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ABSTRACT

In this introductory tutorial we discuss the problem of pricing financial derivatives, the key application of
Monte Carlo in finance. We review the mathematics that uses no-arbitrage principle to price derivatives
and expresses derivatives price as an expectation under the equivalent martingale measure. In the
presentation at the conference we will also elaborate on the use of Monte Carlo methods for pricing
American options and in portfolio risk measurement.

1 INTRODUCTION

A key application of Monte Carlo methods in modern finance is in pricing and hedging complex
financial derivatives especially when these derivatives have early exercise ‘American’ features built
into them. Monte Carlo methods are also used in risk management for credit, market as well as
operational risks. These methods increasingly find utility in portfolio optimization as well as in model
calibration. In this introductory tutorial we spell out the underlying mathematics that makes derivatives
pricing amenable to Monte Carlo. We briefly review the framework for pricing American/Bermudan
options and some related literature. At the presentation in the conference we will also review the
techniques developed to price American/Bermudan options as well as the use of Monte Carlo methods
in portfolio risk measurement.

Recall that options are popular financial derivatives that give the buyer an option but not an
obligation to engage in specific transactions related to the underlying assets. For instance, a call
option allows the buyer an option but not an obligation to purchase an underlying asset at a specified
price at a particular time in future, referred to as time to maturity. Similarly, a put option gives the
buyer the option but not an obligation to sell an asset at a specified price at the time to maturity.
Broadly speaking, payoffs from options are a function of the trajectory followed by the underlying
asset prices up to a specified time. European options can be exercised only at a fixed time, while
American options can be exercised at any time up to a fixed time. This early exercise opportunity
embedded in American options makes the problem of pricing them far more challenging. Bermudan
options are intermediate between European and American options in that they can be exercised at
any of the finite number of specified set of times. If the number of exercise opportunities are large
enough and well spaced, the associated Bermudan option price closely approximates the price of an
American option. Typically, American options are numerically priced by pricing a Bermudan option
that closely approximates it.

Theno-arbitrageprinciple forpricingEuropeanderivatives, introducedbyBlack and Scholes (1973),
relies on replicating the pay-off from the derivative in every possible scenario by a series of intricate
trades involving the underlying more basic securities, carried out every infinitesimal interval till option
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maturity. Then, since the derivative and this trading strategy have identical payoffs, the no-arbitrage
principle posits that they must have the same price, otherwise an arbitrage is created (positive profits are
generated while taking zero risk). This reasoning allows European derivative’s price to be expressed
as an expectation of its discounted payoff under a probability measure different from the physical
measure, referred to as risk neutral or equivalent martingale measure. This representation makes the
pricing problem amenable to Monte Carlo. We briefly review the associated mathematics in Section
2 (see, e.g., Shreve (2004), Duffie (1996), Steele (2001) for a comprehensive yet accessible account).

American or Bermudan options have the early exercise feature that add further non-trivial challenges
to pricing them. Essentially, one may associate with such an option an exercise policy, i.e., a prescription
that specifies in every scenario when to exercise the option. Using the no-arbitrage principle, the
value of the option under each such policy can again be expressed as an expectation of a random
variable. The rational price for the American option equals that of the policy having the maximum
value (otherwise, an arbitrage can be created, see Duffie (1996)). Finding this policy and hence the
value of the option is difficult. We outline the mathematical framework to analyze American options
and briefly review some of the literature that addresses this problem using Monte Carlo, in Section 3.

2 Mathematical Framework

We now briefly outline the argument to construct a replicating portfolio for a derivative that shows
that the no-arbitrage derivative security price is the expectation of its discounted payoff under an
equivalent martingale measure. We do this in a simple setting of two securities. One risky security
or stock price. The other a risk free security or the money market account. First step in this effort
is to find an equivalent martingale measure under which both the securities when discounted are
martingales. This ensures that any portfolio that dynamically trades in the two securities is also a
martingale. In particular, if the derivative security can be replicated by such a portfolio, its price
process is a martingale. This provides a conditional expectation representation of the option price
process.

This argument requires two broad steps. First involves identifying the equivalent martingale
measure. Crucial to this is the use of Girsanov Theorem. Second requires identifying the replicating
portfolio for a given derivative. Here the Martingale Representation Theorem plays a key role. Note
that a market where all derivative securities can be replicated are referred to as complete (else,
incomplete).

2.1 The Model

Suppose that the stock price (St : 0 ≤ t ≤ T ) follows the stochastic differential equation (SDE)

dSt = µtStdt +σtStdWt

under the probability measure P . This is a differential and a convenient shorthand notation for the
rigorous form

St = S0 +
∫ t

0
µsSsds+

∫ t

0
σsSsdWs. (1)

In the above equation, (µt : 0 ≤ t ≤ T ) and (σt : 0 ≤ t ≤ T ) are allowed to be a random processes
where for each t, µt and σt are known by time t (that is, they are adapted processes). (Wt : 0 ≤ t ≤ T )
is Brownian motion: It has continuous paths, its increments are stationary and independent, W (0) = 0
and W (t) has a Gaussian distribution with mean zero and variance one.

∫ t
0 µsSsds is the usual Lebesgue

integral, however
∫ t

0 σsSsdWs is the stochastic Ito integral, which under mild conditions can be seen
to be zero mean martingales.
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Equation (1) may be best viewed through its discretized Euler’s approximation at times t and
t +δ t:

St+δ t −St

St
= µtδ t +σt(Wt+δ t −Wt).

This suggests that µt captures the drift in the instantaneous return from the security at time t. Similarly,
σt captures the sensitivity to the independent noise Wt+δ t −Wt present in the instantaneous return at
time t.

The money market (Rt : 0 ≤ t ≤ T ) is governed by a short rate adapted stochastic process
(rt : 0 ≤ t ≤ T ) and satisfies the differential equation

dRt = rtRtdt

with R0 = 1. Here short rate rt corresponds to instantaneous return on investment in the money market
at time t and is known at time t. In particular, $1 invested at time zero in the money market equals
Rt = exp(

∫ t
0 rsds) at time t.

2.2 Equivalent martingale measure

We first look for a probability measure under which the discounted security process R−1
t St is martingale.

For this purpose, first recall the Ito’s lemma

d f (t,St) = ft(t,St)dt + fx(t,St)dSt +
1
2

fxx(t,St)σ2
t dt (2)

where ft denotes the partial derivative w.r.t. the first argument of f (·, ·) and fx and fxx denote the first
and the second order partial derivatives with respect to its second argument.

Using the Ito’s lemma, the discounted stock price process satisfies the relation

d(R−1
t St) = −rtR

−1
t St +R−1

t dSt = R−1
t St ((µt − rt)dt +σtdWt) .

(This relation follows from (2) if we assume that the short rate process is deterministic. However,
this result is true more generally as can be seen by applying the multi-dimensional Ito’s lemma).

Now we look for a probability measure that makes this a martingale, that is, under which the drift
coefficient associated with the dt term is zero.

Girsanov theorem is useful here. For that consider the positive process

Yt = exp

(

∫ t

0
νsdWs −

1
2

∫ t

0
ν2

s ds

)

for a well behaved process (νt : 0 ≤ t ≤ T ). Using Ito’s lemma it can be seen that

dYt = YtνtdWt

or in its meaningful form

Yt = 1+
∫ t

0
YsνsdWs.

Under technical conditions the stochastic integral is a mean zero martingale so that (Yt : 0 ≤ t ≤ T ) is
a positive mean 1 martingale. Let Pν(A) = EP [YT I(A)]. This is clearly a probability measure that
is equivalent to the original probability measure P (Two probability measures are equivalent if they
assign positive probability to same sets). Girsanov Theorem states that under the probability measure
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Pν , under technical conditions on (νt : 0 ≤ t ≤ T ), the process (W ν
t : 0 ≤ t ≤ T ) where

W ν
t = Wt −

∫ t

0
νsds

(or dW ν
t = dWt − νtdt in the differential notation) is a standard Brownian motion. Equivalently,

(Wt : 0 ≤ t ≤ T ) is standard Brownian motion plus the drift process (
∫ t

0 νsds : 0 ≤ t ≤ T ).
It is now easy to see from Girsanov Theorem that if σt > 0 almost surely, then under the probability

measure Pν with νt = rt−µt
σt

the discounted stock price process is a martingale, so that Pν is the
equivalent martingale measure. This is true as

d(R−1
t St) = R−1

t Stσt(dWt −νtdt) = R−1
t StσtdW ν

t

is a stochastic integral and hence a martingale (modulo technical conditions). It is easy to see by
applying the Ito’s formula (Note that St = RtXt where Xt = R−1

t St satisfies the SDE above) that

dSt = rtStdt +StσtdW ν
t . (3)

Hence, under the equivalent martingale measure Pν , the drift of the stock price process changes
from {µt} to {rt}. Therefore, Pν is also referred to as the risk neutral measure.

2.3 Replicating Portfolio Process

Now consider the problem of creating the replicating process for an option with pay-off H. For
instance, for a call option that matures at time T with strike price K, we have H = max(ST −K,0).

Define Vt for 0 ≤ t ≤ T so that

R−1
t Vt = EPν [R−1

T H|Ft ].

Here Ft denotes the information available by time t. Heuristically, this corresponds to knowing
(Ws : 0 ≤ s ≤ t). Also note that VT = H.

Our plan is to construct a replicating portfolio process (Pt : 0 ≤ t ≤ T ) such that Pt = Vt for all t.
Then, since PT = H we have replicated the option with this portfolio process and Pt then denotes the
price of the option at time t, i.e.,

Pt = EPν

[

exp

(

−
∫ T

t
rsds

)

H|Ft

]

. (4)

Then, the option price is simply the conditional expectation of the discounted option payoff under
the risk neutral or the equivalent martingale measure.

To this end, it is easily seen from the law of iterated conditional expectations that for s < t,

R−1
s Vs = EPν

(

EPν [R−1
T VT |Ft ]|Fs

)

= EPν [R−1
t Vt |Fs],

that is, (R−1
t Vt : 0 ≤ t ≤ T ) is a martingale. Martingale Representation Theorem essentially states

that if all the noise in the system is due to the Brownian motion then every martingale is a stochastic
integral. Hence, there exists an adapted process (wt : 0 ≤ t ≤ T ) such that

d(R−1
t Vt) = wtdW ν

t . (5)

Now consider a portfolio process (Pt : 0≤ t ≤ T ) with the associated recipe process (bt : 0≤ t ≤ T ).
This means that we start with wealth P0. At any time t, the number of stocks kept in the portfolio
equals bt . The portfolio value is denoted by Pt . The amount Pt −btSt is invested in the money market.
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Then, the portfolio process evolves as in

dPt = (Pt −btSt)rtdt +btdSt . (6)

The discounted portfolio process evolves as

d(R−1
t Pt) = R−1

t btSt ((µt − rt)dt +σtdWt) = R−1
t btStσtdW ν

t . (7)

Therefore, under technical conditions, the discounted portfolio process being a stochastic integral, is
a martingale under Pν .

From (5) and (7) its clear that if we set P0 = V0 and bt = wtRt
Stσt

then Pt = Vt for all t. In particular
we have constructed a replicating portfolio. In particular, under technical conditions, primarily that
σt > 0 almost surely, for almost every t every option can be replicated so that this market is complete.

2.4 Multiple Underlying Securities

The analysis can be similarly extended to d risky assets or stocks driven by m independent sources of
noise modeled by independent Brownian motions (W 1

t , . . . ,W m
t : 0 ≤ t ≤ T ). Specifically, we assume

that d assets (S1
t , . . . ,S

d
t : 0 ≤ t ≤ T ) satisfy the SDE

dSi
t = µ i

t S
i
tdt +

m

∑
j=1

σ i j
t Si

tdW j
t

for i = 1, . . . ,d. Here, we assume that each µ i and σ i j is an adapted process and satisfy restrictions
so that the integrals associated with the SDEs are well defined. In addition we let Rt = exp(

∫ t
0 r(s)ds)

as before.
Then it can be similarly seen that (see, e.g., Duffie (1996), Karatzas and Shreve (1998)) under

the no-arbitrage and some additional regularity conditions, the market is complete and there exists a
unique equivalent martingale measure under which the asset prices evolve according to the SDE’s

dSi
t = rtS

i
tdt +

m

∑
j=1

σ i j
t Si

tdB j
t (8)

so that each security has an instantaneous drift equal to rt . Here, (B j : j ≤ m) are again a collection
of independent standard Brownian motions under the equivalent martingale measure. Let Ẽ denote
the expectation operator under this measure. Then, the price of a derivative security at time t that
pays amount H at time T equals

Ẽ

(

exp(−
∫ T

t
rt)H|Ft

)

.

This can be estimated via Monte-Carlo simulation. To keep the discussion simple, we henceforth
assume that rt = r a constant.

Suppose that the payoff of the derivative security is a function of the asset prices at times
0 = t0 < t1 < t2 < .. . < tn = T 1. For example, consider an Asian call option on an asset i whose
discounted payoff equals

exp(−rT )(
1
n

n

∑
k=1

Si
tk −K)+

1Some of the discussion here also appeared in Bolia and Juneja (2005). We refer the reader to Bolia and Juneja (2005) where Monte Carlo
methods for pricing European and Bermudan options is covered in greater depth.
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where K denotes the strike price of the option. In such cases, if each σ i j
t is not a constant, it may be

difficult to generate samples of (Stk : k ≤ n) via simulation such that their joint distribution matches
the corresponding joint distribution of the solution of the SDE’s.

However, when σ i j
t = σ i j, a constant, then this is feasible. In that setting, we may set (by applying

Ito’s lemma to logSi
t)

Si
tk+1

= Si
tk exp(r− 1

2 ∑
j≤m

(σ i j)2)(tk+1 − tk)+
√

tk+1 − tk ∑
j≤m

σ i jNk+1, j) (9)

where Nk, j for each k and j are independent Gaussian random variables with mean zero and variance
one. In this case, the (Stk : k ≤ n) so generated have the joint distribution that matches the corresponding
joint distribution of the solution of the SDE’s (8).

In a general case, where {rt} and {σ i j
t } are adapted processes, generating exact distributions at

the selected times may not be practical and one resorts to generating the approximate time-discretized
version of the SDE using Euler’s scheme. This amounts to setting

Si
tk+1

= Si
tk +Si

tkrtk(tk+1 − tk)+Si
tk

√

tk+1 − tk
m

∑
j=1

σ i j
t Nk+1, j. (10)

This method will have a discretization error as the generated joint distributions will differ from those
corresponding to the SDE. To reduce the error larger number of well spaced times may be chosen
so that the accuracy is achieved at the cost of greater computational effort. We refer the reader to
Asmussen and Glynn (2007) for a discussion on improved discretization methods. Recently, there
has been some evolving literature on generating exact samples from one dimensional SDEs (see, e.g.,
Beskos and Roberts (2005), Chen (2010)).

The Monte-Carlo simulation in this setting may be implemented as follows: Generate samples
Nk, j for k = 1, . . . ,n and j = 1, . . . ,m (see any standard simulation text for algorithms for generating
N(0,1) random variable (rv), e.g., Glasserman (2004)) and use them to generate samples of (Si

tk :
i = 1, . . . ,d;k = 1, . . . ,n) using (9) or (10), whichever is appropriate. These are then used to arrive
at the sample value of the discounted payoff from the option, call it Ĥ1. This process is repeated
independently, say l times so that independent samples (Ĥi : i ≤ l) are obtained. The point estimate
of the (un-discounted) option price is given by

H̄ =
1
l ∑

i≤l

Ĥi.

Let σ2
X denote the variance of rv X and σX its standard deviation. Then from the central limit theorem,

an approximate 100(1−α)% confidence interval for H equals

H̄ ± z1−α/2
σĤ√

l
,

where z1−α is the solution to the equation

P(N(0,1) > z) = α.

In practice σ2
Ĥ

is not known and is estimated from the generated samples by

σ̄2
Ĥ =

1
l −1 ∑

i≤l

(Ĥi − H̄)2
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and σ̄Ĥ replaces σĤ in the approximate confidence interval. This is asymptotically valid as σ̄Ĥ
σĤ

→ 1
a.s. as l → ∞.

3 Pricing Bermudan Options

3.1 Mathematical Framework

We now construct a mathematical framework for pricing Bermudan options. Recall that American
options are approximately priced by discretizing the times of exercise and estimating the price of the
resulting Bermudan option.

Again, without essential loss of generality suppose that the option can be exercised only at T +1
times 0,1,2, . . . ,T . Denote the underlying security prices by (St ∈ ℜd : t = 0,1, . . . ,T ). In addition,
the description of the state at time t may include variables such as the value of stochastic interest
rates and volatilities, and supplementary path dependent information so that the resulting process is
Markov. Thus, each St may take values in a more general space denoted by S . The value of the
option at time t if exercised at that time, is denoted by gt : S → ℜ+ (i.e., its exercise value or intrinsic
value). Let Tk denote the set of stopping times taking value in {k,k + 1, . . . ,T} (recall that τ is a
stopping time w.r.t. {Sk} if {τ = k} is determined by observing {S1, . . . ,Sk}). Note that each stopping
time represents an exercise strategy by the owner of the option at time period k. Let

Jk(s) = sup
τ∈Tk

E[gτ(Sτ)|Sk = s], s ∈ S , (11)

where, the expectation is taken under the equivalent martingale measure. Then Jk(s) is the value of the
option at time k given that the option is not exercised before time k. The initial state S0 = s0 is fixed
and known. So, our pricing problem is to evaluate J0(s0). This formulation is sufficiently general to
include discounted payoffs through appropriate definition of the {Sk} and {gk} (see Glasserman 2004,
p.425), and hence these are not explicitly stated. It can be shown that (see, e.g., Duffie 1996) there
exists an optimal exercise policy specified by a collection of increasing stopping times (τ∗k : k ≤ T )
where

τ∗k = inf{m ≥ k : gm(Sm) ≥ Jm(Sm)}.
Then,

Jk(s) = E[gτ∗k (Sτ∗k )|Sk = s]

a.s. Note that knowing the optimal policy corresponds to knowing at each state at each time whether
it is optimal to exercise the option or to hold on to it.

Suppose that the pdf of Sk+1 conditioned on Sk = s evaluated at y is given by fk(s,y) under the
risk-neutral measure (for example, the expression for fk(s,y) can be easily derived using (9) or (10)
if either is appropriate). Let Qk(s) denote the conditional expectation

E[Jk+1(Sk+1)|Sk = s] =
∫

S

Jk+1(y) fk(s,y)dy. (12)

We refer to Q = (Qk(s) : s ∈S ,k ≤ T −1) as continuation value functions as Qk(s) denotes the value
of the option at time k at state s if it is not exercised at time k.

It is not feasible to evaluate Jk(s) by evaluating expectation E[gτ(Sτ)|Sk = s] for each stopping
time τ in (11). Fortunately, it can be shown that the value functions J = (Jk(s) : s ∈S ,k ≤ T ) satisfy
the following intuitively plausible backward recursions (see, e.g., Shirayev (1978)):

JT (s) = gT (s)

Jk(s) = max{(gk(s),Qk(s)} (13)
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Define PkH(·) as

(PkH)(s)
∆
= E[H(Sk+1)|Sk = s] =

∫

S

H(u) fk(s,u)du.

Then, an alternative set of recursions satisfied by the continuation value function Q = (Qk(s) : s ∈
S ,k ≤ T −1) is given by:

QT−1(s) = (PT−1gT )(s)

Qk(s) = (Pk max(gk+1,Qk+1))(s) (14)

for k = 0,1,2, ...,T −2.
Evaluating the value functions using these recursions would require discretizing state space and

then solving these recursions approximately. However, even this becomes computationally unviable
due to state-space blow-up when the dimension of the underlying process is large.

In the presentation we shall review some simulation methods in the literature to approximately solve
these backward recursions to estimate the value function and the associated optimal exercise policy (τ∗k :
k ≤ T ). These include the popular regression based methods introduced by Tsitsiklis and Roy (2001)
and Longstaff and Schwartz (2001). Haugh and Kogan (2004) and Rogers (2002) propose additive
duality for American options. Jamishidian (2007) develops multiplicative duality. Additive du-
ality is exploted by Andersen and Broadie (2004) to develop accurate and efficient pricing algo-
rithms (also see Broadie and Cao (2008)). Chen and Glasserman (2007) further exploit the addi-
tive and multiplicative duality to develop iterative schemes that converge to the true option value.
Kolodko and Schoenmakers (2006) Kolodko and Schoemakers (2006) develop an iterative procedure
for constructing stopping times that converge to the optimal stopping time. Juneja and Kalra (2009)
and Ehrlichman and Henderson (2007) relate additive and multiplicative duality approach to control
variate and importance sampling variance reduction techniques.
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