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ABSTRACT 

There is a growing body of knowledge describing the economic and social challenge faced by the United 
States because of the small (14%) and decreasing number of students pursuing Science, Technology, En-
gineering, and Mathematics (STEM) majors. We propose a simple two-period, agent-based simulation 
based on social impact theory to predict the % yield of STEM majors. The model indicates that changes 
with minimal (if any) cost could more than double the STEM yield. For example, allocating the STEM-
oriented teaching talent in the first two years rather than in the last two years could increase yields by ap-
proximately 5.5%. Also, dividing or segregating students based on STEM orientation could increase yield 
by over 10%. We begin by briefly reviewing the literatures about STEM and social impact theory. Next, 
we describe our proposed model and numerical experiments using standard design of experiments me-
thods. Finally, conclusions and suggestions for future research are provided. 

1 INTRODUCTION 

Agent-based modeling has been the focus of a large and growing body of research including contributions 
in computer science (e.g., see the Autonomous Agents and Multi-Agent Systems Journal), business and 
social science (e.g., see the Journal of Artificial Societies and Social Simulation), and operations research 
(Conte et al. 2001; Macal and North 2006; Huang et al. 2004; Carley 2006; Fang et al. 2002). For a recent 
review focusing on operations research, see Allen (2010) and for a fairly generic tutorial see Macal and 
North (2007). Macal and North (2007) suggest that modeling (in general) and agent based modeling (in 
particular) provides a fundamentally new, third way of carrying out social science research, in addition to 
argumentation and formalization.  
 This article focuses on modeling student decision-making related to selecting science, technology, 
engineering, and mathematics (STEM) related majors and careers. As we describe in Section 2, the chal-
lenge of current demographic trends relating to STEM for the United States economy is significant. These 
trends have alarmed many large U.S. based companies and triggered a major effort to study the phenome-
non led by Raytheon scientists. These scientists and their collaborators have been involved in student sur-
veys, obtaining demographic information, and system dynamics modeling effort of the STEM phenome-
non, e.g., see Sanchez, Wells, and Attridge (2009).  
 The purpose of this research is to study the same STEM system with a relatively simple and transpa-
rent agent-based model. The model here is extended slightly from Nettle (1999) which was originally 
proposed to study linguistic pressures for conformity. Therefore, the focus here is more directly on the ef-
fects of peer pressure and biases from teachers and the environment. Possible drivers for the decline are 
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investigated including the outsourcing of manufacturing work, i.e., worsening of the STEM-related job 
market, and the hiring of foreign-trained STEM workers, i.e., people with STEM-related interests not be-
ing present in the educational system to influence others. 
 Section 2 reviews selected literature describing the stem related challenges facing the United States. 
Section 3 describes some of the efforts to model STEM-related issues. Section 4 reviews social impact 
theory and describes the influence equation adopted in the model of education described in Section 5. The 
model was implemented in NetLogo rather than, e.g., REPAST, because it seemed easier to create an in-
terface for general users to be able to run simulations in NetLogo. Also, the library of existing applica-
tions in NetLogo seemed somewhat larger and learning curve was reported to be shorter. Section 6 de-
scribes a numerical study on the proposed model using design of experiments (DOE) methods and the 
potential implications for education policy makers. In Section 7, conclusions are provided along with op-
portunities for future research. 

2 THE CHALLENGE FOR THE UNITED STATES 

In recent years, there has been a dramatic decrease in the number of United States students pursuing ca-
reers in the area of STEM (e.g., see TAP 2008). Chen and Weko (2009) reported that in 1996 approx-
imately 23% of post secondary students entered a STEM field and that in 2004, that number was approx-
imately 14%.  
 Perhaps because of this decline, the United States has lost its position as the leading innovator in a 
large number of competitive industries such as automotive, steel, ships, machine tools, industrial robots, 
and the same is occurring in electronics and aeronautics (Bellon and Niosi 1988). If this trend continues, 
the United States will further lose its scientific and technological leadership in a world where newly ener-
gized foreign competitors, such as Japan and the European Community, are investing in the capacity for 
innovation � the key driver of productivity and economic growth (Bellon and Niosi 1988, p. 9; Wheeler, 
2002).  
 Recent statistics from the 2006 Programme for International Student Assessment (PISA) comparison 
show that, U.S. students ranked 21st out of 30 in science literacy among students from developed coun-
tries and 25th out of 30 in math literacy (USDOE 2009). The 2009 National Assessment of Education 
Progress (NAEP) comparison displays that, 4th graders showed no sign of progress for the first time in 
many years, and 8th graders tailed only modest evidence of progress (USDOE 2009). 
 �������	

���	
	�	�����	���	�
����	
��	����������
������	�����������	���������	����������
�����!����������	���	������������������	�"�����	��"�#�	����$
�
���	�
���&��'�
��*	��
+���	��am-
paign includes efforts not only from the federal government but also from leading companies, founda-
tions, non-profit organizations, and science and engineering societies to work with young people across 
America to enter and excel in STEM (The Whitehouse Office of the Press Secretary 2009).  

3 LITERATURE REVIEW ON STEM MODELING 

Associated with attempts to incentivize STEM learning, there have been other modeling efforts to predict 
how policy decisions might change the demographics and lead to economic opportunity. For example, 
many states and organizations have STEM related institutes dedicated to supporting education policy. 
There is the Journal of STEM Education: Innovations and Research and recent articles in other journals 
describe the job market for STEM graduates (Churbin et al. 2008) and activities to motivate kids to select 
STEM fields (Brophy et al. 2008).  
 Here in Ohio, there is the Battelle Center for Science and Education Policy, which is contributing to 
STEM related modeling focusing on system dy����
���+	+������	�
���	���������������	�
��"���	�"���	
�
governing demographics and economy. Their relatively data-rich and complicated analysis based on sys-
tem dynamics modeling has been developed collaboratively with partners that include researchers at the 
Ohio State University Center For Resilience and Raytheon Corporation. The work here is an attempt to 
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contribute to this growing body of modeling literature through the study of a relatively simple model that 
focuses on issues related to peer influence. 

4 A SOCIAL IMPACT THEORY MODEL OF PEER INFLUENCE 

In this section, the core model describing how individuals are influenced by others is described. The mod-
el that we pursue is a two-period extension of the single period model, social impact theory model in Net-
tle (1999). The model was originally proposed as a way to predict the evolution of language. We choose 
the Nettle (1999) model somewhat arbitrarily because of its relative simplicity and because it permitted 
exploration of the combined effects of the environment and peer pressures.  
 The general features of social impact theory models are: 

1. Variants � Individuals are influenced to join different variants by the members already asso-
ciated with that variant. All variants pressure the individuals and the one exerting the highest 
pressure wins as originally proposed by Latané (1981). 

2. Impacts � The impacts or pressures exerted by variants relate to the status and immediacy of the 
individuals and their number. Generally, larger populations exert more pressure but the pressure 
is not linearly proportional to size (Latané 1981). 

3. Environmental biases � Environmental biases have multiplicative effects on the pressures by the 
different variants (Nettle 1999). 

Much of the theory and numerical studies were codified in the reference book Rockloff and Latané 
(1996). We adopt notation similar to Troitzsch (1996) and Nettle (1999). In our notation, the pressure on 
individual j in a variant with Nk member is Ik(j). The total population has size N. Let Qk index the set of 
individuals currently in variant k. Tk,l is the time dependent bias from environmental actors (in our cases 
teachers) toward variant k in period l. Mk is the time independent bias toward variant k (in our case as-
sumed to relate to the job market or other relatively constant external pressures). The status and location 
of each individual in the peer society are Si and di respectively. We often visualize the location as a physi-
cal place such as the desk in a class room but the mathematics could equally refer to a location in relation 
to norms in a psychological or philosophical space or a social networking theory space. 
 Nettle (1999) did not explicitly consider time changing environmental biases. Therefore, the follow-
ing impact model is a slight extension of Nett�	$
����	�
/ 

       for k = 1,2 and l = 1,2  (1) 
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1999) typically ranges between 0.5 (moderate peer pressure) to 1 (strong pressure for conformance to 
group norms). Also, Nk is the number of agents of variant k. With two variants (STEM and non-STEM) 
we have N1 + N2 = N where N is the total cohort size. In our simulations, we generated the Si for i = 
Q�V�N (the status of individual i) independent identically distributed U[0,100] following the assumptions 
in Nowak, Szamrej, and Latané (1990). Visually, in our modeling we use blue for STEM and green for 
non-STEM. 

In equation (1), the acquisition bias is the product of the bias from the educators in period l toward 
variant k, Tk,l and the acquisition bias from the external environment including parental influences and the 
job market, Mk. Nettle (1999) employed a similar product of biases assumption but without the potential 
for time dependence.  

5 THE PROPOSED TWO-PERIOD SIMULATION MODEL 

In this section, the full two-period model which includes four total rounds of peer influence described by 
equation (1) is described. The full model is intended to describe secondary or high school related student 
decision-making. Therefore, it covers a four year period. The first period involves the biasing factor, T1,1. 
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The second period is influenced by the biasing factor, T2,1. Clearly, many teachers are involved in each 
period so that referring to the period-specific bias as Teacher 1 or Teacher 2 is a simplification. Yet, these 
period-specific biases might be thought of as deriving from key STEM-oriented teachers, Teacher 1 and 
Teacher 2 corresponding to the periods. Figure 1 shows the process overview and the inputs (xs) varied 
and the response (y) measured in our numerical study.  

 

 
Figure 1: STEM model flow chart��>�	�	���	��x
����	�����	������	�
���Z������	��y
����	��	�
��	� 

5.1 The Two Period Model 
In all our simulations, we assume that 40% of the initial students start out with variant 1 (STEM) based 
on the results of the Raytheon (2009) survey of middle students in the U.S. and their favorite subject out 
of five choices being either science or mathematics. Further, we assume distances are given by a rectan-
gular shaped class room. Also, for simplicity and with minimal loss of generality, we assume that T2,1 = 
T2,2 = M2 = 1. In this way, bias away from STEM corresponds to values of T1,1, T2,1, and M1 less than 1.0. 
Similarly, bias toward STEM corresponds to values of T1,1, T2,1, and M1 greater than 1.0. 
 The model also includes the possibility that students might be divided by their STEM or non-STEM 
variant (segregated) or randomly assigned in both periods. Our segregation took the form of simply plac-
ing STEM students on one end of the class (with reference to physical locations). However, the mathe-
matics is general enough, perhaps, to relate to the concept of special sections of STEM students or fully 
integrated instruction.  

5.2 Implementation in NetLogo 

To implement the model and aid in visualization, we used the cross-platform multi-agent programmable 
modeling environment, Netlogo. It is a programmable modeling environment for simulating natural and 
social phenomena and is particularly well suited for modeling complex systems developing over time 
(Wilensky 1999). Instructions can be given to hundreds of agents, all operating independently, in order to 
explore the connection between the micro-level behavior of individuals and the macro-level patterns that 
emerge from the interactions of many individuals. The flowchart in Figure 2 shows the process and se-
quence of execution taking place in our NetLogo model. 
 Our simulation space is partitioned into quadrants of which the lower sections represent two class-
rooms, as shown in Figure 3. Simulated student instruction and peer influencing takes place there. The 
upper sections of the quadrant shows the transition of students into the job markets for both STEM and 
non-STEM areas. The agent representing the STEM job market, in the shape of a computer in this model, 
form links with the students emerging as STEM oriented individuals while the agent representing the non-
STEM market, shaped as a person holding a briefcase, captures students geared towards a career outside 
of STEM.   
 In the model, teachers are agents that are responsible for influencing student agents to follow a STEM 
career path at each of levels 1 and 2 represented by the left and right quadrants respectively in Figure 2. 
The STEM and Non-STEM job markets are agents created with the variable strength, having an influen-
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cing impact on students to join either the STEM or Non-STEM job markets. All of these initializing con-
ditions and parameters are executed when the model$
��setup� button is clicked. 
 

 
Figure 2: STEM model flow chart 

  

 
Figure 3: STEM-Sim model in process 

6 SIMULATION EXPERIMENTS

In this section, we describe two computational experiments conducted using the model described in pre-
vious sections. The model is available upon request from the authors and requires minimal installation at 
no cost. The first experiment was a 26 � 1 regular fractional factorial. Conducting this experiment provided 
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the only real verification and validation of the developed model. The code was verified in the sense that 
the analysis results were considered to be intuitively believable and validated to the extent that many of 
the outputs predicted were in the rough ball park of the 14% STEM major selections observed in Chen 
and Weko (2009). 
 Table 1 shows the factors selected and ranges for the fractional factorial experiment. The persuasive-
ness range was roughly that considered by Nettle (1999) except the high end was only 0.75 rather than 
1.0. This seemed more relevant to the relatively low peer pressure associated with major selection com-
pared with the high pressure assumed relevant for language conformance. Also, the ranges are intended to 
include teachers that bias students away from STEM selections, e.g., charismatic English teachers or un-
charismatic science teachers. The job market bias range straddled the non-influential 1.0 setting because, 
in our subjective experience, the environment and job market ranges do vary from cohort-to-cohort and 
place-to-place. Somewhat arbitrarily, we consider cohorts ranging from 20 to 40 only corresponding at 
least roughly to class sizes that we ourselves have experienced. 

Table 1:  Factors and levels for experimental design 

Factor Parameter Low High
A. Persuasiveness constant a 0.50 0.75 
B. Bias established by teacher 1 T1,1 0.75 1.00 
C. Bias established by teacher 2 T1,2 0.75 1.00 
D. Bias established by the job market M1 0.90 1.10 
E. Cohort size N 20 40 
F. Whether individuals cluster by variant Integration Random assignment Segregated 

 The inputs and outputs for the 26 � 1 regular fractional factorial experiment are shown in Table 2. Each 
STEM percentage was estimated by the total number of STEM and non-STEM students after 50 replica-
tions of initialization and four rounds of influence. Specifically, in each replicate, there was an initializa-
tion of the students based on the integration setting and student Status values, Si. The integration setting 
was determined from the experimental design in Table 2. Then, the four rounds were simulated using eq-
uation (1) for each student.  
 Table 3 shows the results from the fitting of a linear model including second order interactions to the 
response data. The analysis of the linear model can help us to interpret our agent-based model and to de-
termine which factors have effects that are large enough that they are truly present in the agent-based 
model and not a byproduct of estimation errors caused by the randomness built into the simulations. 
Overall, the R-squared adjusted of this model was 93.9% which indicates that the simple second order po-
lynomial captures the majority of the information contained in the agent-based model over the range of 
factors studied.  
 Further, the normal probability plot of effects in Figure 4 suggests that few (if any) important interac-
tion effects are left-out of the second order model. The dots near the line in Figure 4 signify estimated ef-
fects that are not significant and likely are nonzero only because of the randomness built into the simula-
tions. The models indicate that all of main effects have significant effects with the cohort size having a 
somewhat small effect over the range considered. Also, the persuasiveness (a) has significant interactions 
with Teacher 2, the external influence, and the integration factor. Both teacher factors interact significant-
ly with the integration factor as does the cohort size. 
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Table 2: Experimental design inputs and output (% STEM estimated using 50 replicates) 
Run Persuasiveness Teacher 1 Teacher 2 Environment Size Integration % STEM

1 0.5 0.75 0.75 0.9 20 Random 7.00 
2 0.75 0.75 0.75 0.9 20 Segregated 5.10 
3 0.5 1 0.75 0.9 20 Segregated 17.20 
4 0.75 1 0.75 0.9 20 Random 21.12 
5 0.5 0.75 1 0.9 20 Segregated 19.70 
6 0.75 0.75 1 0.9 20 Random 13.50 
7 0.5 1 1 0.9 20 Random 21.00 
8 0.75 1 1 0.9 20 Segregated 23.16 
9 0.5 0.75 0.75 1.1 20 Segregated 27.60 
10 0.75 0.75 0.75 1.1 20 Random 20.80 
11 0.5 1 0.75 1.1 20 Random 38.90 
12 0.75 1 0.75 1.1 20 Segregated 30.00 
13 0.5 0.75 1 1.1 20 Random 28.06 
14 0.75 0.75 1 1.1 20 Segregated 26.60 
15 0.5 1 1 1.1 20 Segregated 57.60 
16 0.75 1 1 1.1 20 Random 42.50 
17 0.5 0.75 0.75 0.9 40 Segregated 15.65 
18 0.75 0.75 0.75 0.9 40 Random 3.45 
19 0.5 1 0.75 0.9 40 Random 7.85 
20 0.75 1 0.75 0.9 40 Segregated 17.45 
21 0.5 0.75 1 0.9 40 Random 4.50 
22 0.75 0.75 1 0.9 40 Segregated 15.25 
23 0.5 1 1 0.9 40 Segregated 32.00 
24 0.75 1 1 0.9 40 Random 15.55 
25 0.5 0.75 0.75 1.1 40 Random 12.40 
26 0.75 0.75 0.75 1.1 40 Segregated 19.15 
27 0.5 1 0.75 1.1 40 Segregated 38.00 
28 0.75 1 0.75 1.1 40 Random 31.95 
29 0.5 0.75 1 1.1 40 Segregated 40.70 
30 0.75 0.75 1 1.1 40 Random 10.15 
31 0.5 1 1 1.1 40 Random 46.85 
32 0.75 1 1 1.1 40 Segregated 37.85 

Figure 4: Main effects plot from the simulation experiment 
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Table 3: ANOVA table for the model including interactions up to order 2 
Term Effect Coef SE Coef T P

Constant  23.39 0.59 39.89 0.00 
Persuasiveness -5.09 -2.55 0.59 -4.34 0.00 

Teacher 1 13.09 6.54 0.59 11.16 0.00 
Teacher 2 7.58 3.79 0.59 6.47 0.00 

External Influence 16.85 8.43 0.59 14.37 0.00 
Cohort Size -3.19 -1.60 0.59 -2.72 0.02 
Integration 6.09 3.05 0.59 5.19 0.00 

Persuasiveness*Teacher 1 0.11 0.06 0.59 0.10 0.93 
Persuasiveness*Teacher 2 -3.14 -1.57 0.59 -2.68 0.02 

Persuasiveness*External Influence -3.80 -1.90 0.59 -3.24 0.01 
Persuasiveness*Cohort Size -0.80 -0.40 0.59 -0.69 0.51 
Persuasiveness*Integration -4.15 -2.07 0.59 -3.54 0.01 

Teacher 1*Teacher 2 1.67 0.84 0.59 1.42 0.19 
Teacher 1*External Influence 4.19 2.09 0.59 3.57 0.01 

Teacher 1*Cohort Size 0.20 0.10 0.59 0.17 0.87 
Teacher 1*Integration -2.65 -1.32 0.59 -2.26 0.05 

Teacher 2*External Influence 1.35 0.68 0.59 1.15 0.28 
Teacher 2*Cohort Size -0.47 -0.23 0.59 -0.40 0.70 
Teacher 2*Integration 2.75 1.38 0.59 2.35 0.04 

External Influence*Cohort Size -1.18 -0.59 0.59 -1.01 0.34 
External Influence*Integration -0.35 -0.18 0.59 -0.30 0.77 

Cohort Size*Integration 4.33 2.17 0.59 3.69 0.00 

The main effects plot in Figure 5 and the previous significance related information together support the 
following findings: 

1. Reaching students early is important. The effects of biases (Teacher 1) in the initial period (2 
years) are greater than biases later in the high school period by 5.5%. This could mean, e.g., that 
allocating a star STEM-oriented teacher to younger students rather than older by itself could in-
crease the percentage of STEM majors from 14% to almost 20%. Intuitively, this might be ex-
plained as an early drop in the percentage interested in STEM compounds because of the then in-
creased peer effects during the second period. 
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285



Allen and Davis  
 

Persuasiveness

T eacher 2

Environment

Cohort Size

Integration

T eacher 1

1.000.75 1.000.75 1.10.9 4020 SegregatedRandom

35

25

15

35

25

15

35

25

15

35

25

15

35

25

15

0.50
0.75

Persuasiveness

0.75
1.00

Teacher 1

0.75
1.00

Teacher 2

0.9
1.1

Environment

20
40

Size
Cohort

Figure 6: Interaction plots from the simulation experiment. 

2. Segregating the students by STEM preference is important, particularly for large cohorts. Intuitively, 
students interested in STEM are a minority in the U.S. and protecting that minority helps to pre-
serve it. The model predicts that segregation in large cohorts (size 40) could increase the yield of 
STEM majors by as much as 10%. It is true, of course, that dividing students into STEM oriented 
sections or schools could have negative effects on the other students. Not only will the other stu-
dents be less likely to orient toward STEM pursuits but they may also lose the peer pressure to 
think critically or even to avoid negative activities such as drugs or crime. 

 
 Subjectively, the output STEM% seems quite sensitive to the overall environmental bias (M1) pre-
sumably because it exerts constant pressure over both periods. It is perhaps interesting to note that model 
�����
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if we set T1 = T2 = 1, cohort size to 40, integration to random, and vary the external influence (M1). Figure 
7 shows the outputs from 50 replications of the agent-based model overlaid with a sixth order polynomial 
and its associated prediction confidence intervals. With a single factor varied only and others held con-
stant and having so many levels, we have great modeling flexibility. We chose a sixth order polynomial 
because it seemed visually to provide a good fit. The model shows that if the external influence reaches a 
certain point, the peer pressure effects in the model start working to reinforce STEM pursuits. This results 
in the further finding: 

3. Small external effects could result in a rapid transition toward STEM oriented populations as 
indicated in Figure 7. For example, if the job market for STEM students in the U.S. population 
improved or the perceptions changed, we might have a fairly sudden change in the percentages. 
For example, shifting the bias from 0.8 to 1.2 results in an over 40% shift in the percent interested 
in STEM pursuits. Intuitively, this might occur because STEM oriented students might transition 
from a small minority to the majority and the peer pressure influences might push in the opposite 
direction. This has presumably occurred throughout Asia in recent years. 
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Figure 7: The ��	����	����������������������
�����"�����-STEM to STEM as environmental biases 
change. The model assumes a = 0.5, T1,1 = T2,1 = 1, cohort size = 40, and integrated classes. 

 
This last finding offers a potentially simple way to check the validity of the model. One could study other 
countries or pockets of countries where external biases are different. Are non-STEM students minorities 
in these cohorts as the model predicts? Are there lessons for educators in the US about how to create the 
external pressures? If the model is correct, importing STEM oriented labor from abroad to meet job mar-
ket needs might be contributing greatly to reduced interest in STEM pursuits within the U.S. These im-
ports were not present in our high schools to influence other students. 

7 CONCLUSIONS AND OPPORTUNITIES FOR FURTHER RESEARCH 

This article has proposed and studied an agent-based two period model for investigating the factors that 
influence student selection of STEM majors in U.S. colleges. The computational experiments on the 
model have suggested significant benefits related to reaching students early, segregating STEM students, 
and making changes to the job market. The model predicts that potentially small changes at minimal (if 
any) cost could more than double the percentages of students selecting STEM majors. For example, shift-
ing earlier the STEM oriented teaching talent to teach sophomores instead of seniors is predicted to in-
��	�
	���	�&��'���*���Z�	����Z������<����	�Z�{+{|+�#�
���������������
	��	�������
���	�
��Z orienta-
tion to STEM subjects into separate groups is predicted to increase the STEM yield by over 10%.  In 
addition, the implications of the tipping point associated with the model predictions imply that what 
might seem like small environmental changes could precipitate a dramatic shift. 

 The research leaves a number of questions for future study. First, data can be collected about ac-
tual cohorts of students and about their environmental conditions. Such data can be used to validate the 
model and/or identify features that need to be added. Second, a systematic comparison of the proposed 
modeling approach with alternatives such as system dynamics modeling (e.g., see Sanchez, Wells, and 
Attridge, 2009). The investigation can evaluate whether the simpler models here capture any elements 
missed in the more extensive models or vice versa. Hybrid models might be produced if appropriate. 
Third, more realistic models of the distances and nature of student cohorts might be considered. For ex-
ample, peer groups might be larger than 40 and the nature of their influence processes might be very dif-
ferent than indicated by the simple square class-room structure considered here. Finally, a list of actual 
best practices associated with successful high schools can be compiled and studied in relation to model 
validation and communicating results to educators. 
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