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ABSTRACT 

Wildfire spread simulation plays important roles in wildfire management. Existing wildfire simulations are largely decoupled 
from real wildfires by making little usage of real time data. In this paper, a dynamic data driven application system is pre-
sented to incorporate the real time data into the simulation model, thus to improve the simulation results.  The developed dy-
namic data driven application system is based on the DEVS-FIRE model and employs the particle filtering algorithm to esti-
mate the state of fire spread. We describe the overall structure of the dynamic data driven application system for wildfire 
spread simulation. The major issues and computation models of this work are presented and experiment results are provided. 

1 INTRODUCTION 

Wildfires pose great threats to forests, endangered species, and people’s lives annually. Some statistics of the loss caused by 
wildfires can be found in the corresponding scientific and official reports (see e.g., (Rey 2004, Grossi 2007)). To effectively 
manage wildfires and decrease the losses, many researchers from different fields, such as fire behaviors, geography informa-
tion system, computer science, etc., strive to seek appropriate models to simulate the process of fire spread. Several wildfire 
spread models were developed, including FARSITE (Finney 1998), BehavePlus (Andrews et al. 2005), DEVS-FIRE (Natimo 
et al. 2008), and Hfire (Morais 2001).  A common feature of these models is that they simulate the fire propagation assuming 
we know the landscape data, the fuel data, and the weather data. Their simulation results depend on the accuracy of the data 
above. Unfortunately, it is impractical to obtain the precise GIS data and the weather data for all time of the simulation period 
due to the following reasons. Firstly, it is difficult to precisely collect and specify all the landscape data and the fuel data of 
the fire area as a static input of the system. Secondly, collecting the dynamically changing weather data is challenging, and 
the weather data (e.g., provided by weather stations) typically do not have enough spatial resolution needed for the wildfire 
simulation. Thirdly, the coupled effect between wildfire and the weather makes it unrealistic to treat the impact of the weath-
er as a single and static parameter. All of these constrains unavoidably introduce errors to the wildfire spread simulation re-
sults.  
        With the development of sensors technologies and the advance of computer infrastructure, dynamic data driven applica-
tion systems (DDDAS) become an active research area in recent years. In a DDDAS system, the data from real systems ob-
tained from sensors is fed into the simulation model, which is used to make predictions of the real systems. This dynamic in-
put is treated as the measurement to evaluate the output and adjust states of the model. Based on these measurements, we can 
evaluate, choose, or analyze the system states utilizing statistical tools, data processing, and numeric or non-numeric tech-
niques to improve the simulation results.  
 In this paper, we present a dynamic data driven application system for wildfire spread simulation. The wildfire simula-
tion model used in this work is DEVS-FIRE, which is an integrated wildfire spread and containment model based on the Dis-
crete Event System Specification (DEVS) formalism. We are particularly interested in estimating the dynamically evolving 
fire fronts for better predictions of the fire spread. The measurement data used in this work is assumed to come from ground 
temperature sensors deployed in the fire area. These sensors regularly provide real time sensor data to be fed into DEVS-
FIRE. To deal with the highly nonlinear wildfire behavior, the particle filtering algorithm, also called sequential Monte Carlo 
methods, are used to support data assimilation of the real time data. Applying the particle filtering algorithm to this problem 
needs to deal with several challenges including uncertainty modeling, measurement evaluations, the system model and mea-
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surement model coupling, computation complexity, and computing performances. This paper describes the overall structure 
and its components of the dynamic data driven application system for wildfire spread simulation.  
 The rest of this paper is organized as follows. Section 2 briefly introduces related dynamic data driven application sys-
tems in various fields. Section 3 describes each component of the dynamic data driven system for wildfire spread model. Sec-
tion 4 presents some experiments and results. Section 5 draws conclusions and points out the future work. 

2 RELATED WORK 

Dynamic data driven application systems are widely used in many fields, such as engineering, crisis management and envi-
ronmental systems, medical, manufacturing, business, and finance (Darema 2007). This is because the new paradigm intro-
duces dynamic observations from real systems into the system model. As said in (Derema 2000), DDDAS is possibly becom-
ing the revolutionary concepts in science, engineering, and management systems.  
 In the engineering, the mechanism of dynamic data driven simulation is largely used in design and control of systems. In 
(Farhat et al. 2006), the authors intend to improve active health monitoring, failure prediction, aging assessment, informed 
crisis management, and decision support for complex and degrading structural engineering systems by using dynamic data 
driven methods. (Wang 2004) presents a set of data driven hardware and software techniques to explore the input space for 
performance/energy optimization.  
 Additionally, in crisis management and environmental systems, the concept of data driven simulation is utilized to incor-
porate the real time data into the physical models. (Fujimoto et al. 2006) applies dynamic data driven application systems to 
monitor and manage surface transportation systems. In the paper, the hierarchical DDDAS architecture is presented including 
vehicle, roadside, and traffic management center simulations. For environmental systems, such as weather, hurricanes, and 
fire propagation, it is very important for people to effectively predict their states, thus to forecast, control, or suppress them. 
(Alen 2007) tries to couple the real time sensor information with the water circulation models to forecast the emergency 
event of hurricane and highlight the challenges for accurate estimations of these events. As discussed in the last section, it is 
highly necessary for people to study the phenomenon of wildfire spread. Towards this goal, a lot of static models and 
DDDAS-based fire spread model were proposed.  In (Douglas et al. 2006, Coen et al. 2007), the authors select Monte Carlo 
methods as tools to investigate fire behaviors of wildfire spread models. Although their work are based on the physical mod-
els, reaction-diffusion-convection partial differential equation-based model, and the level set method model, their final aim is 
to provide a framework for dynamic data driven application system of the fire models, which will consider the real time 
weather data, mapping images, and sensor streams as the measurements to adjust the original models so that more accurate 
predictions could be made. This work involves in large cooperation among researchers of different fields, and can potentially 
improve the fire estimation from multiple aspects. In our paper, we feed the fire sensor data to DEVS-FIRE, the integrated 
environment of fire spread and containment, thus to improve the fire predictions.  
 In the medical area, the dynamic data driven simulation could be used for illness treatment. In the laser treatment of can-
cer, the higher intensity heat source may be used to ablate the affected tissue. In order to precisely control the treatment 
process, the heat transfer computational model is developed to employ the real time data to optimize the control of the treat-
ment. This dynamic data driven application system is capable of estimating and guiding the computer controlled temperature 
in the biological domain with very good accuracies (Oden et al. 2006).  
 Other important application domains of dynamic data driven application system are manufacturing, business, and 
finance.  Flexible manufacturing systems, such as mass customization, require handling the product variety, uncertainty in the 
product demands, and reconfiguration of manufacturing resources. These requirements are just the purposes of dynamic data 
driven application systems. When the requirements changed, the model can adjust and reconfigure corresponding resources 
according to the latest analysis. Details of this kind of model can be found in (Qiao et al. 2003).  With the increasing com-
plexity of supply chain in enterprises, we need to resort to computer simulation to optimize the business process. To over-
come the limitations of the conventional model, which is useful to experts, people need to simplify the model for use. There-
fore, (Tannock et al. 2007) imports the data driven concept to automatically construct the model by the input data from the 
company. This provides multiple scenarios for employees to make their decisions.  
 From the recent work above, we can see that most applications with plentiful real time data are the potential fields, in 
which the dynamic data driven simulation would be deployed, for example, stock prediction with a huge real time data. Al-
though there are many challenging tasks, such as the non-linearity of the data, the large computation complexity, statistical 
tools to process and analyze data, the dynamic data driven simulation is still a very active research topic in modeling and si-
mulation. To improve our static fire spread model, we also seek DDDAS approach as our solution to well predict the fire 
states of DEVS-FIRE. 
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3 DYNAMIC DATA DRIVEN SIMULATION FOR DEVS-FIRE 

As explained above, we also introduce the concept of dynamic data driven into the fire spread model of DEVS-FIRE to im-
prove the estimation of the fire growth. Figure 1 shows the structure of the dynamic data driven system for DEVS-FIRE, 
which couples several components to work together for better predictions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 From Figure 1, we can see that the key components of the dynamic data driven system for DEVS-FIRE are DEVS-FIRE, 
the measurement model, and data assimilation. Basically, we use the physical model of DEVS-FIRE to predict the fire spread 
if there are the input sets including the fuel map, the GIS map, and the weather data available. This static fire spread model is 
the basis of fire prediction. The dynamic portion of the system comes from the measurement model, in which fire sensors are 
deployed in the fire space and the corresponding data is collected. Feeding these data into the measurement model, we output 
the data to the data assimilation system, which is compared with the real data from sensor networks. Consequently, the data 
assimilation system chooses the optimal fire states as the inputs of DEVS-FIRE, continuing to execute DEVS-FIRE to predict 
the next fire state. Because we consider the uncertainty of fire states in the system, which will introduce a lot of computa-
tions, the whole system is constructed on the multicomputer environment, in which multiple computational units run the si-
mulations in parallel to improve the performance.  

Figure 1: The structure of the dynamic data driven system for DEVS-FIRE 
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3.1 DEVS-FIRE Model 

DEVS-FIRE, an integrated environment for surface wildfire spread and containment, is built on Discrete EVent Specification 
(DEVS) formalism. This fire area is modeled as a cellular space, in which each cell represents a sub-area of the fire. The fire 
spread model of DEVS-FIRE can be denoted as Yi=DF(s, a, f, w, Yi-1), where Yi is the output, a set of parameters to indicate 
the fire states including rates of speed, the burning area, the burning perimeter, and the visual fire map at time i; s, a, f refer to 
the slope map, the aspect map, and the fuel map of the fire space respectively; w is the weather data during the time i-1 to i; 
Yi-1 represents the fire states at time i-1; DF decides how the fire spreads in the period of time i-1 to i based on the fire beha-
vior model and DEVS formalism.  
 From the description above, we know that this model is deterministic, which we obtain the unique prediction of the fire 
spread if any set of input parameters is given. Although the model incorporates the fire behavior models, the GIS map, the 
fuel map, and the weather data into the system to provide a tool to estimate the fire states, it is still hard for people to precise-
ly forecast the fire growth. This is because the real fire is much more complicated than the abstracted one using numeric and 
non-numeric methods. The more practical scenario is that we could obtain a series of data from the spot, such as, aerial im-
ages, radiation, heat, or temperature information. The information is very important for us to well know the real situation of 
the wildfire. Therefore, how to collect useful real time data to be utilized in the static model would be a key portion of the 
dynamic data driven system for DEVS-FIRE.  

3.2 Measurement Model 

Real time data comes in the timely manner. From the growth of the fire, we can detect many kinds of data from the real fire. 
With the development of wireless sensor networks technologies, it provides the possibility for people to acquire real time da-
ta in time. We can deploy ground temperature sensors and radiation sensors or capture aerial images to collect the useful data 
used in the fire prediction. It is a crucial step to map data between the static output obtained by the original physical model 
and the real time data, which can be executed by the measurement model. Actually, in order to predict the fire propagation as 
accurately as possible, we try to use every kind of real data we can obtain. Therefore, conceptually, the measurement model 
should intelligently deal with all kinds of the data, implementing multiple mappings. At the current stage, we just consider 
the temperature mapping from the predicted fire map to the temperature map in our system.  
 The measurement model can be formalized as Mi =(TYi, RYi, AIi) =MM(Y i), where Mi is the measurement outputs, which 
are a collection of outputs mapped from all kinds of data, TYi, RYi, AIi, which mean the temperature, the radiation, and the 
aerial image measurement outputs respectively at time i; Yi is the predicted outputs by the original static model at time i; MM 
realizes the mapping from the predicted outputs to the measurements. For the specific case, we define the mapping from the 
predicted fire map to the temperature map as TM=F2T(FM, ST, δ), where TM is the temperature map, represented by a ma-
trix, in which each element is the value of the temperature; FM is the fire map, which is obtained from DEVS-FIRE to indi-
cate each cell is ignited or not in the whole space; ST is defined as the deployment strategy of the sensors; δ means the transi-
tion from the ignited cells to the temperature of any cell in the space; F2T implements the entire mapping process. To explain 
this mapping, we consider the following example in Figure 2.   
                                                                   

         

         

         

         

         

         

         

         

         

 
 
 

Figure 2: The example for the measurement model  
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 In the figure, we assume that we have a 9×9 cell space, and each cell has the size of 15 meters. At some time step, the 
fire spreads as shown in the figure (red cells are burning).  The sensor deployment strategy is to place a temperature sensor 
every three cells. Now let’s define δ. Assume each burning cell has the temperature of 376°F (Long 2008), and the tempera-

ture of a cell decreases with the increase of the distance from this cell to burning cells with the function 2

2

2763 σ
d

eT
−

= , where 
T, d, σ are the temperature, the distance, and a constant. In this case, we use the distance from the cell to the closest ignited 
cell, and the constant of 50. According to the mapping function, we obtain the temperature map corresponding to the fire map 
TM={122, 240, 240, 240, 359, 359, 240, 359, 344}.        

3.3 Data Assimilation 

Generally speaking, there are two main approaches to approximate the dynamic systems, which are linearizing the model 
(e.g., Kalman filters in (Kailath et al. 2000)) and particle filters. Others include their extended versions or their combinations 
for specific cases. In this work, due to the nonlinear behavior of wildfire, particle filters are chosen as the data assimilation 
method. Particle filters, also called sequential Monte Carlo methods, are a numerical approach to approximate conditional fil-
tering distribution. We generate samples from target density according to related algorithms including SIR (Sampling Impor-
tance Resampling), perfect sampling, importance sampling, acceptance-rejection sampling, and Metropolis-Hastings inde-
pendence sampling, which can be found in (Liu et al. 1998; Bølviken et al. 2001; Chib et al. 1995). Normally, we intend to 
apply SIR algorithm to the model because the whole process is independent on initially generated samples. The possible ap-
plications of particle filters in DEVS-FIRE can be found in (Gu and Hu 2008). 

3.4 Computational Architecture 

In the dynamic data driven system for DEVS-FIRE, there exist a large amount of computations. This is because of the struc-
ture and mechanism of DEVS formalism and modeling the uncertainty into the system. The number of particles has a large 
impact on the data assimilation of the model. Aiming to this purpose, we use the architecture of multiple computers. In the 
application, we assign the computations of different particles to a couple of computers, and collect the outputs of DEVS-
FIRE from them to deal with after a period of execution time. Obviously, this is the client-server software architecture. The 
server side assigns computational tasks to the client sides, and collects the results to process. The client computers execute 
DEVS-FIRE, and send their predictions to the server computer.  

4 EXPERIMENTS AND ANALYSIS 

Based on the dynamic data driven system for DEVS-FIRE above, we construct the experiments to look at its working me-
chanism. Because it is hard for us to collect the real time data and the corresponding fire growth, we use DEVS-FIRE itself to 
generate data as the real time data, thus to test the dynamic data driven system for DEVS-FIRE. In the experiment, we use the 
GIS map from Texas, and assume the weather data is that the wind speed and the wind direction change to random values 
(4~12 miles/hours and 130~230 degrees) every 10 minutes. The time step is set to 1200 seconds, and we run the simulation 
of DEVS-FIRE for 9 steps. Therefore, the temperature map for each time step would be the real time data to be utilized in the 
dynamic data driven system. For different deployment policies, we use the cases of 1 sensor every 5 cells and 1 sensor every 
10 cells. Actually, because the weather data is not accurate (wind direction: 180 degrees; wind speed: 8 miles/hour), it will 
generate errors between these two simulations. Based on the configurations above, two sets of experiments were done using 
the client-server software architecture to improve the fire prediction. We will present and explain the related results as fol-
lows.  
 Firstly, we run the simulation to obtain the sensor temperatures used as the real time data in the dynamic data driven sys-
tem for DEVS-FIRE. Figure 3 displays the fire propagation at time step 9. If we use static prediction model, because of the 
errors from the weather data, the fire spreads as shown in Figure 4.  
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 From Figure 3 and Figure 4, we can know that there are large prediction errors between these two fire propagations. We 
use different sensor deployment strategies as shown in Figure 5 to dynamically estimate the fire. Figure 5(a) shows the tem-
perature map in the ideal case of placing one senor every cell.  Figure 5(b) and Figure 5(c) display the temperature maps for 
two different deployment strategies, which are one sensor every 10 cells and  every 5 cells.  
 

       
 

 

 

 Figure 6 and Figure 7 display two fire predictions using dynamic data driven system for DEVS-FIRE based on two sen-
sor deployment strategies as shown in Figure 5(b) and Figure 5(c) respectively. 
 From Figure 5(a), Figure 5(b), and Figure 5(c), we can see that when there are more sensors, more information can be 
obtained, although all these three cases are hard for us to well estimate the fire shape. Comparing Figure 3, Figure 4, Figure 
6, and Figure 7, we clearly know that these two fire growths using dynamic data drive system for DEVS-FIRE improve the 
fire estimation, and for the sensor deployment strategies, the case, in which we place one sensor every 5 cells, has better pre-
dictions. 

Figure 3: Fire growth as real time data Figure 4: Fire growth using static prediction model 

Figure 5: Temperature maps of different sensor deployment strategies 

   (a) (b) 
 

(c) 
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5 CONCLUSIONS 

This paper presents a dynamic data driven application system for wildfire spread simulation. The wildfire spread simulation 
is based on the DEVS-FIRE model. The overall structure of the dynamic data driven application system and its main compo-
nents are described. Experiment results show that by incorporating real time data, the dynamic data driven application system 
is able to estimate the evolving fire fronts, and thus to provide more accurate fire spread predictions. The future work will 
proceed along the following directions: (1) Improve the performance to support uncertainty generation; (2) Import other types 
of real time data such as aerial images; (3) Investigate other methods to be applied in data assimilation to decrease the estima-
tion errors.  
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