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ABSTRACT

While eigenvalue elasticity analysis can offer insights into System Dynamics model behavior, such analysis is
complicated, unwieldy and infeasible for larger models due to superlinear growth of the number of eigenvalue-
parameter as the number of stocks rises. To overcome these difficulties, we develop a summary function elasticity
analysis method, which aids in analyzing the impact of a parameter on some global summary of the system state.
A summary function defines a scalar field over state space summarizing the global state of a system. Summary
function elasticity with respect to a parameter measures the ratio of the proportional change in the function to the
proportional change in a parameter. We use an individual-based viral spread model to demonstrate that this new
method offers greater simplicity than eigenvalue elasticity analysis while retaining most of its advantages. This
method can be readily scaled to analyze impacts of parameters on larger-scale System Dynamics models.

1 INTRODUCTION

Eigenvalue elasticity analysis was first introduced by N. Forrester in 1982 (Forrester 1982) in the field of system
dynamics. Past system dynamics research has applied this method to quantitatively analyze and identify significant
parameters and loop structures in linear and simple nonlinear dynamical models with a small number of state
variables (Saleh 2002, Saleh, Davidsen, and Bayoumi 2005, Goncalves 2006, Guneralp 2005, Guneralp 2006).

However, our early work found some important flaws of this method (Zhang and Osgood 2009). First, although
eigenvalue elasticity analysis can be helpful for understanding the impact of parameter changes for simple nonlinear
models with a small number of state variables, the method proves complicated, unwieldy and even infeasible when
the number of state variables increases. For example, earlier work (Zhang and Osgood 2009) demonstrated such
difficulties of analyzing an individual-based viral dynamic model with 3-person composing of 12 state variables.
These difficulties are primarily due to increasing number of combinations of eigenvalues and parameters. This work
also found that due to the variation of coefficients in the eigenvector solutions of a nonlinear dynamical model, the
eigenvalue with the largest real part alone may not describe the dominant behavior of the system over a short period
of time, and there might be several eigenvalues of the system Jacobian matrix that jointly determine the behavior
pattern. In such cases, it is difficult to analyze eigenvalue elasticities to find significant parameters of the system.
Finally, for an individual-based system dynamics model incorporating duplicated substructure (for example, several
identical individuals represented with common substructure and sharing some parameter values), the eigenvalue
elasticity method can easily fall prey to eigenvalue multiplicity problems.

To overcome the above difficulties of traditional eigenvalue elasticity analysis, we shift our attention from the
eigenspace to the state space of a dynamical system and develop a summary function elasticity (sensitivity) analysis
method with inspirations from the eigenvalue elasticity method. A summary function defines a scalar field over
the state space which summarizes the overall states of a system at a particular time point. Eigenvalue sensitivity
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measures the ratio of the absolute change in an eigenvalue to the absolute change in a parameter; meanwhile
eigenvalue elasticity is a measurement of the ratio of the proportional (e.g. percentage) change in the eigenvalue to
the proportional (e.g. percentage) change in a parameter (Zhang 2008). Similar to the above definition of eigenvalue
elasticity and sensitivity, the summary function elasticity (sensitivity) with respect to a parameter is defined as a
measurement of the ratio of the proportional (absolute) change in the summary function to the proportional (absolute)
change in a parameter. With these definitions, we can analyze the impact of a parameter on a system on some
overall summary of the system states. In the remaining sections of this paper, we first give explicit mathematical
definitions of a summary function and its elasticity and sensitivity. After that we apply these two new methods on
analyzing an individual-based viral dynamics model with 30 persons to illustrate advantages of the method; and
discuss each of these two methods respectively. Finally we draw conclusions.

2 SUMMARY FUNCTION AND ITS ELASTICITY AND SENSITIVITY

A System Dynamics model can be considered as a dynamical system in which the system state can be represented
as a point in state space, each of whose axes corresponds to a particular state variable. Mathematically, the evolution
of such a system can be studied with differential equations methods. To be specific, a System Dynamics model can
be expressed with first order ordinary differential equations, in the form

ẋ(t) = f(x1(t),x2(t), · · · ,xN(t))x(t)+ c (1)

where N is the number of state variables (stocks in System Dynamics) in the system and f is nonlinear functions of
the state variables and c is a constant vector. The system begins to evolve with a set of initial conditions for each
state variable at time t0

As it is mentioned above, a summary function in the state space is defined as a scalar function summarizing
the overall state of a system (G(x1,x2, · · · ,xN) : ℜN 7→ ℜ) at particular time points, e.g. in an infectious disease
spread model, it can be the average viral load in population members, the total number of infected or infectious
people, or cumulative mortality in the application field of epidemiology. In a fashion similar to the definition of
eigenvalue sensitivity with respect to parameters, we define summary function sensitivity as

gs = lim
∆p→0

∆G
∆p

=
∂G
∂ p

(2)

And the summary function elasticity is defined as

ge = lim
∆p→0

∆G
G
∆p
p

=
∂G
G
∂ p
p

=
∂G
∂ p

p
G

= gs
p
G

(3)

The derivative of a summary function over time can also describe the overall behavior of the system by indicating
the rate of change of the summary function. Explicating this, we define the elasticity of the summary function’s
rate of change with respect to a parameter to show how much the rate of growth or decrease of a summary function
could be affected by a small change in a parameter. In this study, this elasticity or sensitivity is called Ġ elasticity
or Ġ sensitivity.

ġs(p) = lim
∆p→0

∆Ġ
∆p

=
∂ Ġ
∂ p

(4)

ġe(p) = lim
∆p→0

∆Ġ
Ġ
∆p
p

=
∂ Ġ
Ġ
∂ p
p

=
∂ Ġ
∂ p

p
Ġ

= ġs
p
Ġ

(5)

Using the total differential, Ġ could be written as

Ġ =
dG
dt

=
∂G
∂ t

+
N

∑
i=1

∂G
∂xi

ẋi (6)
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We note that each of the ẋi is specified by the series of differential equations. With proper choice or construction
of a summary function, the term ∂G

∂ t and ∂G
∂xi

could be computed symbolically prior to the start of simulation. Based
on these definitions, we can analyze the impact of a parameter on the system on some overall summaries of the
system states. When there are high-level summary functions of clear interest, this method provides a more direct
view than eigenvalue elasticity analysis for informing our understanding of the significance of parameters.

3 APPLICATIONS ON AN INDIVIDUAL-BASED VIRAL DYNAMICS MODEL

In this section, we will apply summary function elasticity and sensitivity to analyze an individual-based system
dynamics model. To show the efficiency and convenience of this new methodology, we use the same framework of
the individual-based model analyzed in our early work (Zhang and Osgood 2009), but change the population size
of the model from 3 to 30.

3.1 Model Descriptions

The individual-based immuno-epidemiological model we employ here describes the dynamics of viruses spreading
within and between individuals at the level of cells. This micro-level epidemiological model provides a novel
perspective from which to understand infectious diseases in terms of dynamical systems using characterizing
mathematical tools such as differential equations. The purpose of research in this field is to reveal the basic laws
that control the spread of infectious agents within an individual, their interactions with the immune system, and
their responses to treatment (Nowak and May 2000). In this paper, this simple model of virus dynamics considers
the populations of uninfected cells, infected cells, free virus particles, and the effect of CTL responses that can
eliminate infected cells.

Based on the basic model for an individual, we follow an individual-based network model developed in (Vickers
and Osgood 2007) with the assumption that interactions between individuals result in flow of free virus particles
among those people. We use the same model of the individual-based viral dynamics model in (Zhang and Osgood
2009), which is followed the multi-individual model depicted in (Vickers and Osgood 2007). In this model, for
a single individual there are four state variables: the population size of uninfected cells x, the population size of
infected cells y, the number of free virus particles v, and the number of CTL z. For the number of free virus
particles, each individual interacts with others in form of exchanging free virus v. The state equations of this model
are shown as Equation 7, and its stock and flow structure is shown in Figure 1.

ẋi = λ −dxi−βxivi

ẏi = βxivi−ayi− pyizi

v̇i = kyi−uvi +ω ∑
i6= j

σi jv j

żi = cyizi−bzi

(7)

Where, i, j = 1, · · · ,P and P is the size of population. The unit for x, y, v, and z is cells, cells, virions, and CTL
respectively. Explanations and initial settings of parameters are listed in Table 1. σi j indicates whether the ith

individual and the jth individual are connected. The values of this parameter in the model compose a connection
matrix Σ = (σi j) in the network, and we assume that this connection matrix is symmetric and σii = 0.

In this paper, we concentrate on an individual-based viral dynamics model with a relatively larger population
size (30) than the model in our early work (population size 3) by summary function elasticity and sensitivity. The
model with the 30 persons is similar to that with 3 persons except for presence of a larger population size and the
presence of a different connection matrix (σi j)(i, j = 1, · · · ,30). Figure 1 shows the network of connection among
30 persons in this model.

For such an immuno-epidemiological model, the motivations for the analysis of parameter impact on summary
functions is several-fold. For an individual-based model with a large population, we believe that policy makers
cannot limit their concerns to one or two individuals in the system, and their aim is control the disease on a
macro-level. Another direct inspiration for our introduction of summary function elasticity and sensitivity, as we
stated above, is the difficulty of applying eigenvalue elasticity methods to an individual-based model with a large
population size. In contrast to our previous work (Zhang and Osgood 2009) which synthesized and recast findings
from other contributions, the work presented in this section is novel to this research area.
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Figure 1: An individual-based viral dynamics model. (a): the stock-flow diagram of an individual-based immuno-
epidemiological dynamics model of viral spread. (b): the connection network

For the purpose of disease control, one possible target could be decreasing the amount of virus or the rate at
which the quantity of viral particles grows on a level of the whole population. Thus we define a summary function G
to be the average viral load in the population. Because any change of a parameter cannot instantly influence the state
variables, but the changing rate of state variables and of functions of state variables can be changed immediately,
in following sections, we apply our analysis of the impact of parameter changes on the rate of change of summary
functions. The summary function we study here is the rate of changing of the mean viral load: Ġ. If P is the
population size of the model, G is defined as:

G =
1
P

P

∑
i=1

vi (8)

Table 1: Parameter settings of an individual-based viral dynamics model.

Parameter Full Name Value Units
β the rate of uninfected cells to be infected 10−5 1/day·virions
k the rate of infected cells to produce free virus 3 virions/day·cells
d the death rate of uninfected cells 0.1 day−1

u the death rate of free virus 3 day−1

a the death rate of infected cells 0.5 day−1

λ the replenishing uninfected cell rate 105 cells/day
p the rate of infected cells to be eliminated by the CTL response 1 1/day·CTLs
c the production rate of CTL 0.7 1/day·CTLs
b the death rate of CTL 0.05 day−1

ω the connection weight 10−6 1/day
σi, j the entry of the connection matrix 1 or 0 –
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According to Equation 6, we have

Ġ =
∂G
∂ t

+
P

∑
i=1

∂G
∂xi

ẋi = 0+
P

∑
i=1

∂G
∂xi

ẋi (9)

From the definition of G in Equation 8, we have

∂G
∂xi

=
∂G
∂yi

=
∂G
∂ zi

= 0

∂G
∂vi

=
1
P

With Equation 7, we have

Ġ =
1
P

P

∑
i=1

v̇i =
1
P

P

∑
i=1

(kyi−uvi +ω ∑
i6= j

σi jv j) (10)

From Equation 10, it can be observed that the summary function Ġ depends on three parameters: k (the rate
at which infected cells produce free virus), u (the death rate of the free virus), and ω

(the connection weight, dictating the rate of viral transmission between neighbors).
In this section, we analyze the summary function elasticity with respect to u and ω . We do so because in practice it
may be possible to perturb the parameter u by biological or medical treatment, and the parameter ω by interventions
focused on risk behavior modification, hygiene, etc.

With Equation 4 and Equation 10, the sensitivity of Ġ with respect to parameters u and ω is as follows:

ġs(u) =−
1
P

P

∑
i=1

vi (11)

ġs(ω) =
1
P

P

∑
i=1

∑
i6= j

σi jv j (12)

We are now able to analyze the elasticity of the summary function Ġ with Equation 11, Equation 12 and Equation 5.
From Equation 5, we have

ġe(p) = lim
∆p→0

∆Ġ
Ġ
∆p
p

(13)

In this section, we also calculate anticipated (theoretic) changes in Ġ resulting from changing a parameter using
the following approximations:

∆Ġ
Ġ
≈ ġe(p)

∆p
p

(14)

∆Ġ≈ ġe(p)Ġ
∆p
p

(15)

Equation 14 tells us that the proportional change of Ġ approximately equals the multiplication of the elasticity
of Ġ with respect to a parameter p and the proportional change of p. In this study, one purpose of parameter
perturbations is to decrease Ġ so that the average free viral particles v could decrease faster or increase more slowly
(i.e., ∆Ġ < 0). Whether we should increase or decrease the parameter p to accomplish this depends on values of
both the elasticity and Ġ.
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3.2 Summary Function Elasticity Analysis of an Individual-based Viral Dynamics Model with 30 Persons

3.2.1 Summary Function Elasticity with Respect to the connection weight ω

The Ġ elasticity with respect to ω over time for the 30-person model is presented in Figure 2. The elasticity has
large values after time = 300, especially after time = 500. Policy makers will prefer to intervene when the disease
first breaks out in order to decrease the cost brought by disease spread. Although the summary function elasticity has
large values in the late stage of the system evolution, it also attains relatively high absolute values in the early stage
of the system evolution. From this figure we could know that there are peak values from time = 0 to time = 100
when the system first evolves, though these peaks are almost invisible compared with significant peaks in the later
stages.

Figure 2: The summary function elasticity with respect to ω (the connection weight) for an individual-based
viral dynamics model with 30 persons and its early view.

Three time points with apparent peak values in the time period from time = 0 to time = 100 are selected to
perturb the parameter ω separately for the 30-person model. The summary function elasticity with respect to ω

arrives at a peak value at time = 4.37 with the value of 1.029×10−3, and another peak value at time = 9.89 with
the value of −1.374×10−3 and the third peak value at time = 36.51 with the value of 3.673×10−3 when other
values of the elasticity are on the order of magnitude of 10−5 or smaller. ω was decreased to 10% of the original
value at these time points. With simulations, we found that initially such perturbations change the trajectory of Ġ,
and the proportional change of Ġ is not far from the prediction derived from Equation 15. However, in the long
run, the perturbation at time = 9.89 has similar influences on Ġ to the perturbation at time = 36.51. A control
experiment is added to decrease ω by 90% at time = 5.43 when the elasticity of the summary function with respect
to ω is 1.864×10−6. In a very short period of time after changing ω , the proportional change of Ġ at time = 5.43
is indeed much smaller than that at time = 4.37, but later on the differences of the proportional changes at two time
points become less notable.

When approaching the endemic equilibrium, Ġ approaches to zero no matter the parameters are perturbed or
not. As it was noted in (Zhang 2008), for an individual-based model such as that here, the connection weight does
not greatly influence the position of the endemic equilibrium because of its relatively low value. Here we also
observe that the average virus loads near the endemic equilibrium vary little with perturbations of ω .

410



Zhang and Osgood

3.2.2 Summary Function Elasticity with Respect to the death rate of the free virus u

The impact of the Ġ elasticity with respect to u over time for the 30 people model is similar to that to ω . Because
the parameter u can be increased by biological or medical treatment and because the purpose of perturbation is to
decrease the summary function Ġ, we choose the time points when the elasticity is negative, and thus the large
elasticity here means the negative values with large absolute values. Similar to the Ġ elasticity with respect to ω ,
the summary function elasticity with respect to u attains relatively high absolute values in the early stage of the
system evolution. There are peak values from time = 0 to time = 100 when the system first evolves and Ġ has large
values, though these peaks are almost invisible compared with significant peaks in the late stages, as described in
Figure 3.

Figure 3: The summary function elasticity with respect to u (the death rate of the free virus) for an
individual-based viral dynamics model with 30 persons and its early view.

The summary function elasticity with respect to u arrives at the peak value at the same time points as the
elasticity of ω: time = 4.37, time = 9.89 and time = 36.51, while the values of the elasticities are on the order
of magnitude of 101 or below at most of other time points during the early stage. We perturb u to increase it by
10% at these time points so that ∆Ġ < 0. Shortly after the perturbations, the increment of u at a time point of a
high summary function elasticity could produce a significant alteration of Ġ in a very short time period after the
perturbation, i.e. the proportional change in a very short period after altering u produced by the perturbation at
time = 36.51 is larger than those changes generated by the perturbation at time = 4.37 and time = 9.89.

A control experiment for the perturbation of u is performed at time = 5.43, when Ġ = 3.00334×10−1, with
the value of the summary function elasticity −9.089×10−1. As was predicted, immediately after the perturbation,
∆Ġ
Ġ is much smaller than that in the case of the perturbation at time = 4.37 or at time = 9.89. However, when the

state variables approaches to equilibrium, because G is associated with state variables, its changing rate Ġ tends
to be zero. In the long-term, trajectories converge and the perturbation of the parameter at any time point should
result in similar behaviors of Ġ.

3.2.3 Discussion

In the above section, we can see that a perturbation at a time point when the summary function elasticity is high
can result in a significant proportional change of Ġ shortly after the perturbation. But over a long period, such
perturbation at time points with high elasticity may not produce more notable proportional changes of Ġ. For the
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model at hand, the summary function elasticity usually exhibits larger deviations in the late stages of the system
evolution. From Equation 5, we have ġe(p) = ∂ Ġ

∂ p
p
Ġ . With a given expression of ∂ Ġ

∂ p and the value of p, the elasticity
is large when Ġ is small. Thus for the current model (which approaches the endemic equilibrium) the elasticity
has peak values in the late stages when the summary function has very small values. As it was noted in (Zhang
2008), changing parameters ω or u by a small amount alters the position of the endemic equilibrium but does not
alter the stability of the endemic equilibrium. Any perturbation of a parameter would produce similar trajectories of
the summary function in the long-term when the system is near the endemic equilibrium. Therefore, the summary
function elasticity analysis is only effective in a short period of time after the perturbation, during which the linear
approximation used for the calculations remains valid.

In a short period after the perturbation, the proportional changes of Ġ follow their theoretical values, i.e., a
large Ġ elasticity could produce a significant proportional change of Ġ. Based on Equation 15, we know that the
absolute change of Ġ for a given change of a parameter depends on both the elasticity and the value of Ġ, and thus
it is possible that a perturbation of a parameter at a time point when the elasticity is low can result in an apparent
absolute change of Ġ if Ġ has a high value at that time. Therefore, because of the large values of Ġ in the early
period of time, a small change of a parameter can generate a significant alteration of the behavior of Ġ, though the
elasticities at the time points when the perturbation of the parameter is performed have small values.

A large value of the summary function elasticity cannot guarantee a desired result over a relatively long time.
One possible reason is that for a nonlinear system its Jacobian matrix is changing over time. Great local proportional
changes might become less significant because the structure of the system is changing. Another reason might be
the accumulation or offset of the effects of changes of the parameter in later time points when the elasticity is high
or low. Thirdly, because the trajectory is altered, the elasticity of the summary function with a parameter could
be changed if the value of this parameter is altered, therefore our perturbation of a parameter in a long time may
neglect such changes of the elasticity. At last, because trajectories of state variables converge towards endemic
equilibrium, the change rate of the summary function approaches zero, the trajectory converges, and any perturbation
of a parameter will not change Ġ in a long-term.

It is worth emphasizing that because the summary function elasticity of a parameter is dimensionless, it is
helpful for indicating the significance of a parameter on the system. The Ġ elasticity with respect to u is much
larger than that to ω , and thus the small perturbations of u (10% increased) produce more significant changes of
the summary function that the large perturbations of ω (90% decreased).

Because the summary function elasticity is defined as the ratio of proportional changes of the summary function
to proportional changes of parameters, as Equation 5 shows, when the value of the summary function is near zero,
the value of the elasticity can be extremely high. We conjecture (but have not demonstrated) that this is the reason
for the impulse-like values shown in Figure 2 and Figure 3. Although the proportional changes of the summary
function with perturbations of parameters at time points with those impulse-like elasticity values could be large,
the absolute changes of the summary function is usually very small because of its near-zero values. Practically, it
is less meaningful to change the summary function with tiny absolute changes at time points when its values are
close to zero. There is a distinct risk of zero or near-zero values in the denominator of the eigenvalue elasticity can
distract us from more practically important leverage points for changing system behavior.

3.3 Summary Function Sensitivity Analysis of an Individual-based Viral Dynamics Model with 30 Persons

In the last section, we saw that the rate of change in summary function, Ġ, has great influence on the value of
the summary function elasticity. Motivated by that observation, in this section, we focus on the summary function
sensitivity with respect to a parameter. Recall from Equation 4, we have

ġs(p) = lim
∆p→0

∆Ġ
∆p

(16)

∆Ġ≈ ġs(p)∆p (17)

From Equation 17 we know that the absolute change of Ġ approximately equals the product of the sensitivity
of Ġ and the absolute change of the parameter p.1 Thus we know that the summary function sensitivity indicates

1An absolute change of p here means ∆p = pnew− p, and an absolute change of Ġ is ∆Ġ = Ġ|pnew − Ġ|p.
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how much the summary function changes in absolute terms when the parameter changes by a given absolute change
amount. Because a high summary function sensitivity indicates a large change to Ġ in response to a given change
in a parameter regardless of the value of Ġ, we investigate here whether it might yield greater insight into leverage
points than does the summary function elasticity.

3.3.1 Summary Function Sensitivity with Respect to the connection weight ω

Figure 4: The summary function sensitivity with respect to ω (the connection weight) for an individual-based
viral dynamics model with 30 persons.

Ġ sensitivity with respect to ω (the connection weight) is shown in Figure 4. From this figure, we can
learn that the sensitivity over time is positive and that before time = 100, the Ġ sensitivity attains apparent peaks
with large values, especially between time = 0 and time = 50. The first peak of the value of the elasticity appears
at time = 2.37 with the value of 1.9239, the second peak appears around time = 6.39 when the value is 5.569, and
the third peak is at time = 9.87 with the value of 10.8567.

We now test new perturbations of parameters affecting Ġ. We decrease ω by 90% as we did in the summary
function elasticity analysis. In an immediate period of time after perturbing the parameter, the absolute change of Ġ
approximates its theoretical value, which can be predicted by Equation 17. The short-term absolute change of the
function is proportional to the summary function sensitivity at the time point when the parameter is decreased. But
the long-term absolute changes produced by the perturbations of ω at time points with distinct differences of the
values of sensitivities are approximately same because the system is approaching the endemic equilibrium, whose
position does not depend on the parameter ω .

3.3.2 Summary Function Sensitivity with Respect to the death rate of the free virus u

Figure 5 shows the Ġ sensitivity with respect to u (the death rate of the free virus) over time for a
30-person model. In this figure, the value of the sensitivity is negative over time, and it is quite large in the early
stage of the system evolution. The first peak of the value of the sensitivity appears at time = 2.37, with the value
of −0.1489, the second peak appears at time = 6.41 which is −0.9593, and the third peak is at time = 9.89 with
the value of −1.3925. We change u by 10% of the original value (increasing u by 0.3), at these three time points
to try to change the behavior of the summary function.

During a small window frame of time the values of the absolute changes of Ġ (∆Ġ) are close to the product
of the summary function sensitivity and the absolute change of u. The absolute changes of Ġ with a perturbation
at time = 9.89 (the time point with the highest absolute value of sensitivity in the experiments) are larger than the
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Figure 5: The summary function sensitivity with respect to u (the death rate of the free virus) for an
individual-based viral dynamics model with 30 persons.

changes with a perturbation at time = 6.41 (the time with the second largest absolute value of sensitivity), which are
greater than the absolute changes with a perturbation at time = 2.37, because ġs(u)|time=9.89 > ġs(u)|time=2.37. In a
longer time, especially when the system approaches to the endemic equilibrium, the changes of the parameter u could
enlarge or shrink the magnitude of the oscillation of the values of Ġ; however, because the system asymptotically
approaches an equilibrium, Ġ asymptotically goes to zero, and cannot be altered by any change of the parameter.

3.3.3 Discussion

The above two sections suggest that summary function sensitivities are effective for indicating promising times for
policy makers to perform control over disease spread in a short period of time. Because the summary function
sensitivities are not affected by the influence of changes of the summary function values, this method could indicate
the early time points when the Ġ is sensitive to parameters. The perturbation of the parameter at time point
when the sensitivity is large can locally change the trajectory of the summary function as the summary function
sensitivity indicates, but the large sensitivity is neither necessary nor a sufficient condition of significant changes
of the summary function in a long period of time. However, from the above sections, we can find that the early
control of parameters at time points when the summary function sensitivities are large can alter the behavior of the
summary function. Practically, it suggests that policies performed in the early stage when the system is far from
equilibrium have great influences on the system behaviors. On the disadvantage side, because the summary function
sensitivity is not dimensionless, we cannot use it to compare the relative importance of parameters for the system,
if those parameters are associated with different dimensions.

4 CONCLUSION

Inspired by traditional eigenvalue elasticity and sensitivity analysis for nonlinear systems, we developed summary
function based analysis to discover the influences of the parameters on the summary functions associated directly
on state variables for infectious disease models. By applying this new method to a summary function over an
individual-based viral Dynamics model with a relatively large population, we found that in a short period of time
after the perturbation of a parameter at a time point when the elasticity or the sensitivity is high, the changes of the
summary function are notable. Practically, this method is effective to inform the control of disease spread in a short
time, such as in the period of the disease outbreak. In addition, similar to eigenvalue elasticity, summary function
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elasticity is also dimensionless, which means it is possible for us to apply such method to compare the importance
of parameters for a model. In the background of public health modeling, such methods offer the potential for aiding
policy makers in finding out crucial factors for disease control in a short period of time, especially during the
outbreak of an infectious disease. Furthermore, different from the eigenspace-based analysis method, the number
of state variables does not influence model analysis with the summary function elasticity or sensitivity; and this
new method gets rid of eigenvalue multiplicity problems that can seriously complicate the analysis of models where
each individual is identical.

However, globally the perturbations of a parameter cannot reliably determine how changing a parameter can
affect Ġ over a long period of time. This reflects the fact that for a nonlinear system, because local attributes, such
as eigenvalues and eigenvectors of Jacobian matrix, vary over time, we are unable to determine global attributes
of the system behaviors for long period of time. Around the endemic equilibrium, the behavior of the summary
function is only strongly dependent on parameters related with the endemic equilibrium.

Therefore, for an individual-based viral dynamics model with a large population, if our attention focuses on
immediate disease control during a short time period around a disease outbreak, the summary function elasticity
and sensitivity analysis methods can be effective and efficient to predict the importance of parameters and the time
points at which to change influential parameters. With an appropriate choice of a summary function, policy makers
may be able to better control the severity of the infectious disease spread over the whole population. Similarly, this
summary function based method can also be applied to short-term analysis of nonlinear individual-based System
Dynamics models or models with a large number of state variables in other application backgrounds. But in the long
run, such method is not able to effectively predict the behavior changes. For such cases, the numeric or symbolic
analysis around endemic equilibria, as well as other methods could help us to better anticipate the long-term behavior
patterns and parameter sensitivities, which is worth further research.
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