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ABSTRACT 

One of the important aspects of energy modeling is the process of demand curve prediction. Existing demand curve predic-
tion methods generally rely on statistical curve fittings which assume a certain functional form such as constant price elastici-
ty.  There are a number of disadvantages to this approach.  For one, this method makes certain assumptions about the func-
tional form of the price-demand curve that may not be exhibited in practice. In addition, since curve fits rely on only a single 
function, and not a distribution of functions, they do not capture the uncertainty about price-demand curves. In this work, 
demand curve prediction is instead treated by assigning a probability measure to the space of all functions that meet the glob-
al regularity (non-decreasing conditions).  Using this method, a numerical example of Bayesian demand curve prediction is 
presented. 

 
1 INTRODUCTION  
  
Currently, the majority of demand curve predictions are based on curve fits.  While these may be adequate when making 
simple decisions, there are a number of issues that make them somewhat impractical in real world decision making.  For one, 
they only output a single curve prediction.  As a result, they are not compatible with rigorous decision making in the presence 
of uncertainty.  In addition, with curve fits it is impossible to construct a predictive model for demand curves that is both glo-
bally regular (meets the monotonicity constraints of demand curves) and locally flexible (given enough observations of an 
arbitrary “true” demand curve meeting the global constraints, the prediction will converge to the true curve) (Barnett 1998).  
In this work, we present an alternative method of demand curve prediction which is fundamentally different from curve fit-
ting.  In particular, a probability distribution is assigned over the space of all functions that satisfy the regularity conditions.  
First, a hyperbolic coordinate transformation is used to impose the regularity conditions is introduced.  Then, the problem of 
assigning a probability distribution over the space of functions and its update with information is discussed.   

 
2 THE HYPERBOLIC COORDINATE TRANSFORMATION 

 
For a price P>0 and demand Q>0, consider the hyperbolic coordinate transformation given by: 

 

𝑢𝑢 =
1
2

(log𝑃𝑃 − log𝑄𝑄). 
 

𝑣𝑣 =
1
2

(log𝑃𝑃 + log𝑄𝑄). 
 
 

The inverse transformation is given by: 
𝑃𝑃 = 𝑒𝑒𝑣𝑣+𝑢𝑢 . 

 
𝑄𝑄 = 𝑒𝑒𝑣𝑣−𝑢𝑢 . 
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 This transformation maps the first quadrant to the entire R2 plane.  In particular, the point {𝑃𝑃 = 0,𝑄𝑄 = ∞} is mapped to 
the line 𝑢𝑢 = −∞, the point {𝑃𝑃 = ∞,𝑄𝑄 = 0} is mapped to the line 𝑢𝑢 = ∞, the 𝑃𝑃 axis and 𝑄𝑄 axis are mapped to the line 
𝑣𝑣 = −∞, and the lines 𝑃𝑃 = ∞ and 𝑄𝑄 = ∞ are mapped to the line 𝑣𝑣 = ∞ (Figure 1). 
 

 
 

The advantage of using hyperbolic coordinates is that the regularity conditions imposed on the demand system can be 
expressed nicely in 𝑢𝑢-𝑣𝑣 coordinates (Dunkel and Hänggi 2009).  Any function 𝑄𝑄(𝑃𝑃) that is monotonically decreasing, and 
has the positive real values as both a domain and range can be expressed as a function 𝑣𝑣(𝑢𝑢) which satisfies 

 
dom 𝑣𝑣(𝑢𝑢) = ℝ. 

 

�
𝑑𝑑𝑣𝑣
𝑑𝑑𝑢𝑢
� < 1. 

 
 In addition, 𝑢𝑢-𝑣𝑣 coordinates have nice interpretations in terms of economic variables.  For one, the total revenue 𝑅𝑅 gen-
erated (the product 𝑃𝑃 ∗ 𝑄𝑄 in 𝑃𝑃-𝑄𝑄 coordinates) is given by 
 

𝑅𝑅 = 𝑒𝑒2𝑣𝑣 . 
 

 As a result, maximizing the revenue for a given demand curve is equivalent to finding the maximum 𝑣𝑣 of that curve.  
Furthermore, the elasticity 𝐸𝐸, given in 𝑃𝑃-𝑄𝑄 space by 

 

𝐸𝐸 = −
𝑃𝑃
𝑄𝑄
𝑑𝑑𝑄𝑄
𝑑𝑑𝑃𝑃

= −
𝑑𝑑 ln𝑄𝑄
𝑑𝑑 ln𝑃𝑃

, 

 
 

is given in 𝑢𝑢-𝑣𝑣 space by 
 

𝐸𝐸 =
�1 − 𝑑𝑑𝑣𝑣

𝑑𝑑𝑢𝑢�

�1 + 𝑑𝑑𝑣𝑣
𝑑𝑑𝑢𝑢�

. 

 
 Therefore, lines of constant slope in the 𝑢𝑢-𝑣𝑣 plane are equivalent to lines of constant elasticity and horizontal lines are 
equivalent to lines of unit elasticity. 
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Figure 1: Mapping of the hyperbolic coordinate transformation 
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3 CONSTRUCTING A PROBABILITY DISTRIBUTION ON THE HYPERBOLIC PLANE 
 

In order to construct a probability distribution over the space of functions, a discrete random walk model can be used.  In par-
ticular, the following two assumptions are made: 

 
Assumption 1 When predicting the behavior of the demand curve at any price P0, only information regarding the curve in an 
infinitesimal neighborhood of Po needs to be considered.   
 
Assumption 2 Knowledge of the second or higher derivatives is irrelevant when predicting the demand curve. 
 
 Now, suppose that it is known that the demand curve goes through the point {𝑃𝑃1,𝑄𝑄1} and one is interested in calculating 
the probability that the demand curves travels through the point {𝑃𝑃1 + ∆𝑃𝑃,𝑄𝑄1 − ∆𝑄𝑄} for some 0 < ∆𝑃𝑃 and 0 < ∆𝑄𝑄 < 𝑄𝑄1.  
Because of assumptions 1 and 2, this conditional probability can be calculated using a lattice walk model.  In 𝑃𝑃-𝑄𝑄 space, 
these conditional probabilities are difficult to evaluate since the transition probabilities MUST depend explicitly on P and Q, 
and these dependencies are necessarily singular near the axes (Figure 2).   
 
 

 
 
 

 
  
 However, in 𝑢𝑢-𝑣𝑣 space these dependencies are already accounted for.   Because of this and assumptions 1 and 2, the tran-
sition probabilities are independent and identically distributed.  If equation (1) (resulting from the monotonicity in P-Q space) 
was not imposed, these transition probabilities would converge to a wiener process and the resultant conditional probabilities 
would be normally distributed (Nagasawa 1993).  With the requirement of equation (1), however, the conditional probabili-
ties must be of compact support and therefore cannot be normally distributed.  Instead, the conditional probabilities are given 
by a Lorentz invariant distribution (Ikeda and Matsumoto 1999).  The lattice walk and the resultant conditional probability 
distribution are shown in Figure 3.  After transforming back into 𝑃𝑃-𝑄𝑄 space, by using these conditional probabilities and as-
sumptions 1 and 2, the probability that the demand curve goes through any point {𝑃𝑃,𝑄𝑄} can be calculated. 
 

𝑄𝑄 

𝑃𝑃 

{𝑃𝑃1,𝑄𝑄1} 

? ? ? ? 

Figure 2: Evaluating a random lattice walk in 𝑷𝑷-𝑸𝑸 space is difficult due to the boundaries on the axes.  In 𝒖𝒖-𝒗𝒗 space, this is 
not an issue since the 𝑷𝑷-𝑸𝑸 axes are mapped out of the plane (to the line v=-∞). 
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4 USING THE PROBABILITY MODEL 
 
To make an initial prediction of the demand curve, one needs to define which points of the demand curve are already known, 
as well as assigning values to the 𝜇𝜇 and 𝑘𝑘 parameters.  In the general case, they can take different values at each {𝑢𝑢, 𝑣𝑣} coor-
dinate, so initial parameter fields, 𝜇𝜇0(𝑢𝑢, 𝑣𝑣)and 𝑘𝑘0(𝑢𝑢, 𝑣𝑣) need to be chosen.  In terms of the 𝑃𝑃-𝑄𝑄 coordinate system, assigning 
these parameter fields is equivalent to answering the following question for every {P0, Q0}: 

 
Given that the demand curve travels through {P0, Q0}, what is the expectation and variance of the  slope of the demand curve 

at this point? 
 

Or using equation (2) 
 

Given that the demand curve travels through {P0, Q0}, what is the expectation and variance of the elasticity of the demand 
curve at this point? 

 
 For example, suppose someone is interested in predicting the demand curve for some type of product X.  Using historical 
sales data, they believe that the demand curve travels through the points {𝑃𝑃,𝑄𝑄}={$29, 3960 units}, {$60, 2040 units} , {$200, 
810 units}  and {$400, 240 units}.   In addition, they define the 𝜇𝜇0 and 𝑘𝑘0 fields as constant between any two known points 
(Table 1).  In particular, they choose the 𝜇𝜇0 field as the average elasticity between two known points, and a 𝑘𝑘0 field that de-
creases near the axes (less uncertainty/spread near axes).   Using these assumptions, the resultant prediction for the demand 
curve of product X is as shown in Figure 4.  The price which maximizes expected revenue generated by selling product X can 
then be calculated from this prediction, which in this case is $200.  In addition, these predictions can be used to place a value 

{𝑢𝑢1, 𝑣𝑣1} 

p1 

p2 

𝑣𝑣1 𝑣𝑣1 + (𝑢𝑢2 − 𝑢𝑢1) 𝑣𝑣1 − (𝑢𝑢2 − 𝑢𝑢1) 

𝑣𝑣1 + 𝜇𝜇(𝑢𝑢2 − 𝑢𝑢1) 

𝒇𝒇𝒗𝒗(𝒖𝒖𝟐𝟐)|𝒗𝒗(𝒖𝒖𝟏𝟏)=𝒖𝒖𝟏𝟏�(𝐯𝐯𝟐𝟐) 

𝑘𝑘(𝑢𝑢2 − 𝑢𝑢1) 

1-p1-p2 

= 𝐸𝐸𝐸𝐸𝐸𝐸

⎣
⎢
⎢
⎢
⎡

�(𝑢𝑢2 − 𝑢𝑢1)2 − �
(1 − 𝜇𝜇)(𝑣𝑣2 − 𝑣𝑣1)

1 − 𝜇𝜇 � 𝑢𝑢2 − 𝑢𝑢1
(𝑣𝑣2 − 𝑣𝑣1)2�

�

2

𝑘𝑘�

⎦
⎥
⎥
⎥
⎤

− 1 

 

 

Figure 3:  On the left, the random lattice walk is shown.  As the number of steps increases to infinity, the distribution con-
verges to a two parameter Lorentz-invariant distribution (shown on the right) where the two parameters (mean 𝛍𝛍 and scale / 
spread parameter 𝒌𝒌) are determined from the transition probabilities p1 and p2. 
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on information gathering activities.  For example, suppose that the demand 𝑄𝑄𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡  for product X at price 𝑃𝑃𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡  can be estimated 
in a small test market.  Since the expected revenue generated prior to the test, the probability of each possible outcome of the 
test (the demand curve prediction at 𝑃𝑃𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡 ) and the expected revenue generated with each outcome can all be calculated prior 
to performing the test, the expected value gained from a market test at any 𝑃𝑃𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡  can be calculated.  𝑃𝑃𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡  can then be chosen 
to maximize this value. 

 
Table 1: Parameter fields for predicting the demand curve of product X. 

Region: Drift Field 𝝁𝝁𝟎𝟎(𝒖𝒖,𝒗𝒗): Diffusion Field 𝒌𝒌𝟎𝟎(𝒖𝒖,𝒗𝒗): 
$0< 𝑃𝑃 <$29 0.310* 0.03 

$29< 𝑃𝑃 <$60 0.0460 0.05 
$60< 𝑃𝑃 <$200 0.132 0.1 

$200< 𝑃𝑃 <$400 -0.274 0.05 
𝑃𝑃 >$400 -0.263* 0.03 

     *-Values chosen arbitrarily such that 𝑃𝑃 ∗ 𝑄𝑄 goes to 0 as 𝑃𝑃 or 𝑄𝑄 goes to 0. 
 

 
Figure 4: Demand curve prediction for product X. 

 
5 CONCLUSION 

 
In conclusion, the predictive model presented here has a number of advantages over traditional demand curve predictions 
which utilize statistical curve fits.  Fundamentally, it differs from curve fitting since a probability is assigned over a full space 
of functions instead of assuming a strict functional form for the demand curve.  As a result, these methods result in predic-
tions that are both globally regular and locally flexible, which is impossible with traditional curve fitting.  In addition, since 
this predictive model is compatible with rational decision making, it can be used to determine not only optimal pricing strate-
gies, but also optimal information gathering strategies.  Overall, although these methods are somewhat more complex ma-
thematically than curve fits, they also provide stronger functionality which is often preferred when making real world deci-
sions involving real dollars. 
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