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ABSTRACT 

One of the most important but neglected aspects of a simulation study is the proper design and analysis of 
simulation experiments.  In this tutorial we give a state-of-the-art presentation of what the practitioner re-
ally needs to know to be successful.  We will discuss how to choose the simulation run length, the warm-
up-period duration (if any), and the required number of model replications (each using different random 
numbers).  The talk concludes with a discussion of three critical pitfalls in simulation output-data analy-
sis. 

1 INTRODUCTION 
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of fact, a very common mode of operation is to make a single simulation run of somewhat arbitrary length 
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samples from probability distributions are typically used to drive a simulation model through time, these 
estimates are just particular realizations of random variables that may have large variances.  As a result, 
these estimates could, in a particular simulation run, differ greatly from the corresponding true characte-
ristics for the model.  The net effect is, of course, that there could be a significant probability of making 
erroneous inferences about the system under study. 
 We now describe more precisely the random nature of simulation output.   Let �,, 21 YY  be an output 
stochastic process [see, for example, section 4.3 in Law (2007)] from a single simulation run.  For exam-
ple, iY  might be the delay in queue for the ith job to arrive at a single-server queueing system. Alterna-
tively, iY  might  be the total cost of operating an inventory system in the ith month.  The 'iY s  are random 
variables that will not, in general, be independent or identically distributed (IID).  Thus, many of the for-
mulas from classical statistics (see Section 2) will not be directly applicable to the analysis of simulation 
output data. 

Example 1. For the queueing system mentioned above, the delays in queue will not be independent, 
since a large delay for one customer waiting in queue will tend to be followed by a large delay for the 
next customer waiting in queue.  Suppose that the simulation is started at time zero with no customers 
in the system, as is usually the case.  Then the delays in queue at the beginning of the simulation will 
tend to be smaller than later delays and, thus, the delays  are not identically distributed. 

 Let 11 12 1, ,..., my y y  be a realization of the random variables mYYY ,,, 21 �  resulting from running the 
simulation with a particular set of random numbers 11 12, ,...u u .  If we run the simulation with a different 
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set of random numbers 21 22, ,...u u  , then we will obtain a different realization 21 22 2, ,..., my y y  of the ran-
dom variables mYYY ,,, 21 � .  (The two realizations are not the same since the different random numbers 
used in the two runs produce different samples from the input probability distributions.)  In general,  sup-
pose that we make n independent replications (runs) of the simulation (i.e., different random numbers are 
used for each replication, each replication uses the same initial conditions, and the statistical counters for 
the simulation are reset at the beginning of each replication) each of length m, resulting in the observa-
tions: 
 

11 1 1,..., ,...,i my y y  

21 2 2,..., ,...,i my y y  

���  

1,..., ,...,n ni nmy y y  
 
The observations from a particular replication (row) are clearly not IID.  However, note that 1 2, ,...,i i niy y y  
(from the ith column) are IID observations of the random variable iY , for 1,2,..., .i m�   More generally, 
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the same (joint) distribution.  This independence across runs is the key to relatively simple output-data 
analysis that is discussed in later sections of this paper.  Then, roughly speaking, the goal of output-data 
analysis is to use the observations jiy  (i !�"��$��%��m; j !�"��$��%��n) to draw inferences about characte-

ristics of the random variables mYYY ,,, 21 � . 
  

Example 2.  Consider a bank with five tellers and one queue, which opens its doors at 9 A.M., closes 
its doors at 5 P.M., but stays open until all customers in the bank at 5 P.M. have been served.  As-
sume that customers arrive with IID exponential interarrival times with mean 1 minute, that service 
times are IID exponential random variables with mean 4 minutes, and that customers are served in a 
first-in, first-out (FIFO) manner.  Table 1 shows two typical output statistics from 5 independent  rep-
lications  of  the  bank,  assuming that no customers are present initially.  Note that results from dif-
����������
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��	��������*�
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���������+��	���������������������	������������������	/��	�� 

Table 1: Results for 5 Independent Replications of the Bank Model 
 

Replication Average delay 
in queue

Average number 
in queue

1 1.53 1.52 
2 1.66 1.62 
3 1.24 1.23 
4 2.34 2.34 
5 2.86 2.83 

Our goal in this paper is to discuss methods for statistical analysis of simulation output data and to 
present the material with a practical focus.  Section 2 of this paper reviews formulas from classical statis-
tics based on IID data, which we will find useful later in this paper.  In Section 3, we discuss the two main 
types of simulations with regard to output-data analysis, namely, terminating and non-terminating.  Statis-
tical methods for analyzing each type are given in Sections 4 and 5, respectively.  Finally, we give a 
summary of this tutorial and three fundamental pitfalls in output-data analysis in Section 6. 
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 Portions of this paper are based on Chapters 4 and 9 of Law (2007).  Other references on output-data 
analysis are Alexopoulos (2007), Banks et al. (2010), and Nakayama (2008). 

2 REVIEW OF CLASSICAL STATISTICS 

Suppose that nXXX ,,, 21 �  are IID random variables with population mean and variance 2 and � � , re-
spectively.  Then unbiased point estimators for 2 and � �  are given by 
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Furthermore, an approximate 100(1 ) percent�� (0 1)�� �  confidence interval for � is given by 
  

2
1,1 /2( ) ( ) /nX n t S n n�� �	     

                              
where 1,1 /2nt �� �  is the upper 1 / 2��  critical point for a t distribution with 1n �  degrees of freedom.  If 
the sample size n 
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coverage probability arbitrarily close to 1 �� .  Alternatively, if the 'iX s  are normally distributed, then 
the coverage probability will be exactly 1 �� .  In practice, if the distribution of the 'iX s  is reasonably 
symmetric, then the coverage probability will be close to 1 ��  [see Law (2007, pp. 232-236)].  If we in-

crease the sample size from n to 4n, then the half-length of the confidence interval, 2
1,1 /2 ( ) /nt S n n�� � , 

will decrease by a factor of approximately 2, since there is an n in the denominator under the square-root 
sign. 
 As stated above, the 'iY s from one simulation run are not IID and, thus, Expressions (1), (2), and (3) 
are not directly applicable to their analysis.  However, if we take comparable output statistics from differ-
ent independent replications of a simulation model, then these observations are IID and the three expres-
sions are applicable. 
 

Example 3. For the bank simulation of Example 2, the five average delays in queue from column 2 of 
Table 1 are IID and, thus, Expressions (1), (2), and (3) could legitimately be used for their analysis.

3 TYPES OF SIMULATIONS WITH REGARD TO OUTPUT ANALYSIS 

The options available for designing and analyzing simulation experiments depend on whether the simula-
tion of interest is terminating or non-terminating, which depends on whether there is an obvious way for 
determining the simulation run length. 
 A terminating simulat
���
	���������/�
��������
	�����������������E that specifies the length of each 
run (replication).  Since different runs use independent random numbers and the same initialization rule, 
this implies that comparable random variables are IID.  The event E often occurs at a time point that has 
one of the following properties: 
 

(3) 

(2) 

(1) 
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 Beyond which no useful information is obtained 

 Specified by management. 

 
 The event E is specified before any runs are made, and the time of occurrence of E for a particular run 
may be a random variable.  Since the initial conditions for a terminating simulation generally affect the 
desired measures of performance, these conditions should be representative of those for the actual system. 
 

Example 4. A retail/commercial establishment (e.g., a bank) closes each evening.  If the establish-
ment is open from 9 to 5, the objective of a simulation might be to estimate some measure of the qual-
ity of customer service over the period beginning at 9 A.M. and  ending when the last customer who 
entered before the doors  closed  at 5 P.M. has been served.  In this case, E = {8 hours of simulated 
time have elapsed and the system is empty}, and the initial conditions for the simulation should be 
representative of those for the bank at 9 A.M. 

 
Example 5. Consider a military ground confrontation between a blue force and a red force.  Relative 
to some initial force strengths, the goal of a simulation might be to determine the (final) force 
strengths when the battle ends.  In this case, E !�K�
������������������������������������	��/�������
battle}.  An example of a condition that would end the battle is one side losing 30 percent of its force, 
since this side would no longer be considered viable.  The choice of initial conditions for  the simula-
tion, e.g., the number of troops and tanks for each force, is generally not a problem here, since they 
are specified by the military scenario under consideration. 

 
  A non-terminating simulation is one for which there is no natural event E to specify the length of a 
run.  This often occurs when we are designing a new system or modifying an existing system, and we are 
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 Consider the output stochastic process 1 2, ,...Y Y  for a simulation model. Let ( ) ( )i iF y I P Y y I� � � �  for 

1,2,...i � , where y is a real number and I represents the initial conditions used to start the simulation at 
time 0.  [The conditional probability ( )iP Y y I� � is the probability that the event { }iY y� occurs given the 
initial conditions I.]  For a manufacturing system, I might specify the number of jobs present, and whether 
each machine is busy or idle, at time 0.  We call ( )iF y I�  the transient distribution of the output process 
at (discrete) time i for initial conditions I.  Note that ( )iF y I�  will, in general, be different for each value 
of i and each set of initial conditions I.  For fixed y and I, the probabilities 1( )F y I� , 2 ( )F y I� ��%�����V�	�
a sequence of numbers.  If ( ) ( )iF y I F y�   as i �  for all y and any initial conditions I, then ( )F y is 
called the steady-state distribution of the output process 1 2, ,...Y Y .  Note that the steady-state distribution 

( )F y  does not depend on the initial conditions I. 
 A measure of performance for a non-terminating simulation is said to be a steady-state parameter if it 
is a characteristic of the steady-state distribution of some output stochastic process 1 2, ,... .Y Y   If the ran-
dom variable Y has the steady-state distribution, then we are typically interested in estimating the steady-
state mean ( )E Y� � . 
  

Example 6. Consider a company that is going to build a new manufacturing system and would like to 
determine the long-run (steady-state) mean hourly throughput of their system after it has been running 
long enough for workers to know their jobs and for mechanical difficulties to have been worked out.  
The system will operate continuously 24 hours a day for 7 days a week.  Let iN be the number of 
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parts manufactured in the ith hour.  If the stochastic process 1 2, ,...N N  has a steady-state distribution 
with corresponding random variable N, then we are interested in estimating the steady-state mean 

( )E N� � . 

4 STATISTICAL ANALYSIS FOR TERMINATING SIMULATIONS 

Suppose that we make n independent replications of a terminating simulation each terminated by the 
event E.  Let jX  be an output random variable defined over the jth replication, for 1,2,...,j n� ; it is as-
sumed that the 'jX s  are comparable for different replications.  Then the 'jX s  are IID random variables.  

For the bank of Example 4, jX  might be the average delay 
1

/
N

i
i

D N
�
� over a day from the jth replication, 

where N (a random variable) is the number of customers served in a day and iD  is the delay in queue of 
the ith arriving customer.  For the combat model of Example 5, jX  might be the number of red tanks de-
stroyed on the jth replication. 
 
 Suppose that we would like to obtain a point estimate and confidence interval for the mean 

( )E X� � , where X is a random variable defined on a replication as described above.  Make n indepen-
dent replications of the simulation and let nXXX ,,, 21 �  be the resulting IID random variables.  Then, 
by substituting the 'jX s  into Expressions (1), (2), and (3), we get that ( )X n  is an unbiased point estima-
tor for � , and an approximate 100(1 ) percent��  confidence interval for �  is given by  
 

2
1,1 /2( ) ( ) /nX n t S n n�� �	  

 
Example 7. A small factory consists of a machine and an inspector, as shown in Figure 1.  Unfi-
nished parts arrive to the factory with exponential interarrival times having a mean of 1 minute.  
Processing times at the machine are uniformly distributed on the interval  [0.65, 0.70] minute, and 
subsequent inspection times at the inspector are uniformly distributed on the interval [0.75, 0.80].  
(The assumption of uniformity is for ease of exposition, and is not likely to be valid in a real-world 
����
��
���G��X
��������������
�	���������	�������������������������	�	���
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����Y�"\���r-
�������������	�������������������	������^����������
���������/��^���?_���*����	������		�������
be of infinite capacity.)  The machine is subject to randomly occurring breakdowns.  In particular, a 
new (or freshly repaired) machine will break down after an exponential amount of calendar time with 
a mean of 6 hours. Repair times are uniform on the interval [8, 12] minutes.  If a part is being 
processed when the machine breaks down, then the machine continues where it left off upon the com-
pletion of repair.  Assume that the factory is initially empty and idle. 

   
  
 
 
 

Figure 1: Small Factory 
  
 The factory gets an order to produce 2000 parts and, thus, a simulation of this system can be con-
sidered to be terminating with E = {2000 parts have been completed}.  Let T be the time required to 
complete the required 2000 parts.  Then the company would like a point estimate and a 95 percent 
confidence interval for the mean ( ).E T� �  

Machine Inspector

0.9 Good

0.1 Bad
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 We made 10 independent replications of the simulation and obtained the following observed val-
ues for T (in hours): 

 
1 32.62T � , 2 32.57T � , 3 33.51T � , 4 33.29T � , 

5 32.10T � , 6 34.24T � , 7 32.70T � , 8 33.49T � , 

9 33.36T � , 10 34.61T �  
  
 Substituting the 'jT s  into Expressions (1), (2), and  (3), gives the following results: 
 

2(10) 33.25,  (10) 0.606T S� �  
  
 and an (approximate) 95 percent confidence interval  for ( )E T� �  is given by 
 

33.25 0.56   or   [32.69,33.81]	  
   
 Thus, we are approximately 95 percent confident that �  is between 32.69 and 33.81 hours.  (If 100 
people performed this experiment independently, then we would expect that about 95 out of the 100 con-
fidence intervals to contain the true � .)  Note also that the interval is quite precise, with the half-length of 
the confidence interval being less than 2 percent of the point estimate.   

5 STATISTICAL ANALYSIS FOR  NONTERMINATING SIMULATIONS 

Let 1 2, ,...Y Y  be an output stochastic process from a single run of a non-terminating simulation.  Suppose 
that we want to estimate the steady-state mean ( )E Y� � , which is also  defined by  
 

lim ( )i
i
E Y�
�

�  

 
where ( )iE Y  is the transient mean at time i.  Thus, the transient means converge to the steady-state mean.  
However, ( )iE Y ��  �����	������i �����	��/�����������������^��/���/�������	�����
�

�������

��	�I 
����������	���
�������	����-	��������
������+�is causes the sample mean ( )Y m  to be a biased estima-
tor of �  for all finite values of m.  The problem that we have just described is called the problem of the 
initial transient in the simulation literature. 
 The technique most often suggested for dealing with this problem is called warming up the model.  
The idea is to delete some number of observations from the beginning of a run and to use only the remain-
ing observations to estimate � .  In particular, given the observations mYYY ,,, 21 � , we would use  
 

1( , )

m

i
i l

Y
Y m l

m l
� ��
�

�
 

 
(1 1)l m� � �  rather than ( )Y m  as an estimator of � .  In general, one would expect ( , )Y m l  to be less bi-
ased than ( )Y m ��	
���������	����
��	�������������
��
����������	
����
�����������������������	��t-
ative of steady-state behavior due to the choice of initial conditions. 
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 The question naturally arises as to how to choose the warmup period (or deletion amount) l.  We 
would like to pick l (and m) such that [ ( , )]E Y m l �� .  If l and m are chosen too small, then [ ( , )]E Y m l  
may be significantly different than � .  On the other hand, if l is chosen larger than necessary, then 

( , )Y m l  will probably have an unnecessarily large variance. 
 The simplest and most general technique for determining l is a graphical technique due to Welch 
(1983) [see also Law (2007, pp. 509-516)].  Its specific goal is to determine l such that ( )iE Y ��  for 

,i l�  where l is the warmup period.  This is equivalent to determining when the transient-mean curve 
( )iE Y ������	�������������� .  In general, it is difficult to determine l from a single replication due to the 

inherent variability of the process 1 2, ,...Y Y ����	�����	����`�����	�����������
	���	��������^
ng multiple 
replications of the simulation in a pilot study. 

5.1 The Replication/Deletion Approach 

In this section, we discuss how to construct a point estimate and confidence interval for � .  Suppose that 
the warmup period has been de���
���� ��� `�����	� ���������� ��� ��� �	
��� ����
����
��� V����������
Make n independent replications of the output process 1 2, ,...Y Y  each of length m, where m should be 
much larger than l.  (There is no definitive way of picking the run length m here, as there was for termi-
nating simulations.)  Let jiY  be the ith observation from the jth replication, for 1,2,...,j n�  and 

1,2,...,i m� .  Let 
 

1
/( - )   for 1,2,...,

m

j ji
i l

X Y m l j n
� �

� ��
 

 
Note that 1i l� �  
	�/�����/���
�^�����	�����	�������
�	���+������� 'jX s  are IID random variables.  
Furthermore, ( )jE X ��  since , 1 , 2 ,, ,...,j l j l j mY Y Y� �  each have approximate mean � .  Then, by substituting 

the 'jX s  into Expressions (1), (2), and (3), we get that ( )X n  is an (approximately) unbiased point esti-
mator for � , and an approximate 100(1 ) percent��  confidence interval for �  is given by  
 

2
1,1 /2( ) ( ) /nX n t S n n�� �	  

 
We call the above method for constructing a point estimate and confidence interval for �  the replica-
tion/deletion method.  One criticism that has been levied against this method historically is that l observa-
tions must be discarded from each of the n replications.  However, given the availability and speed of 
PCs, this is no longer an issue for many, if not most, steady-state analyses. 
 

Example 8. Consider a manufacturing system with a receiving/shipping station and five workstations 
(see Figure 2), as described in Law (2007, pp. 694-704). Assume that there are 4, 2, 5, 3, and 2 ma-
chines in stations 1 through 5, respectively.  The machines in a particular station are identical, but 
machines in different stations are dissimilar.  Jobs arrive to the system with exponential interarrival 
times with a mean of 1/15 of an hour.  Thus, 15 jobs arrive in a typical hour.  There are three types of 
jobs, and jobs are of types 1, 2, and 3, with respective probabilities 0.3, 0.5, and 0.2.  Job types 1, 2, 
and 3 require 4, 3, and 5 operations to be done, respectively, and each operation must be done at a 
specified workstation in a prescribed order.  Each job begins at the receiving/shipping station, travels 
to the work stations on its routing, and then leaves the system at the receiving/shipping station.  For 
example, the routing for a type 1 job is 3, 1, 2, 5. 
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Figure 2: Factory with five workstations 
 

  A job must be moved from one station to another by a forklift truck, which moves at a speed of 5 
feet per second.  When a forklift becomes available, it processes requests by jobs using a shortest-
distance-first dispatching rule.  The factory has 2 forklift trucks.  Each station has a single FIFO 
queue.  The time to perform an operation at a particular machine is a  gamma random variable with a 
shape parameter of 2, whose mean depends on the job type and the station to which the machine be-
longs.  For example, the mean service time for a type 1 job at station 3 (the first station on its routing) 
is 0.25 hour.  When a machine finishes processing a job, the job blocks that machine (i.e., the ma-
chine cannot process another job) until the job is removed by a forklift.   

  The factory is open 8 hours a day, and thus the arrival rate is 120 jobs per day.  The system confi-
guration described here is called system design 3 in Law (2007). 
  Let 1 2, ,...N N  be the output stochastic process corresponding to daily throughputs.  Then we 
are interested in obtaining a point estimate and 90 percent confidence interval for the steady-state 
mean daily  throughput ( )E N� � .  Using W�����	������
���������������/�������
������������	�n-
able warmup period for this output process is 15l �  days [see Law (2007, p. 704)]. 

  We made 10n �  (production) replications of length 115m �  days, and used a warmup period of  
 15l �  days.  Let 
 

115

16

100

ji
i

j

N
X ��

�
 

 
 where jiN  is the throughput in the ith day of the jth replication.   
  Substituting the 'jX s  into Expressions (1), (2),  and (3), we get the following point estimate and 

approximate 90 percent confidence interval for ( )E N� � : 
 

~ (10) 120.29X� � �  
  
 and 
 

120.29 0.63   or   [119.66,120.92]	  
 
  Thus, we are approximately 90 percent confident that the steady-state mean daily throughput is 

between 119.66 and 120.92 jobs per day.  Note that this confidence interval contains 120, which 

Workstation 2 Workstation 3 Workstation 4

Workstation 1 Workstation 5Receiving/Shipping

Forklift

In Out
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should be the mean daily throughput if the system has enough machines and forklifts.  (In a real ap-
plication, �  would not, of course, be known.)  

  Note also that the confidence interval is quite precise, with the half-length being less than 1 per-
cent of the point estimate.  

  Also, since jX  is the average of 100  'jiN s , it should be approximately normally distributed 
by a central-limit-theorem type effect.  This suggests that the coverage of the confidence interval 
should be close to the desired coverage probability of 0.9.  Finally, if, for example, we wanted to de-
crease the half-length by a factor of 3, then a total of approximately 90 replications would be re-
quired. 

 
6 SUMMARY AND PITFALLS IN OUTPUT-DATA ANALYSIS 

 
We have seen that both terminating and non-terminating analyses can be performed easily by making in-
dependent replications of the simulation model and by using Expressions (1), (2), and (3), which come 
from a first undergraduate course in statistics.  In the case of steady-state parameters, we also have to de-
termine a warmup period, but thi	�����������
����������		����	
���`�����	������
���������������+����e-
thod of replication can also be easily applied to comparing alternative system configurations [see, for ex-
ample, Law (2007, chapters 10 and 11)] and to estimating multiple measures of performance.  Moreover, 
multiple replications can be made simultaneously on computers having multiple cores or connected by a 
local-area network. 
 
 The following are three major pitfalls in output-data analysis: 
 


 Analyzing simulation output data from one run using formulas [e.g., Expression (2)] that assume 
independence, which might result in a gross underestimation of variances and standard devia-
tions.  This problem is exacerbated by the use of these formulas by some simulation-software 
packages. 


 Failure to have a warmup period for steady-state analyses 

 Failure to determine the statistical precision of simulation output statistics by the use of a confi-

dence interval, which can be accomplished easily using the replication approach.  
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