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ABSTRACT 

In this paper, we suggest efficient heuristics to solve a cooperative transportation planning problem that is motivated by a 
scenario found in the German food industry. After an appropriate decomposition of the entire problem into sub problems, we 
obtain a set of rich vehicle routing problems (VRP) including due dates for the delivery of the orders, capacity constraints 
and maximum operating time window constraints for the vehicles, and outsourcing options. Each of these sub problems is 
solved by a greedy heuristic that takes the distance of the locations of customers and the time window constraints into ac-
count. The greedy heuristic is further improved by applying an Ant Colony System (ACS). The suggested heuristics are as-
sessed in a rolling horizon setting using discrete event simulation. The results of some preliminary computational experi-
ments are provided. We show that the ACS based heuristic outperforms the greedy heuristic.  

1 INTRODUCTION 

Transportation planning problems are important for the German food industry. We consider a real-world scenario where sev-
eral manufacturers with same customers but complementary food products collaborate by jointly using their vehicle fleets to 
reduce delivery costs. The different products are delivered to first-class hotels. Therefore, small delivery quantities are typical 
and high on-time delivery performance is also an important goal. There are different types of deliveries depending on the 
geographical location of the customers and the transportation capacities of each manufacturer. In the simplest case, each 
manufacturer uses its own local vehicle to deliver products to customers that are closely located to the manufacturer. In some 
situations, some of the customers are far away. Vehicles of a specialized shipping company are used to send the transporta-
tion orders to an intermediate distribution center (IDC) where own vehicles of the manufacturer are used to deliver the trans-
portation orders to the customers. The third way consists of using the vehicles of a specialized shipping company to send the 
transportation order directly to the customers.  

There are several ways to improve the efficiency of the transportation operations in the present situation. It is possible to 
use the vehicles of the different manufacturers in each IDC to deliver the transportation orders of all manufacturers to the cor-
responding customers. A cooperative strategy may consist in sending transportation orders of one manufacturer to another 
manufacturer and then using the local vehicles of the second manufacturer to deliver the products to the customers of the first 
manufacturer.  

The present authors suggest in the previous paper (Sprenger and Mönch 2008) a simulation framework to assess the per-
formance of algorithms to solve the cooperative transportation planning problem. However, only a very simple heuristic and 
some computational experiments, mainly to demonstrate the feasibility of the simulation-based approach, are described. In 
the present paper, we present a more sophisticated heuristic that is based on decomposition and ACS to solve the cooperative 
transportation planning problem. 

The paper is organized as follows. In the next section, we describe the problem and discuss related literature. We suggest 
a decomposition scheme and heuristics to solve the overall cooperative transportation planning problem in Section 3. Finally, 
we provide the preliminary results of a simulation based performance assessment of the suggested heuristics within a rolling 
horizon setting. 
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2 PROBLEM SETTING 

2.1 Problem Description 

We consider a scenario where M  manufacturers produce different types of foods. Each manufacturer Mm1 ≤≤ has mv  
own vehicles. A single vehicle has a maximum capacity Q  and a maximum operating time per day. Each vehicle has a home 
depot. This is either the location of the manufacturer or an IDC. A transportation order Oj∈  is a quantity of products that is 
sent to customers to fulfill customer orders. A time window [ ]jd,0  is assigned to j where it has to be delivered. Furthermore, 

each order has a ready time jr  where it is ready of transportation. Transportation orders are assigned to vehicles. Each ve-
hicle has to visit several customers to deliver its transportation orders. This is called a sub tour. The vehicle returns to its 
home depot after the completion of a sub tour. The collection of all sub tours within the maximum operating time is called a 
tour. We differentiate three different cases for the organization of the corresponding deliveries: 
 
1. A manufacturer uses its own local vehicle to deliver products to customers that are closely located to the manufacturer. 

The location of a local vehicle is the location of the manufacturer. This type of delivery is called delivery with own local 
vehicles. 

2. Customers might be far away. In this situation, vehicles of a specialized shipping company are used to send the transpor-
tation orders to an IDC where own vehicles of the manufacturer are used. This type of delivery is called delivery with 
own far away vehicles. 

3. Using the vehicle of a specialized shipping company to send the transportation order directly to the customers is called 
delivery with couriers.  

 
Manufacturers, IDC, and customers form a distribution network. We are interested in determining feasible transportation 
plans for all the manufacturers with small transportation costs. The delivery with local vehicles of the manufacturers is the 
cheapest variant whereas the delivery with couriers is the most expensive one. The delivery with own far away vehicles is 
somewhere between these two variants.  

The efficiency of the transportation operations in the present situation can be improved by using the vehicles of the dif-
ferent manufacturers in each IDC to deliver the transportation orders of all manufacturers to the customers. Sending transpor-
tation orders of one manufacturer to another one and then using the local vehicles of the second manufacturer to deliver the 
products to the customers of the first manufacturer is a second possibility to improve the performance of the overall distribu-
tion network. In summary, we consider a VRP with paired pickup and delivery points, time windows, outsourcing options 
and interim storages. 

2.2 Related Research 

ACO is a nature inspired approach that can improve construction heuristics for a given combinatorial optimization problem 
significantly. ACO approaches are quite popular for solving different types of VRP (cf. Bullnheimer, Hartl, and Strauss 1997, 
Doerner et al. 2006, Favaretto, Moretti, and Pellegrini 2007, Pellegrini, Favaretto, and Moretti 2007, Tan et al. 2005, Gajpal, 
and Abad 2009 amongst others). The suggest algorithms mainly differ in the used heuristic information that is typically prob-
lem specific. Among the ACO type heuristics ACS leads often quickly to good solutions (cf. Gajpal and Abad 2009). Bou-
hafs, Hajjam, and Koudam (2006) decompose the overall problem into sub problems using simulated annealing and then use 
ACO to solve each of the sub problems individually.  

Cooperative transportation planning strategies are not discussed in the literature expect the papers by Lin (2008) and by 
(Sprenger and Mönch 2008). The use of rolling horizon schemes for VRP and their performance assessment by discrete event 
simulation is rarely discussed in the literature. However, it enables us to make more real-world type modeling assumptions 
like varying transportation times because of traffic jams or vehicle breakdowns and provides generally a more detailed pic-
ture of the performance of a heuristic to solve VRP (cf. Simroth and Baumbach 2007 and Sprenger and Mönch 2008).  

In (Sprenger and Mönch 2008), we present a simple construction heuristic. Therefore, it is quite naturally to improve this 
heuristic by ACO type approaches. While Ant Colony Optimization (ACO) approaches are used quite often to solve vehicle 
routing problems to our best knowledge there is no work described in the literature that uses ACS type approaches for coop-
erative transportation planning within a rolling horizon scheme. 
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3 HEURISTIC APPROACHES 

3.1 Decomposition Approach  

We segment the distribution network into different zones to decompose the overall transportation planning problem as de-
scribed in (Sprenger and Mönch 2008). A single zone is obtained by assigning each customer to the nearest manufacturer or 
an intermediate distribution center. A VRP has to be solved for each of the zones. 

3.2 Overall Scheme 

We describe how we construct tour plans. Therefore, we start with choosing the next available vehicle. Then we select an or-
der to assign it to the vehicle. Only orders are considered that take into account the different vehicle related constraints de-
scribed in Section 2.1. The heuristics, presented in Sub Section 3.2.1 and 3.2.2, are applied to choose an appropriate next or-
der. The time window constraint of the orders is ensured as follows. We select only those orders j  that do not meet jd  when 
there is no possibility to load the particular order to a different vehicle in order to avoid a late delivery. We denote the set of 
all orders that are not part of a fully or partially constructed tour and that do not lead to a constraint violation by .Ω Note that 
we start first with own local vehicles, than with own far away vehicles, and finally with courier vehicles according to the cost 
structure described in Section 2.1 (see the more detailed description in Section 4.1).  

3.2.1 Greedy Heuristic 

To choose the next order we use a greedy heuristic that takes the distance of the locations of customers and the time window 
constraints into account. We use the following index 
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where i denotes the current order on the vehicle, j is a candidate order, ijt  is the time that is required to drive from the cus-
tomer related to order i to the customer related to order j. The notation t is used for the current time, and t  is the average time 
that is needed to drive from a first customer to a second one. The order j with the largest index (1) is selected. The first term 
of the index takes the distance between the customers of order i and j into account whereas the second part is used to assure 
that orders that are close to their due date are preferred. κ  is a scaling parameter for blending the two parts within the index. 
Its appropriate setting is crucial for the performance of the heuristic. A grid search approach is taken to determine the κ  val-
ue that leads to best tour plans. Therefore, we consider different ( ]1000,0κ∈  from a grid with step size 0.1.  

Note that the form of the index (1) is influenced by the Apparent Tardiness Cost (ATC) dispatching rule in manufactur-
ing. It is well-known that the application of ATC type rules leads to good on-time delivery performance (cf. Pinedo 2002). 
The notation GH is used for abbreviation.  

3.2.2 ACS Type Heuristic 

The main idea of ACS consists in a set of artificial ants. Each ant starts with an empty assignment of the orders to vehicles 
and constructs sub tours for the single vehicles by adding iteratively one of the remaining orders to one of the partial sub 
tours found so far. The search for good solutions of our VRP is coupled between the different ants by artificial pheromone 
trails. The ants communicate indirectly by modifying the pheromone trails after the construction of a new solution for the 
VRP. The solutions found by the ants can be improved by local search techniques. The overall scheme of an ACO algorithm 
is given as follows (Dorigo and Socha 2007): 
 
1. Set parameters and initialize pheromone trails. 
2. Construct a new solution of the VRP by creating a new ant. This ant takes the pheromone trail information into account dur-

ing its construction of a solution. 
3. Improve this solution by local search. 
4. Update pheromone trails by using the solution obtained by the ants from Step 2 and 3. 
5. When the termination criterion is reached then stop, otherwise go to Step 2. 
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In the remainder of this section, we describe Step 2 and Step 4 in more detail. We denote by ijη  the heuristic desirability of 
delivering order j immediately after order i. The ijη  values are typically derived by using appropriate, problem specific con-
struction rules. In our experiments, we use the index (1) in order to provide the heuristic information within the ACS approach.  

We denote by ( )tτ ij  the pheromone intensity that is associated with the selection of order j immediately after order i. The 
parameter t is used to denote the current iteration of the ACO scheme.  

A single iteration of the ACS is described. We assume that order i is the last selected order and we want to choose the 
successor order j. We create a sample of a [ ]1,0U  distributed random variable. Denote the obtained value by 0q . When 

qq0 ≤  then the order Ωj∈  is selected that maximizes the value of ijijητ . Here, ( )1,0q∈  is a given parameter of the ACS 
scheme. When qq0 > then job Ωj∈  is selected according to the following discrete distribution with the probabilities ijp  giv-
en by 
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We start with making a few runs with different values for the scaling parameter κ . Then we use the value for κ  that leads to 
tour plans with the smallest costs. We initialize the pheromone intensities ijτ  by choosing the reciprocal value of the smallest 
cost for tour plans found by using GH. A local update of the pheromone intensities is performed by the expression 

 
            ( ) 0ijij ρττρ1:τ +−= ,                 (3) 
 
after each insertion of a new order j. 0τ  is the initial pheromone value. ( ]1,0ρ∈  is a parameter of ACS that affects the bal-
ance between exploration and evaporation. When the ant has constructed the tour plan, a local search heuristic is applied to 
improve the solution obtained by the ant. We use a 3-opt type heuristic. When all ants within one iteration have computed a 
tour plan, a global update of the pheromone values is performed. We apply the update equation  
 
        ( ) ( ) ( ) ,cos1:1 ∗+−=+ ttt ijij ατατ             (4) 

 
for orders i and j that are selected in a consecutive manner in the global best solution found by the ants. *cos t is the asso-
ciated cost. We also may allow the iteration best ant to deposit additional pheromone. In our experiments, we use a mixed 
strategy by using the iteration best ant for global update after five consecutive iterations. The quantity ( ]1,0α∈  is a parame-
ter of the ACS scheme. 
 

3.3 Comparison of the Two Approaches 

In a first step, we apply GH and ACS to the orders and vehicles within one single zone to assess the performance of the ACS 
approach. A tour plan for the full day is computed. We choose 9.0ρα ==  and 95.0q =  based on extensive computational 
experiments. Ten independent replications are performed and average values for the performance measures are calculated to 
obtain stochastically significant results. The results for 50 and 100 orders, a vehicle capacity of 10 or an unlimited number of 
orders and different due date settings are shown in Table 1. We use 50 ants for a single iteration. At maximum 200 consecu-
tive iterations are allowed. 

The iteration where the best solution is found for the first time increases with a larger number of orders. Consequently, 
the ACS has to run longer to find acceptable solutions that outperform the GH results. The results in Table 1 demonstrate that 
it makes sense to spend this additional time for computing because ACS outperforms GH in all the tested scenarios. GH re-
quires on average 30 seconds per instance while ACS requires additional 60 seconds for computing tour plans for a total of 
100 orders. In a next step, we have to research the impact of ACS and GH in a rolling horizon setting. 
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Table 1: Results for GH and ACS for one Single Zone 

Orders Capacity Due Dates Cost GH [km] Cost ACS [km] Improvement 
Iteration with 
best solution 

50 10  tight ( ~ 24% late) 4250 3521 16.9% 55 

50 10 
 moderate ( ~ 14% 
late) 3677 3326 8.9% 87 

50 10  wide ( ~ 8% late) 3288 2769 15.7% 106 
50 ∞   tight 3990 3586 10.0% 71 
50 ∞   moderate 3595 3069 14.1% 86 
50 ∞  . wide 3195 2881 9.6% 86 

100 10  tight 6255 5492 12.0% 116 
100 10  moderate 5794 5527 4.5% 119 
100 10  wide 5216 4667 10.3% 143 
100 ∞   tight 6086 5731 5.6% 106 
100 ∞   moderate 5544 5172 6.5% 162 
100 ∞   wide 4640 4258 8.6% 153 

 

4 SIMULATION-BASED PERFORMANCE ASSESSMENT OF THE HEURISTICS  

We are interested in assessing the performance of the suggested heuristics in a real world scenario including some stochastic 
effects that may influence the execution of the computed tour plans.  

4.1 Scenarios and Simulation Framework 

We consider two manufacturers similar to the situation described by Sprenger and Mönch (2008). Each of them uses two IDC 
that are delivered by vehicles from shipping companies. The planning scenario is based on a real-world data set that is col-
lected in the German food industry. The considered customer network consists of 550 different customers. We simulate 100 
days in all the scenarios. 

The transportation orders used in the simulation experiments are generated in the following way. Incoming orders are 
concentrated in the morning. Therefore, we use for jr  the expression 

 
          [ ]6k24,k24U~rj + , 100,,0 =k ,                      (5) 

 
where the value six controls how early in the morning the transportation orders are ready. Due dates are chosen in a similar 
way. We use the following expression for jd  
 
           [ ]uβshift,shiftU~rd jj +− ,                       (6) 
 
where the quantity shift denotes the minimum due date. The quantity u is an appropriate upper bound for the due dates. The 
parameter ( ]1,0β∈  controls the tightness of the due dates. Here, we use the values 2=u days and vary the values of β  in 
our experiments. The quantity shift has been set to one day to avoid orders that are not deliverable due to the static transporta-
tion between the zones. In addition we assure that the jd  are being within the driving time windows of the vehicles. 

In addition, we want to show the improvements when the two manufacturers act in a cooperative manner and share their 
distribution network similar to the scenarios investigated in (Sprenger and Mönch 2008). In the cooperative case, manufac-
turer 1 has ten vehicles at its location, but manufacturer 2 only two vehicles. Four and two vehicles are assigned to the IDC 
respectively. We release equally distributed between 120 and 180 orders per day into the distribution network. The orders are 
equally distributed among the two manufacturers. Based on some preliminary simulation results, this number of vehicles 
turns out to be the minimum number of vehicles that is necessary to deliver most of the orders at almost all days for a work-
load of 150 orders per day. Consequently, 19 vehicles are used in the cooperative case. 

In the non cooperative case, we have to change the number of vehicles to 21 due to the changed size of the zones. In the 
cooperative case, there are four zones with vehicles that can be used for transportation by both manufacturers. In the non co-
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operative scenario, each of the manufacturers can use only three zones, i.e., the zone that contains the location of the manu-
facturer and the zones of the two IDC. We also modified the location of the vehicles. Ten vehicles are assigned to the loca-
tion of manufacturer 1, two and four to the two IDC respectively. Manufacturer 2 runs three vehicles at its location and seven 
and two at the corresponding IDC.  

The maximum operating time for vehicles is ten hours per day. The vehicles start in the morning at 8 am and drive until 
6 pm. Incoming orders during the day will not be taken into account. The new tour plans for the next day are computed at 7 
pm. This is done in the following way. 

 
1. Ready orders at a location of a manufacturer are assigned to one of the zones. After this assignment, we compute 

plans for external transportation between the locations of the manufacturers and IDC. We assume that the shipping 
company can deliver the orders to their target zone over night. Consequently, we know which orders are available 
next morning in each of the zones.  

2. A tour plan is computed for each of the zones using the two suggested heuristics. We enforce that each order is part of 
the tour plan and that the expected delivery time of the orders is smaller than its due date by penalizing each not deli-
vered order with a very high cost value. In addition, orders that are part of the tour plan, but their real delivery time is 
too late are penalized with a lower costs value. This assures that the large costs for direct transportation or losing a 
customer by violating the delivery date are avoided without regard to the additional km that must be driven to delver 
the order by own vehicles. 

3. Orders that are not part of the tour plan are assigned to external suppliers that transport them directly to the customer 
over night.  

4. Orders with expected delivery dates that do not meet the due date are iteratively removed from the tour plan. We start 
with the order with the strongest due date violation, assign this order to a courier, and update the expected delivery 
times for the remaining orders in the tour plan. When the plan still contains some orders that are late, we repeat the 
removal procedure until the tour plan contains only orders that meet the due dates. This step is optional. Repairing the 
tour plan after completing the computation reduces the number of not delivered orders when using ACS. This step is 
not applied when GH is used because the results are better if an order that will be late is not taken into account for in-
sertion while computing tour plans. 

5. Orders that are assigned for transportation by couriers are removed from the IDC transportation list that has been 
computed in Step 1. 

6. The transportation plan for IDC transportation computed in Step 1 and transportation by couriers computed in Step 5 
are immediately executed. At 8 am in the morning the tour plans for the vehicles at the locations of the manufacturers 
and IDC are recomputed and executed. Recomputation of the tour plans is necessary because some vehicles may not 
available in the morning due to breakdowns. 

 
We set the maximum number of orders per vehicle to 15, whereas the number of orders per external supplier for IDC trans-
portation and also for the transportation by couriers is unlimited. We use 50 ants for each of the 100 iterations. The remaining 
parameters of GH and ACS are selected as described in Sub Section 3.2.1 and 3.2.2.  

We use the simulation framework described in (Sprenger and Mönch 2008) that mimics the behavior of the real-world 
distribution network. We include breakdowns of vehicles with a given probability at the beginning of the day, deviations of 
the deterministic driving times, and also some deviations from the deterministic load and unload times of orders modeled by 
appropriate uniform distributions.  

The two heuristics compute tour plans according to deterministic driving times. When the operating time window of a 
vehicle is exceeded by some stochastic effects, then the vehicle drives to its depot and unloads all of its not delivered orders. 
These orders have to be inserted into a later computed tour plan. In order to obtain stochastically significant results, we repeat 
all simulation runs three times and take average values of the performance measures.  

4.2 Results of Computational Experiments  

The results for 5.0=β  and 0.1=β are shown in Tables 2 and Table 3. The ACS approach turns out to be about 10-15% bet-
ter with respect to the number of driven km. This result is caused by a higher utilization of the vehicles of the manufacturers. 
When the due dates are tight, i.e. 5.0=β , the number of orders that do not meet the due dates is increased due to the fact that 
stochastic effects have a larger impact in this particular case.  

The difference between the cooperative and the non cooperative case is still huge. We obtain about 40% more driven km 
for the vehicles of the manufacturers and courier km but half external supplier km due to the lower number of zones. 
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Table 2: Results for Tight Due Date Obtained by 5.0=β  

  
GH 

(cooperative) 
ACS 

(cooperative) 
ACS 

(non cooperative) 
vehicle  km total 533,330 652,966 882,579 

  average orders on vehicle 12 11 9 
 km per order 42 49 72 
 sub tours per day 10 12 13 
 km per sub tour 562 547 721 
 orders transported 12,586 13,463 12,291 

external supplier km total 248,500 248,500 147,300 
(IDC) average orders on vehicle 14 15 19 

 km per order 30 28 19 
 orders transported 8,356 8,949 7,705 

external supplier km total 808,244 562,943 1,099,374 
(courier) average orders on vehicle 1.07 1.06 1.06 

 km per order 373 366 433 
 orders transported 2,164 1,540 2,541 

order due date violation 3.32% 3.08% 3.95% 
 

5 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we presented algorithms for a cooperative transportation planning problem. We suggested a decomposition 
technique to assign orders to a given set of vehicles. Each of these sub problems is solved by a greedy heuristic that takes into 
account the distance of the customers and the due dates for the orders. This heuristic is improved by ACS. We conducted 
some preliminary simulation experiments that demonstrated that the ACS type outperforms the greedy heuristic.  

 

Table 3: Results for Wide Due Dates Obtained by 0.1=β  

    
GH 

(cooperative) 
ACS 

(cooperative) 
ACS 

(non cooperative) 
vehicle  km total 621,952 719,448 935,886 

  average orders on vehicle 13 11 10 
 km per order 45 51 72 
 sub tours per day 11 13 13 
 km per sub tour 610 595 774 
 orders transported 13,688 14,102 12,932 

external supplier km total 248,500 248,500 147,300 
(IDC) average orders on vehicle 16 15 22 

 km per order 27 27 17 
 orders transported 9,318 9,106 8,886 

external supplier km total 384,040 182,750 650,748 
(courier) average orders on vehicle 1.08 1.07 1.05 

 km per order 321 329 397 
 orders transported 1,196 556 1,640 

order due date violation 0.39% 0.46% 3.16% 
 
There are some directions for future research. So far, we use a static decomposition method to assign orders to different 

zones in the distribution network. In order to make the decomposition more adaptive, we are working on the extension of the 
multi agent framework suggested by Mönch and Stehli (2006). The transportation planning for a zone can be represented by a 
decision-making agent. This agent is supported by a staff agent that computes solutions for the planning problem using sug-
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gested ACS algorithm. Orders will be exchanged between the zones to make the distribution to zones more dynamic and 
adaptive. Furthermore, we expect that we can use ideas from Montemanni et al. (2002) for the dynamic inclusion of new or-
ders by using already existing pheromone values from the previous instance. 
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