈ [0,1] is used to balance between the damage the Attacker does to the System and the damage it causes to the
legitimate users; α is chosen to be 0.2 throughout our simulations. The payoff of the System is given by

Usys = ω ∑L
l=1 B(l)

lo

∑L
l=1 B(l)

lw

+(1−ω)

(

1−
Bao

BN

)

, (8)

where ω ∈ [0,1] is used to balance between the utility the System can provide for the legitimate users and the pushback
it applies against the Attacker; ω is chosen to be 0.8 throughout our simulations. The costs of attacking and defending
can also be included in the payoff functions.

For the Attacker, the action to be taken is determined by the controller and sent to the zombies. The zombies then
adjust their datarates and pick their victims accordingly. Similarly, for the System, the action to be taken is determined
by the master router and sent to the slave routers. The slave routers then adjust their pushback parameters accordingly.

Our simulations consists of two steps: payoff measurement and fictitious play. In the first step, the System and the
Attacker are forced to take each pair of actions. The attack traffic, good traffic, and poor traffic at router R0.0 are then
measured. These measurements are used to calculate the payoffs for the Attacker and the System using Equations (7)
and (8). In the second step, both the System and the Attacker use a fixed time interval as a “time step”, during which
the action taken by the opponent is identified. At the end of each time interval, both players choose the next action to
be taken (which is the best response to the empirical frequencies of the opponent’s actions (using Algorithm 1 with the
payoff matrices obtained from Step 1). The time step is chosen to be 50s, which allows enough time for the pushback
mechanism to stabilize.

3.3 Flow Generation

In a packet-based simulation the Attacker’s traffic consists of fixed length IP packets generated at a constant rate by
the zombies. Users’ traffic consists of fixed length IP packets with inter-packet times being exponentially distributed.
For determining the parameter of the exponential distribution, we set the average user datarate to be the bandwidth of
the router R0.0 divided by the number of hosts in the network. The rationale is that if all users send out data with this
rate, there should be no congestion in the network. The datarates generated by the each zombie ranges from around
300 to 1 times the legitimate user datarate.

In order to increase simulated bandwidth to realistic levels, we developed a flow-based version (Nicol and Yan 2006),
and study it on the same architecture (but with OC3 and OC48 level bandwidths for the Edge and Backbone links). In
this approach, we push “rate events” through paths, not packets. We model two different types of traffic: background
traffic and Attacker traffic. Attacker traffic is the traffic generated and controlled by the Attacker. It is deterministic in
nature, i.e., the Attacker can precisely control these flows. Background traffic is the aggregate of all other traffic in the
network and is stochastic in nature. For background traffic, we assume that different flows are statistically independent.

The input flow at a router port at any instant is the sum of deterministic traffic (from the Attacker) and the stochastic
traffic (background traffic). The input deterministic traffic at a given router is the sum of outgoing deterministic flows
from all routers connected to it. The input stochastic flows are generated using Gaussian copulas (Nelsen 2006). The idea
is to change the input flows in an auto-correlated way, in order to model the dependence in time in flow measurements,
owing to the flow representing an aggregate of point-to-point flows. Specifically, let Z be a discrete-time stochastic
process describing a flow; the random variable Zt is the flow rate at time t. Let ρst be the correlation coefficient between
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Zs and Zt ; we assume that ρst = 0 for |s− t| > n, where n is a positive integer. Let

Σ ≡ {ρst}, s, t = i−1, i−2, . . . , i−n, (n×n matrix),

ρ
ji

≡ (ρi,i−1,ρi,i−2, . . . ,ρi,i−n), (1×n vector),

ρ
i j

≡ ρT
ji
.

Let Zi ≡ (Z j−1, . . . ,Z j−n)
T . We have that Z j ∼ N(µ ,σ2), i.e., Z j is a Gaussian random variable with mean µ and

variance σ2. Then we have

(Z j|Zi = zi) = N(µ̃, ρ̃σ2), (9)

where

µ̃ = ρ
ji
Σ−1zi

ρ̃ = 1−ρ
ji
Σ−1ρ

i j
.

In this simulation, we choose n = 5, ρst = (0.75)|s−t|, µ = 0.8×outgoing bandwidth/number o f f lows, and σ2 = µ/3.
Given the input flows at a router the Drop Rate is defined as Outgoing Bandwitdh× (1 + Target Drop Rate)−

(Input Flowrate). In absence of filtering, the number of dropped packets from any flow at time t is Drop Rate× t. If
there is a filter on any flow, then the flow rate is scaled by the filter rate before the Drop Rate is calculated. In the
simulation each router periodically samples its stochastic input flows and recalculates its output flows. Any changes
in deterministic output flows are sent to routers connected to the given router. A router on receiving an update in
deterministic input flow, recalculates its output flows and updates connected routers. The dropped packets set is also
updated at each recalculation of flows at the routers. Since the pushback mechanism only needs the dropped-packets
set and the test for congestion to work, the mechanism works well with the flow-based simulation.

4 SIMULATION RESULTS

In this section, we present the simulation results of both packet-based simulation and flow-based simulation.

4.1 Packet-based simulation results

The results from payoff measurements are presented in Table 3. We use the parameters given in Section 3. The payoff
matrices of the System and the Attacker are shown in Tables 4 and 5.

Figure 2: System’s empirical frequencies - packet-based. Figure 3: Attacker’s empirical frequencies - packet-based.

The Nash Equilibrium calculated using Gambit (McKelvey, McLennan, and Turocy 2006) is (0,0,1,0,0) for the
Attacker and (0,0,0,1,0,0) for the System. The fictitious play simulation results are given in Figures 2 and 3. The
number of time steps simulated is about 300. It can be seen that the frequency of pure strategy S4 of the System goes
to 1 while those of other pure strategies go to 0. Similarly, the frequency of pure strategy A3 goes to 1, while those
of the others go to 0. This coincides with the Nash Equilibrium obtained from Gambit.

It is however worth noting that in general this mechanis does not guarantee convergence to a Nash equilibrium.
For two-player zero-sum FP, the convergence proof was obtained for arbitrary numbers of actions for each player
(m×n) (Robinson 1951). For nonzero-sum games, the proofs for two-player FP have been found for the case where
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Actions Attacker Traffic Good Traffic Poor Traffic Attacker Payoff System Payoff
A1,S1 2.42E +05 5.15E +05 8.70E +03 0.6067 0.3933
A1,S2 2.42E +05 5.12E +05 8.48E +03 0.6083 0.3917
A1,S3 3.07E +05 5.00E +05 9.22E +03 0.6194 0.3806
A1,S4 2.40E +05 5.33E +05 1.55E +04 0.5961 0.4039
A1,S5 3.66E +05 5.49E +05 8.52E +03 0.6051 0.3949
A1,S6 2.40E +05 5.58E +05 7.66E +03 0.5892 0.4108
A2,S1 2.41E +05 5.21E +05 8.04E +03 0.6044 0.3956
A2,S2 2.41E +05 5.17E +05 8.27E +03 0.6058 0.3942
A2,S3 3.06E +05 5.05E +05 8.43E +03 0.6174 0.3826
A2,S4 2.41E +05 5.33E +05 1.50E +04 0.5967 0.4033
A2,S5 3.68E +05 5.54E +05 7.03E +03 0.6039 0.3961
A2,S6 2.39E +05 5.77E +05 6.70E +03 0.5817 0.4183
A3,S1 2.42E +05 5.12E +05 9.17E +03 0.6080 0.3920
A3,S2 2.43E +05 5.09E +05 9.26E +03 0.6090 0.3910
A3,S3 3.07E +05 5.06E +05 1.07E +04 0.6159 0.3841
A3,S4 2.41E +05 5.24E +05 1.65E +04 0.5995 0.4005
A3,S5 3.68E +05 5.46E +05 1.16E +04 0.6053 0.3947
A3,S6 2.45E +05 5.30E +05 7.99E +03 0.6012 0.3988
A4,S1 2.44E +05 9.78E +05 1.51E +05 0.3556 0.6444
A4,S2 2.44E +05 9.78E +05 1.51E +05 0.3556 0.6444
A4,S3 2.66E +05 9.68E +05 1.64E +05 0.3563 0.6437
A4,S4 2.35E +05 9.82E +05 1.46E +05 0.3551 0.6449
A4,S5 2.87E +05 9.56E +05 1.79E +05 0.3575 0.6425
A4,S6 2.52E +05 9.74E +05 1.56E +05 0.3560 0.6440
A5,S1 2.17E +05 8.98E +05 7.78E +05 0.1256 0.8744
A5,S2 2.17E +05 8.98E +05 7.78E +05 0.1256 0.8744
A5,S3 1.77E +05 1.04E +06 6.50E +05 0.1172 0.8828
A5,S4 2.19E +05 8.64E +05 7.80E +05 0.1393 0.8607
A5,S5 2.21E +05 8.33E +05 7.80E +05 0.1521 0.8479
A5,S6 2.15E +05 9.32E +05 7.76E +05 0.1122 0.8878

Table 3: Payoff measurements - Network I.

System \ Attacker A1 A2 A3 A4 A5

S1 0.3933 0.3956 0.3920 0.6444 0.8744
S2 0.3917 0.3942 0.3910 0.6444 0.8744
S3 0.3806 0.3826 0.3841 0.6437 0.8828
S4 0.4039 0.4033 0.4005 0.6449 0.8607
S5 0.3949 0.3961 0.3947 0.6425 0.8479
S6 0.4108 0.4183 0.3988 0.6440 0.8878

Table 4: System’s payoff matrix - Network I.

Attacker \ System S1 S2 S3 S4 S5 S6

A1 0.6067 0.6083 0.6194 0.5961 0.6051 0.5892
A2 0.6044 0.6058 0.6174 0.5967 0.6039 0.5817
A3 0.6080 0.6090 0.6159 0.5995 0.6053 0.6012
A4 0.3556 0.3556 0.3563 0.3551 0.3575 0.3560
A5 0.1256 0.1256 0.1172 0.1393 0.1521 0.1122

Table 5: Attacker’s payoff matrix - Network I.
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Actions Attacker Background Traffic Attacker Payoff System Payoff
A1,S1 1.25E +08 3.03E +07 0.9665 0.2335
A1,S2 1.25E +08 3.03E +07 0.9665 0.2335
A1,S3 1.27E +08 2.86E +07 0.9796 0.2204
A1,S4 1.25E +08 3.03E +07 0.9659 0.2341
A1,S5 1.27E +08 2.86E +07 0.9796 0.2204
A1,S6 1.25E +08 3.01E +07 0.9676 0.2324
A2,S1 1.25E +08 3.03E +07 0.9665 0.2335
A2,S2 1.25E +08 3.03E +07 0.9664 0.2336
A2,S3 1.27E +08 2.86E +07 0.9796 0.2204
A2,S4 1.25E +08 3.03E +07 0.9659 0.2341
A2,S5 1.27E +08 2.86E +07 0.9796 0.2204
A2,S6 1.25E +08 3.01E +07 0.9676 0.2324
A3,S1 1.25E +08 3.03E +07 0.9664 0.2336
A3,S2 1.25E +08 3.03E +07 0.9664 0.2336
A3,S3 1.27E +08 2.86E +07 0.9796 0.2204
A3,S4 1.25E +08 3.03E +07 0.9659 0.2341
A3,S5 1.27E +08 2.86E +07 0.9796 0.2204
A3,S6 1.25E +08 3.01E +07 0.9676 0.2324
A4,S1 1.26E +08 2.94E +07 0.9729 0.2271
A4,S2 1.25E +08 3.02E +07 0.9666 0.2334
A4,S3 1.25E +08 3.02E +07 0.9666 0.2334
A4,S4 1.26E +08 2.94E +07 0.9729 0.2271
A4,S5 1.25E +08 3.02E +07 0.9666 0.2334
A4,S6 1.25E +08 3.02E +07 0.9669 0.2331
A5,S1 3.06E +07 3.46E +07 0.8169 0.3831
A5,S2 3.06E +07 3.46E +07 0.8169 0.3831
A5,S3 3.06E +07 3.46E +07 0.8169 0.3831
A5,S4 3.06E +07 3.46E +07 0.8169 0.3831
A5,S5 3.06E +07 3.46E +07 0.8169 0.3831
A5,S6 3.06E +07 3.46E +07 0.8169 0.3831

Table 6: Bandwidth - Network II.

one player is restricted to 2 actions (See (Berger 2003) for classical FP and (Shamma and Arslan 2004) for stochastic
FP). Nevertheless, there are counter examples (e.g., for 3× 3 games) where FP does not converge to the mixed
strategy NE (Shamma and Arslan 2005). Several techniques that can be used to enhance convergence are discussed in
(Shamma and Arslan 2005, Nguyen, Alpcan, and Başar 2010a).

One assumption in a fictitious play process is each player has to be able to observe the actions of the opponent.
As mentioned earlier, the Attacker’s central controller has to send messages to the zombies to coordinate the attacks.
On the System’s side, the master router also controls all the routers in the pushback mechanism using pushback
control messages. In this work, we assume each player has access to its opponent’s control messages, and thus can
observe the opponent’s actions. In practice, players are subject to both decision errors (e.g., control messages may
get corrupted, delayed, or lost) and observation errors (due to incomplete information on the other’s actions). Such
complications may affect the convergence and the Nash equilibria of the game (Nguyen, Alpcan, and Başar 2009,
Nguyen, Alpcan, and Başar 2010b).

4.2 Flow-based simulation results

The results from payoff measurements and the payoff matrices of the System and the Attacker are presented in Tables
6, 7, and 8, respectively. Again, we use the parameters given in Section 3. From Gambit, there are three Nash
equilibria For Network II:

• Attacker (0,0,0,1,0), System (0,0.992,0,0,0.008,0).
• Attacker (0,0,0,1,0), System (0,0.992,0.008,0,0,0).
• Attacker (0,0,0,1,0), System (0,1,0,0,0,0).

Again, the fictitious play simulation results are in agreement with the Nash equilibria obtained from Gambit. Note that
the first two mixed-strategy Nash equilibria (MSNE) shown above are very close to pure strategies. In the case where
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System \ Attacker A1 A2 A3 A4 A5

S1 0.2335 0.2335 0.2336 0.2271 0.3831
S2 0.2335 0.2336 0.2336 0.2334 0.3831
S3 0.2204 0.2204 0.2204 0.2334 0.3831
S4 0.2341 0.2341 0.2341 0.2271 0.3831
S5 0.2204 0.2204 0.2204 0.2334 0.3831
S6 0.2324 0.2324 0.2324 0.2331 0.3831

Table 7: System’s payoff matrix - Network II.

Attacker \ System S1 S2 S3 S4 S5 S6

A1 0.9665 0.9665 0.9796 0.9659 0.9796 0.9676
A2 0.9665 0.9664 0.9796 0.9659 0.9796 0.9676
A3 0.9664 0.9664 0.9796 0.9659 0.9796 0.9676
A4 0.9729 0.9666 0.9666 0.9729 0.9666 0.9669
A5 0.8169 0.8169 0.8169 0.8169 0.8169 0.8169

Table 8: Attacker’s payoff matrix - flow-based.

Figure 4: System’s empirical frequencies - flow-based. Figure 5: Attacker’s empirical frequencies - Network II.

there are mixed-strategy Nash equilibria, if the first action (at time τ = 0) of each player is chosen appropriately (which
is necessary only if there are both mixed-strategy NE and pure-strategy NE), the empirical frequencies of the player’s
actions will converge to a mixed-strategy Nash equilibrium, which means each player will alternate among the pure
strategies constituting the MSNE with proportional numbers of times.

5 METHODOLOGY AND PARALLELISM

Both the packet and flow based models were implemented in PRIME, which can exploit parallelism automatically.
An important point is that in the packet based approach the temporal separation between distributed components is
on the order of the latency across a link. For packet-based simulation this is small. In the flow-based simulation the
temporal separation is on the order of the delay between successive updates to the background flow rates. This is
considerably larger, and furthermore these updates can be done synchronously. This fact implies that the flow-based
approach has potential for a much higher level of performance both because of the model abstraction, but also by
reducing the overhead associated with synchronization. The nature of the game-theoretic defense allowed us to develop
a methodology for evaluating it that is friendly to parallel processing.

6 CONCLUSION

In this paper we have developed a methodology suitable for evaluating the effectiveness of a game-theoretic defense
against DDoS, using parallel simulation. We have modeled DDoS attacks and the pushback mechanism as a 2-player
game between the Attacker and the System. We have used a simple fictitious play mechanism (classical FP) that
allows players to learn their Nash equilibrium strategies without necessarily knowing the opponent’s payoff function.
Simulation experiments forced us to develop a flow-based simulation of traffic, because the packet-based approach takes
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too much computation time. The flow-based approach is much more efficient, due to its aggregation of flows, and its
allowance for larger temporal separation between submodels in parallelized simulation.
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