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ABSTRACT

In a large-scale production system such as building a Boeing 777 airplane, there are more than ten
thousand jobs. The interdependence structure among jobs and some jobs’ delay’s influence on the
other jobs in different manufacturing areas are critical information to understand the status of their
area. Relationship among groups of jobs may help us find the root cause of problems, to estimate
resource planning and to prioritize their tasks. This tutorial is intended to review and introduce
commonly used concepts and measures of stochastic dependence. In particular, we focus on concept
of positive quadrant dependence, global and local measures of bivariate dependence. Some categorical
data analysis techniques and probabilistic models will also be presented. Monte-Carlo simulation
techniques will be introduced to provide confidence intervals for estimated measures. Finally, we
apply the statistical methods in this tutorial to Boeing 777 production processes as a case study.

1 INTRODUCTION

The concept of stochastic dependence for two random variables X and Y exists widely in many
different fields. In reliability analysis, the failure of a component in a system could affects the other
components. A manufacturing process in a large-scale production system may affect the status of other
manufacturing processes. There are many notions of bivariate and multivariate dependence. In this
tutorial, we focus on the concept of positive dependence, in particular, positive quadrant dependence
(PQD). PQD basically says X and Y are more likely to be large or small together compared with the
independent case. A measure of dependence indicates in some mathematical way the degree or strength
of dependence between the variables X and Y . Three global measures of dependence (Pearson’s rho,
Kendall’s tau and Spearman’s rho), several local measures of dependence and association measures
for categorical data is reviewed in this tutorial. It will be shown that there is a strong relationship
between positive dependence and Kendall’s tau and Spearman’s rho.

The Boeing 777s are the most complicated and customized airplanes in their airplane category.
Every one of the Boeing 777 is make-to-order for an airline. The total number of jobs and contents of
some jobs are not always the same from one manufacturing area to another in the 777 final assembly.
Relationships and job-to-job correlations are not always identical. Since there are more than ten
thousand installation jobs for a 777 airplane, there are hundreds of groups of jobs across the 777 final
assembly processes. Compositions among group of jobs have established for a very robust 777 final
assembly production system that has been producing one Boeing 777 every three working days during
the peak production rate. Detailed correlation and their respective confidence levels among group of
jobs can be another area that may further improve the effectiveness of the 777 production system. As
for any large-scale production system, it needs an automated tool for users (team leaders/managers)
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to understand the current production status, find the root cause of problems and estimate the effect
of current production status on the overall scheduled plan. Thus, understanding the dependence
structures and forecasting status of next production process are essential to estimate resource planning
and prioritize tasks in manufacturing Boeing 777 airplanes. In this tutorial, we will apply concepts and
measures of bivariate dependence to Boeing 777 manufacturing system. Some probabilistic models
will also be presented to forecast the future manufacturing process based on the given manufacturing
status. Monte-Carlo simulation approaches will be presented to provide corresponding confidence
intervals.

In Section 2, we present the concepts of positive dependence, global measures of dependence, local
measures of dependence, and association measures for categorical data. Application to Boeing 777
manufacturing system is descried in Section 3. Finally, summary and some discussion are provided
in Section 4.

2 CONCEPTS AND MEASURES OF BIVARIATE DEPENDENCE

Concepts of stochastic dependence for a bivariate distribution play an important role in statistics.
There are numerous examples of dependence in medical study, economic study, reliability en-
gineering. A complete review on this topic can be found in Joe (1997), Lai and Xie (2006) and
Balakrishnan and Lai (2009). In this tutorial, we mainly review positive quadrant dependent (PQD)
concept, global measures of dependence, local measures of dependence and some association measures
for categorical data.

2.1 Concept of Positive Quadrant Dependence

Two random variables X and Y are positively quadrant dependent (PQD) if P(X > x,Y > y)≥ P(X >
x)P(Y > y) for all x and y, or equivalently, P(X ≤ x,Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y) for all x and y. We
say X and Y are negatively quadrant dependent (NQD) if the inequalities are reversed. X and Y are
PQD if the probability that they are simultaneously small or large is at least as great as it would be
if they were independent. The concept of PQD is widely use statistics like reliability applications
(Barlow and Proschan 1981), partial sums (Robbins 1954), order statistics (Robbins 1967), analysis of
variance (Kimball 1951)andcontingency table (Douglas, Fienberg, Lee, Sampson, and Whitaker 1990).
There are families of bivariate distributions that are PQD. Lai and Xie (2006) provides list of well
known PQD bivariate distributions that can be used to model stochastic dependence.

PQD is a weaker notion of positive dependence. Positive dependence means that large values of Y
accompany large values of X , and small values of Y accompany small values of X . A stronger notion of
positive dependence is called totallypositive oforder2 (TP2). That is, for all x1 < x2 and y1 < y2, the joint
density function f (x,y) of (X ,Y ) satisfies the inequality f (x1,y1) f (x2,y2)≥ f (x1,y2) f (x2,y1). It can
shown that if f is TP2, then bivariate distribution function F(x,y) and bivariate survival function S(x,y)
are also TP2, i.e. F(x1,y1)F(x2,y2)≥ F(x1,y2)F(x2,y1) and S(x1,y1)S(x2,y2)≥ S(x1,y2)S(x2,y1) for
x1 < x2, y1 < y2. If F is TP2, then F is PQD.

2.2 Global Measures of Dependence

We often need to quantitively measure the strength or degree of dependence between two random
variables X and Y . Such measure can be expressed as a scalar, which is called global measure in
Drouet-Mari and Kotz (2001). Rényi (1959) proposed a set of seven conditions for global measures
of dependence. Lancaster (1982b) modified and enlarged Réyni set of axioms to nine conditions.
The main point of those axioms is to make us think about the meaning and measure of stochastic
dependence. There are three prominent global measures of dependence: Pearson’s product-moment
correlation coefficient, Kendall’s tau and Spearman’s rho.
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Pearson’s product-moment correlation coefficient is a measure of the strength of the linear rela-
tionship between two random variables. It is defined as

ρ(X ,Y ) =
E[(X −EX)(Y −EY )]

√

E(X −EX)2 ·
√

E(Y −EY )2
.

It is clear that −1 ≤ ρ(X ,Y ) ≤ 1. |ρ(X ,Y )| = 1 if X and Y are linearly dependent; If X and Y are
independent, then ρ(X ,Y ) = 0. However, zero correlation does not imply independence. ρ(X ,Y ) is
symmetric, ρ(X ,Y ) = ρ(Y,X) and invariant under linear transformations, i.e. ρ(X , f (Y )) = ρ(X ,Y )
if f is a linear function of Y . However, if f is a nonlinear function, ρ( f (X), f (Y )) is generally
different from ρ(X ,Y ). Suppose Y and X has a strong nonlinear relationship Y = X2 and X follows
a gamma distribution with parameters (δ ,θ), i.e. f (x) = θ δ xδ−1e−θx/Γ(δ ). It can be shown that ρ
is independent of θ and is an increasing function of δ . ρ varies from

√

2/3 when δ = 0 to 1 when
δ = ∞. Thus, the Pearson’s correlation coefficient can be lower than 1 if the dependence is nonlinear.
The correlation coefficient measures only linear association. It is not a good summary of association
if the scatter plot has a nonlinear pattern.

The usual formula to estimate the Pearson’s correlation coefficient in a sample of n bivariate
observations (x1,y1),(x2,y2), . . . ,(xn,yn) is

r =
∑n

i=1(xi − x̄)(yi − ȳ)
√

∑n
i=1(xi − x̄)2(yi − ȳ)2

,

where x̄ and ȳ are sample means. A disadvantage of r is that it is very sensitive to outliers in the sample.
The sample distribution of r has been thoroughly reviewed in (Johnson, Kotz, and Balakrishnan 1995),
Chapter 32. The message about the robustness of r are conflicting. Researchers should be careful
of the underlying assumptions of the population before reporting the value of r. It should be kept
in mind that different data sets could give the same value of r and the value of r calculated from a
small sample may be totally misleading and should be viewed in the context of its likely sampling
error. For highly skewed bivariate distribution function, the Person’s correlation coefficient is not a
very useful measure of association, see Barnett (1985).

Kendall’s tau (τ) and Spearman’s rho (ρS), see Kendall (1938) and Spearman (1904), are the
well-known rank correlation coefficients. They are the measures of correlation between rankings,
rather than between actual values of X and Y . Thus, they are invariant by any increasing transformation
of X and Y ; while Pearson’s moment-product correlation coefficient (ρ) is invariant only under linear
transformations. For a set of bivariate parallel data (xi,yi) that are assumed to independently and
identically distributed, where i = 1, . . . ,n, the Kendall’s tau is defined as

τ ≡ Esign{(X1 −X2)(Y1 −Y2)},

where sign(x) is -1 for x < 0, 0 for X = 0, 1 for x > 0. For continuous probability distribution, let
p be the probability that the order of the coordinate 1 observations is the same as the order of the
coordinate 2 observations

p = P[(X1 −X2)(Y1 −Y2) > 0].

Then it can be shown that τ = 2p−1. It follows that −1 ≤ τ ≤ 1, and τ = 1 if p = 1/2. A conceptual
drawback of Kendall’s tau is that the interpretation of τ needs two pairs. Consider the times to finish
two jobs when building a Boeing 777 airplane. If job A finish time for airplane 1 is longer than job
A finish time for airplane 2, Kendall’s tau measures if job B finish time for airplane 1 is also longer
than the job B finish time for airplane 2. Nelsen (1992) proved that τ/2 is an average measure of

256



Lu and Song

total positivity defined as

T =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
[ f (x2,y2) f (x1,y1)− f (x2,y1) f (x1,y2)]dx1dx2dy1dy2

for allx1 < x2 andy1 < y2, wheredensity function f (x,y) satisfies f (x2,y2) f (x1,y1)− f (x2,y1) f (x1,y2)≥
0 for all x1 < x2 and y1 < y2. Thus τ is a global measure of a strong dependence concept.

Kendall’s tau (τ) can be estimated from bivariate parallel data. Let aim = 1 if Xi > Xm, 0 if Xi = Xm,
-1 if Xi < Xm and let bim = 1 if Yi > Ym, 0 if Yi = Ym, -1 if Yi < Ym. In the case of complete data without
ties:

τ̂ =
∑i,m aimbim

n(n−1)
.

In the case of ties or censored data, the formula is generalized to

τ̂ =
∑i,m aimbim

[∑i,m a2
im ·∑i,m b2

im]1/2
.

The score for aim can be obtained by

(Di,Dm) Xi > Xm Xi = Xm Xi < Xm

(1,1) 1 0 -1
(0,1) 1 1 a[Ŝ(Xm)/Ŝ(Xi)]−1
(1,0) 1−2Ŝ(Xi)/Ŝ(Xm) -1 -1
(0,0) 1− Ŝ(Xi)/Ŝ(Xm) 0 Ŝ(Xm)/Ŝ(Xi)−1

where Ŝ(t) denotes the Kaplan-Meier estimate of the survival function. The value for bim is similarly
obtained. The variability of this estimate was also studied. See Brown, Hollander, and Korwar (1974),
Meier and Basu (1980), Oakes (1982) for more details.

Spearman’s rho (ρS) is a population version of the measure of association. It is a non-parametric
measure, independent of marginal transformations. For an arbitrary continuous marginal distributions,
it is defined by

ρS = 12
∫ 1

0

∫ 1

0
S(S−1

1 (u),S−1
2 (v))dudv−3,

where S(u,v) is the joint survival function of two random variables. This expression is not simple to
integrate and can be handled by numerical integration. However, in survival data, there could be a
point mass at ∞. Then Spearman’s rho can not be evaluated.

Let (X1,Y1),(X2,Y2),(X3,Y3) be three independent pairs of random variables with a common
distribution function F . ρS can also be defined to be proportional to the probability of concordance
minus the probability of discordance for the two pairs (X1,Y1) and (X2,Y3),

ρS = 3(P[(X1 −X2)(Y1 −Y3) > 0]−P[(X1 −X2)(Y1 −Y3) < 0]).

It is well know that

ρS = 12
∫ ∞

−∞

∫ ∞

−∞
[F(x,y)−FX(x)FY (y)]dFx(x)dFY (y),

see Schweizer and Wolff (1981). Thus, ρS/12 represents an average measure of quadrant dependence
with the average being taken with respect to the marginal distributions of X and Y . Note that we say
a pair (X ,Y ) is positively quadrant dependent (PQD) if F(x,y)−FX(x)FY (y) ≥ 0 for all x and y, and
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negatively quadrant dependent (NQD) if the inequality is reversed. It follows that ρS ≥ 0 if X and Y
are PQD, and ρS ≤ 0 if X and Y are NQD.

The standard estimate of ρS with complete data is based on the marginal ranks (Ri1,Ri2),

ρ̂S =
∑i[Ri1 − (n+1)/2][Ri2 − (n+1)/2]

n(n2 −1)/12
.

Ri1 is the rank of Xi among X1, . . . ,Xn and Ri2 is the rank of Yi among Y1, . . . ,Yn.
Both Kendall’s tau and Spearman’s rho are measures of rank correlations. But the values of ρS and

τ are often quite different. Some explicit relationships between ρS and τ have been derived for bivariate
normal distribution (ρS = 6

π sin−1(1
2 sin πτ

2 )), Farlie-Gumbel-Morgenstern bivariate distribution(ρS =
3τ/2) and Marshall and Olkin’s bivariate exponential distribution (ρS = 3τ/(2+τ)). A precise relation
between ρS and τ does not exit for every bivariate distribution. But we have the following inequalities
for general relationships between ρS and τ: −1 ≤ 3τ − 2ρS ≤ 1 and (1±ρS)/2 ≥ (1± τ)2/4, see
Kruskal (1958). When we apply Kendall’s tau and Spearman’s rho, we should keep in mind that
independence of X and Y implies τ = ρS = 0, but it does not hold to reverse. τ and ρS are less sensitive
to outliers compared with sample correlation r. There is very strong relationship between positive
dependence and τ , ρS. If X and Y are positively quadrant dependent, then τ ≥ 0 and ρS ≥ 0.

2.3 Local Measures of Dependence

Pearson’s moment-product correlation coefficient, Kendall’s tau and Spearman’s rho are global mea-
sures of dependence. They do not measure the dependence locally. They can be zero when X and Y are
not independent. A distribution with high ρS may not be a PQD, see Drouet-Mari and Kotz (2001).
Thus, the global measures of dependence have some drawbacks. To address the early-late depen-
dence, short-term and long-term dependence, and the time of maximal correlation between two survival
variables, we need to define a local measure of dependence.

LetV (x0,y0)be an open neighborhood of (x0,y0). A distribution F(x,y) is PQD in the neighborhood
V (x0,y0) if S(x,y) ≥ SX(x)SY (y) for all (x,y) ∈V (x0,y0). In the following, we list local dependence
measures.

• The local correlation coefficient is defined as, see Bjerve and Doksum (1993),

ρ(x) =
σX β (x)

(σX β (x))2 +σ(x)2 ,

where µ(x) = E[Y |X = x),σ2(x) = var(Y |X = x) and β (x) = ∂ µ(x)
∂x .

• InanopenneighborhoodV (x0,y0)of (x0,y0), localρS and τ aredefined(Drouet-Mari and Kotz 2001),

ρS,(x0,y0) =
12
∫ ∫

V (x0,y0)
(C(u,v)−uv)dudv

∫ ∫

V (x0,y0)
dudv

,

and

τ(x0,y0) =
4
∫ ∫

V (x0,y0)
C(u,v)dC−1

∫ ∫

V (x0,y0)
dC

,

WhereC is the copula corresponding to the bivariate distribution function of (X ,Y ). ρS,(x0,y0)/12
can be interpreted as the average of local PQD, while τ(x0,y0)/2 can be interpreted as the average
of local TP2.

258



Lu and Song

• Clayton (1978) and Oakes (1989) defined a local association measure as

ρ(x,y) =
S(x,y)∂ 2S(x,y)

∂x∂y
∂S(x,y)

∂x
∂S(x,y)

∂y

.

Here, the local dependence is measured at a single point (x,y). It is shown in Gupta (2003)
that ρ(x,y) > 1 if and only if P(X > x,Y > y|X > x′,Y > y′) is increasing in (x′,y′) for all
(x,y). ρ(x,y) = 1 if and only if X and Y are independent.

• A local dependence measure by Holland and Wang: consider a r× s contingency table
with cell proportions pi j. the cross-product ratios: αi j = (pi j pi+1, j+1)/(pi, j+1 pi+1, j) for
1 ≤ i ≤ (r−1),1 ≤ j ≤ (s−1), or γi j = logαi j measures the association in the 2×2 subtables
with pairs of adjacent rows and columns. Motivated by this, Holland and Wang (1987a) and
Holland and Wang (1987b) defined a local dependence measure

γ(x,y) = lim
dx,dy→0

1
dxdy

log

(

f (x,y) f (x+dx,y+dy)
f (x+dx,y) f (x,y+dy)

)

=
∂ 2

∂x∂y
log f (x,y),

where f (x,y) is the bivariate density function and its second order partial derivative exists.
γ(x,y) is shown to be an appropriate local measure of TP2 dependence. Also, −∞ < γ(x,y) < ∞
and γ(x,y) = 0 if and only if X and Y are independent. Note that the three global measures
may be zero without X and Y being independent.

• Let µ(x) = E(Y |X = x) and µ(y) = E(X |Y = y). Bairamov, Kotz, and Kozubowski (2003)
defined a local linear dependence function H(x,y) as

H(x,y) =
E(X −µ(y))E(Y −µ(x))

√

E(X −µ(y))2E(Y −µ(x))2
.

Clearly, H(x,y) is obtained from Pearson’s correlation coefficient by replacing E(X) and E(Y )
by conditional expectations µ(x) and µ(y), respectively. The concept of local dependence and
measures of local dependence still remain to be fully developed. The current local dependence
measures provide us more detailed information about dependence. For application of local
dependence measures in survival analysis, see Drouet-Mari and Kotz (2001).

2.4 Association Measures for Categorical Observations

Consider Job A and Job B when building a Boeing 777 airplane. From historical data, we observe the
number of delay and on-schedule status of Job A and Job B for n 777 airplanes. Let n1 be the number
of airplanes with delayed Job A and delayed Job B, n2 be the number of airplanes with delayed Job
A and on-schedule Job B; n3 be the number of airplanes with on-schedule Job A and delayed Job
B; n4 be the number of airplanes with on-schedule Job A and on-schedule Job B. We would like
to examine if there is evidence of association between Job A and Job B (e.g. if Job A is delayed,
how likely the Job B will also be delayed?) and if so, how strong is it? In this section, we will
review three ways to measure the strength of association for categorical data: comparing proportions,
odds and odds ratios, concordant and discordant pairs. The two main references for this section are
Agresti and Finlay (1997) and Agresti (2002).

• Comparing proportions: We treat the samples as independent binomials. Let π1 be probability
that Job B is delayed in the group that Job A is delayed. Let π2 be probability that Job B is
delayed in the group that Job A is on schedule. The estimates of π1 and π2 are π̂1 = n1/(n1 +n2)
and π̂2 = n3/(n3 +n4), respectively. The difference of sample proportions π̂1− π̂2 must range
between -1 and 1. A difference close to one in magnitude indicates a high level of association
between Job A and Job B, while a difference close to zero represents little association. Then
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the 95% Wald confidence interval for π1 −π2 is:

(π̂1 − π̂2)± z0.025σ̂(π̂1 − π̂2),

where σ̂(π̂1− π̂2) = [(π̂1(1− π̂1)/(n1 +n2)+ π̂2(1− π̂2)/(n3 +n4)]
1/2. If the 95% confidence

interval is on the right side of 0 and excludes 0, then there is evidence that if Job A is delayed
then Job B will also be delayed. The further the low end of 95% away from 0, the stronger
the evidence. If the confidence interval is on the left side of 0 and excludes 0 or include 0,
then delay status of Job B is not strongly associated with delay status of Job A.

• Odds and odds ratios: For a probability π success, the odds are defined to be θ = π/(1−π).
The odds are nonnegative and θ > 1 when a success is more likely to occur than a failure.
Consider a 2×2 table with joint probability{πi j}where i = 1,2, j = 1,2. That is, the probability
for (X ,Y ) to be in row i and column j is πi j. The odds of success in each row are θi = πi1/πi2,
where i = 1,2. The ratio of the odds θ1 and θ2

Θ =
θ1

θ2
=

π11π22

π12π21

is called the odds ratio. The odds ratio is nonnegative. If Θ = 1, i.e. θ1 = θ2, corresponds to
independence of X and Y . If 1 < Θ < ∞, the subjects in row 1 are more likely to have success
than subjects in row 2, i.e. π1 > π2. If 0 < Θ < 1, then π1 < π2. By definition of odds ratio,
we have that the odds ratio is invariant to orientation of the table. For observations with cell
counts {ni j}, the sample odds ratio is

Θ̂ = (n11n22)/(n12n21).

The Wald (1−α)×100% confidence interval for logΘ is

logΘ̂± zα/2σ̂(log Θ̂),

where σ̂(log Θ̂) =
√

1/n11 +1/n12 +1/n21 +1/n22. For small sample size, a confidence
interval for Θ is obtained from inverting the test H0 : Θ = Θ0 conditional observing n11 = ko. For
Ha : Θ > Θ0, the p-value is P = ∑k≥ko

f (k;n1+,n+1,n,θo) . For Ha : Θ < Θ0, the p-value is P =
∑k≤ko

f (k;n1+,n+1,n,θo). Here, n1+ = n11 +n12, n+1 = n11 +n21, n = n11 +n12 +n21 +n22,
and

f (k;n1+,n+1,n,Θo) =

(n1+
k

)(n−n1+
n+1−k

)

∑min(n1+,n+1)
l=max(0,n1++n+1−n)

(n1+
l

)(n−n1+
n+1−l

)

Θl
0

.

• Concordant and discordant pairs: This method is useful only when the categories can be
ordered. A pair of observations is concordant if the subject who is higher on one variable is
also higher on the other variable. A pair of observations is discordant if the subject who is
higher on one variable is lower on the other. If a pair of observations is in the same category
of a variable, then it is neither concordant or discordant and is said to be tied on that variable.
Consider the following two-way table that categorizes a sample of people in the work force by
income level (high or low) and educational level (end after high school or end after college).
In Table 1, d people have high education and high income, a people have low education and
low income. Thus, there are C = ad concordant pairs. Also, b people have low education high
income, c people have high education and low income. Thus, there are D = bc discordant pairs.

The strength of association between education levels and income levels can be measured
by calculating the difference of proportions of concordant (C/(C + D) in this example) and
proportion of discordant pairs (D/(C + D) in this example). We will give definition of such
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Income Level
Low High

Education High School a b
Level College c d

Table 1: An illustrated example of people by income level and educational level.

association measure for I × J table. Consider two independent observations from a joint
distribution {πi j}. For that pair, the probabilities of concordance and discordance are

Πc = 2∑
i

∑
j

πi j

(

∑
h>i

∑
k> j

πhk

)

, Πd = 2∑
i

∑
j

πi j

(

∑
h>i

∑
k< j

πhk

)

.

Given a pair is untied, Πc/(Πc +Πd) is the probability of concordance and Πd/(Πc +Πd) is
the probability of discordance. The difference of these two probabilities is called gamma,

γ =
Πc −Πd

Πc +Πd
.

It follows that −1 ≤ γ ≤ 1. A positive value of γ indicates a positive association, while a
negative value of γ indicates a negative association. If γ is close to 0, then it indicates a very
weak association. If γ is close to -1 or 1, then it indicates a very strong association. By
definition of γ , we can see that it is not very sensitive to sample size. Note that γ = 1 if Πd = 1
and γ = −1 if Πc = 0. Independence implies γ = 0, but the converse is not true. In Table 1,
The estimate of gamma is

γ̂ =
C

C +D
−

D
C +D

=
C−D
C +D

.

In order to have γ̂ = 1, we must have D = 0, i.e. b = 0 or c = 0. Thus, whenever we have
observations with b or c close to 0 such that D is very small, the γ̂ value will be equal to 0.

3 APPLICATION TO BOEING 777 PRODUCTION SYSTEM

Boeing 777 manufacturing system consists of a huge number of jobs. The whole manufacturing
process is divided into a number of major assembly areas (MAA). The jobs in each major assembly
area are grouped into so-called “milestones” at Boeing. As for any large-scale production system,
it needs an automated tool for team leaders and managers to understand the current production
status, find the root cause of problems and estimate the effect of current production status on the
overall scheduled plan. Thus, understanding the dependence structures and forecasting status of next
production process within each major assembly area and across different major assembly areas at
both job level and milestone level are essential to estimate resource planning and prioritize tasks in
manufacturing Boeing 777 airplanes. In this section, we will apply concepts and measures of bivariate
dependence to Boeing 777 manufacturing system. Some probabilistic models will also be presented
to forecast the future manufacturing process based on the given manufacturing status. Monte-Carlo
simulation approaches will be used to provide corresponding confidence intervals.

3.1 Association of Milestones and Jobs in Boeing 777 Production System

Consider two milestones (denoted by MS1 and MS2) that are either within the same Boeing 777 major
assembly area or different Boeing 777 major assembly areas. Define the finish time of a milestone as
the last finish time of the job in the milestone list. The database recorded the beginning time of each
major assembly area for manufactured Boeing 777 airplanes, so the difference in minutes between the
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milestone finish time and its corresponding starting time is regarded as the time needed to finish the
milestone. We say a milestone was delayed if that milestone’s finish time was behind its scheduled
finish time, on schedule otherwise. After removing 4 outliers due to engineering reasons, the data
for MS1 and MS2 are given in Table 2. Let π1 be the true probability that MS2 is delayed if MS1 is
on schedule; π2 be the true probability that MS2 is delayed if MS1 is delayed. Using the association
measure by comparing proportions for categorical data, the 95% confidence interval for π1 −π2 is
(-0.09, -0.07). Although the 95% confidence interval is to the left side of 0. But it is very close to
0. Thus, there is no strong statistical evidence to support the association between these two milestones.

MS2

on schedule delayed
MS1 on schedule 96 0

delay 12 1

Table 2: 2×2 contingency table for MS1 and MS2.

On the other hand, we use the three global measures of dependence: Pearson’s moment-product
correlation coefficient, Kendall’s tau and Spearman’s rho to study the dependence between MS1
and MS2. The function “cor.test” in R provides tests for association between paired samples us-
ing these three global measures. R is a free software environment for statistical computing and
graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS, see
<http://www.r-project.org/>. From Table 2, we know that there are 109 samples for
MS1 and MS2. This sample size is not large enough to invoke the large-sample theory (e.g. the
Central Limit Theorem). Also, Plots of 109 times needed to finish MS1 and MS2 does not suggest
any obvious parameter distribution fitting. Thus, we will apply Bootstrap confidence intervals for
estimated global measures of dependence between MS1 and MS2. In statistics, bootstrapping is a
modern, computation-intensive approach to statistical inference based on resampling methods, see
Efron and Tibshirani (1993). A (1− al pha)× 100% bootstrap confidence interval for an estimate
denoted by θ (in this case, θ is Pearson’s ρ , or Kendall’s τ , or Spearman’s ρS) is obtained by the
following procedures:

• Obtain a single sample of size n from the population under study and calculate θ̂ . θ̂ is an
estimate of θ based on the sample.

• Generate a bootstrap sample of the same size n by resampling with replacement from original
sample.

• Calculate θ̂ ∗ using the generated bootstrap resample.
• Repeat above two steps for a large number N to obtain and order θ̂ ∗

1 , θ̂ ∗
2 , . . . , θ̂ ∗

N from the
smallest to the largest.

• The (1−α)×100% bootstrap confidence interval for θ is obtained by taking the (α/2)×100%
and (1−α/2)×100% percentiles of the ordered θ̂ ∗

1 , θ̂ ∗
2 , . . . , θ̂ ∗

N as endpoints.

Pearson’s ρ Kendall’s τ Spearman’s ρS

Estimates 0.03 0.06 0.08
95% confidence interval (-0.17, 0.20) (-0.07, 0.19) (-0.12, 0.27)

Table 3: Global measures of dependence between MS1 and MS2.

Take α = 0.05 to obtain 95% confidence interval. Table 3 lists the calculated Pearson’s ρ , Kendall’s
τ and Spearman’s ρS based on original 109 observed times needed for MS1 and MS2, and corresponding
95% bootstrap confidence intervals. The three 95% bootstrap confidence intervals all contain zero.
Thus, there is no strong statistical evidence to support the association between MS1 nd MS2. This is
consistent with the results obtained by comparing proportions. There is no apparent pattern for 109
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observed time to finish MS1 and MS2, see Figure 1. This further confirms our analysis using measures
of dependence.

Figure 1: Scatter plot of time needed to finish MS1 and MS2.

We apply above study to all milestones and jobs in the Boeing 777 production system to reveal their
dependence structure. This will pave the step to probabilistically forecast future status of milestones
and jobs for those with interdependence.

3.2 Probabilistic Forecast Models for Boeing 777 Production System

Consider two dependent milestones MS1 and MS2 with observed time to finish MS1 and MS2:
(T i

MS1
,T i

MS2
) for i = 1,2, . . . ,n. We can estimate the probability P(TMS1 < t1,TMS2 < t2). Then we can

address the following questions:

• Estimate P(TMS2 > TMS1) to examine if MS2 finishes later than MS1.
• Estimate P(TMS2 < t2|TMS1 < t1). Set t2 be the scheduled finish time of MS2. Then we can

examine the probability of finishing MS2 on schedule conditional current status of MS1.
• Set P(TMS2 < t2|TMS1 < t1) = 0.95. Then we can estimate the time needed to finish MS2 with

probability 0.95 conditional on finishing time of MS1.
• Examine if MS1 and MS2 are PQD or NQD by comparing values P(MS1 > t1,MS2 > t2) and

P)MS1 > t1)P(MS2 > t2). This comparison will shed light on fitting appropriate bivariate
distribution functions.

Note that if the two milestone MS1 and MS2 are from different major assembly areas MAA1
and MAA2 such that MAA2 can not begin until MAA1 is finished. It follows that TMS2 > TMS1 by
choosing the same starting reference time, say the beginning time of MAA1. We need to fit bivariate
distribution function with this constraint. Since a milestone status could be affected by more than one
other milestones - the same for jobs. Assume that milestones MS j, j = 1, . . . ,J, affect a milestone
MS independently, then we can estimate the overall effects of milestones MS j, j = 1, . . . ,J, by

P(TMS < t|TMS1 < t1, . . . ,TMSJ < tJ) = ΠJ
j=1P(TMS < t|TMS j < t j).
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If a milestone is shown to be unaffected by any other milestones. We can directly estimate P(TMS < t)
from data. Given how long this milestone have been worked, we can estimate P(TMS < t + s|TMS = s)
- the probability to finish this milestone with additional time s.

Estimation of above probability distributions can be empirically, parametrically. We can also
consider effects of other factors in the modeling if necessary. Figure 2 shows empirically probabilistic
forecast of MS2 conditional on finishing MS1 in 1000 minutes.

Figure 2: Empirical probabilistic forecast of milestone MS2 conditional on milestone MS1.

We can extend the above probabilistic models to forecast jobs. However, there are often many
data issues in a large-scale production system. In Boeing 777 production system, there is uncertainty
about the starting time for each job, although the records of job finish time are very robust. We know
that a job can not start earlier than the starting time of the major assembly area to which the job
belongs and should center around the scheduled starting time of the job. This shows that the true
starting time of a job follows a triangular distribution. We can then simulate the true starting time
for each recoded job N times and obtain the time needed to finish that job by taking the difference
between the job’s complete time and simulated starting time. Thus, the corresponding probabilistic
forecast and its confidence interval can be estimated N times from simulated data.

4 SUMMARY AND DISCUSSION

In this tutorial, we review the concept of positive dependence, global and local measures of dependence
and measures of association for categorical data. We then apply these concepts and measures to a large-
scale production system - Boeing 777 manufacturing system. Based on the results from dependence
study, some probabilistic models and simulation approaches are also provided for this real-world
problem. In the following, we present some brief discussion.

• We mainly review some classical concepts and measures for bivariate dependence. There
are other dependence concepts like complete dependence, monotone dependence, regional
dependence, stochastically increasing. Other measures of dependence are also available.
Examples are Gini measure (Nelsen 1999), quadrant test of Blomqvist (1950), measures of
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dependence by Schweizer and Wolff (1981), and matrix correlation, see Lancaster (1982a)
and Lancaster (1982b).

• There is no universal answer to the question of the best measure of dependence. It needs not
only mathematical or statistical concepts and measures, but also deep engineering knowledge
about the problem to better model the dependence.

• It is often very difficult to describe the dependence between two random variables X and Y .
We are essentially to study if there is better design in the case of reliability analysis.

• Independence is still commonly assumed in statistical analysis and correlation is widely used.
We should promote the application of other concepts of dependence. For example, PQD or
NQD can be relatively easy to verify, as many nonparametric methods have been developed
for various bivariate data. The dependence structure will shed light on choosing appropriate
bivariate distribution functions with characteristics of such dependence.

• Most concepts and measures of dependence are static in the sense that they are invariant to
time and space. However, the degree of dependence could time-indexed (e.g. in survival
analysis) or even space-indexed (e.g. in mobile system). Such concepts and measures remain
to be fully developed.

• In a large-scale production system, a component could depend on more than one component.
Furthermore, the dependence could be dynamic. We need to develop concepts and measures
to address this need. We also need to be very careful about the probabilistic modeling of a
component’s behavior by considering the complicated interdependence. In particular, we need
to combine engineering understanding of the system and statistical study of dependence mea-
sures to carefully examine various assumptions of independence or conditional independence
among components in the system.

• The interdependence structure are becoming more and more complex in modern manufacturing
system. There is a need for an automated tool to capture the dependence among components in
the system and forecast a component’s behavior conditional on the other components’ status.
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