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ABSTRACT 

We consider a supply chain, which consists of N stocking locations and one supplier. The locations may be coordinated 
through replenishment strategies and lateral transshipments, i.e., transfer of a product among locations at the same echelon 
level. The supplier has limited production capacity. Therefore, the total amount of product supplied to the N locations is li-
mited in each time period. When total replenishment orders exceed total supply, not all locations will be able to attain their 
base stock values. Therefore, different allocation rules are considered to specify how the supplier rations its limited capacity 
among the locations. We team up the modeling flexibility of simulation with sample path optimization to address the multi-
location transshipment problem. We solve the sample average approximation problem by random search and by gradient 
search. With this numerical approach, we can study problems with non-identical costs and correlated demand structures. 

1 INTRODUCTION 

Physical pooling of inventories has been widely used in practice to reduce cost and improve customer service. However, in-
formation pooling, which entails the sharing of inventory among stocking locations through lateral transshipments, has been 
less frequent. Transshipments, the monitored movement of material between locations at the same echelon, provide an effec-
tive mechanism for correcting discrepancies between the locations’ observed demand and their available inventory. As a re-
sult, transshipments lead to cost reductions and improved service without necessarily increasing system-wide inventories. In 
our research, we focus on collaborative planning and replenishment policies via information pooling and, in particular, on 
transshipments as a way to improve both cost and service.  

Our study is motivated by observations from various industries. For example, inventory-pooling strategies to hedge 
against the risk of supply disruption are quite common in retailing.  Various retailers such as Foot Locker and distributors 
such as Ingram Micro pool inventory to increase the safety stock of their products.  The recent turmoil in the financial mar-
kets triggered by the credit crunch provides another timely example of transshipments.  In the banking system, there are two 
principal ways for banks to balance their cash reserves.  Banks may borrow cash from the central bank (the supplier), which 
typically controls the money supply very tightly.  Within the European Union, the European Central Bank (ECB) “replenish-
es” banks either through one-week lending on every Wednesday or lending for three months on the last Wednesday of each 
month.  Alternatively, banks may borrow (transship) cash from one another on an overnight basis.  To provide more liquidity 
for cash-starved markets, ECB has recently injected 40 billion euros into the system via three-month lending (increasing sup-
plier capacity) to banks, which were still reluctant to (transship) lend to one another (Werdigier and Dougherty 2007). 

Driven by significant advances in information and communication infrastructure, transshipments are becoming more 
popular. Mirroring practice, there is growing literature on transshipments.  The literature, however, has generally addressed 
either problems with two retailers, e.g., Tagaras (1989), Tagaras and Cohen (1992), Robinson (1990), and Herer and Rashit 
(1999), or problems with multiple identical retailers, e.g., Krishnan and Rao (1965), Jönsson and Silver (1987), and Robinson 
(1990).  Other recent work on transshipments includes Archibald, Sassen, and Thomas (1997), Bertrand and Bookbinder 
(1998), Tagaras (1999), Herer and Tzur (2001, 2003), Slikker, Fransoo, and Wouters (2004), and Bendoly (2004). 

In contrast, we are concerned with multiple retailers, which may differ both in their cost structures and in their demand 
parameters. Herer, Tzur, and Yücesan (2006) have introduced a simulation-based optimization method to deal with such sys-
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tem complexity. On the one hand, simulation models capture arbitrary levels of operational detail; on the other hand, optimi-
zation via simulation also provides an efficient way to optimize system design.  This set up has already been extended to cas-
es with capacitated transportation, thereby limiting the flexibility of a transshipment system (Özdemir, Yücesan and Herer 
2006). In this paper, we extend the original set up in another direction by considering a supplier with limited production ca-
pacity as Jönsson and Silver (1987) did with identical retailers.   

We propose a simulation-based optimization approach for solving the multi-location transshipment problem with suppli-
er capacity. To minimize the total system costs, the objective is to find the appropriate inventory policies, which are typically 
a base stock order-up-to policy.  Given a modified order-up-to-S policy, we then determine a myopically optimal transship-
ment policy between any pair of stocking locations. 

As in Herer, Tzur and Yücesan (2006), we use the sample average approximation (SAA) method (Kleywegt, Shapiro and 
Homem-de-Mello 2001). In this setting, the performance criterion is typically expressed as an expected value.  A random 
sample is generated and the expected value is approximated by the corresponding sample average.  The resulting sample av-
erage optimization problem is solved; the procedure is repeated until a stopping criterion is satisfied. The method exploits the 
fact that the function we wish to optimize is the limit, along almost every sample path, of a sequence of approximating func-
tions; the basic idea is to generate a sufficient number of sample paths to have a good estimate of the performance criterion 
and optimize the resulting deterministic function. We then take the result as the estimate of an optimizer of the true function. 
Robinson (1996) refers to this approach as sample path optimization. Simulation-based optimization helps the search for an 
improved policy while allowing for complex features that are typically outside of the scope of analytical models.  To solve 
the (deterministic) optimization problem, we use random search (as a benchmark) and gradient search with infinitesimal per-
turbation analysis (IPA), an efficient gradient estimation technique (Ho, Eyler, and Chien 1979).  Unlike Herer, Tzur and 
Yücesan (2006), however, the presence of constraints on supply capacity renders these gradient estimators more complex.   

The contribution of the current paper is thus two-fold: for the transshipment literature, we extend existing transshipment 
models in a non-trivial fashion to include finite supply capacity. For the simulation optimization literature, we construct an 
SAA algorithm for a non-trivial application. The remainder of the paper is organized as follows: In the following section, we 
introduce the capacitated transshipment problem and the notation used in the paper. Section 3 is devoted to determining the 
replenishment quantities incorporating various allocation rules under limited supplier capacity. The policy for replenishments 
and transshipments together with the formulation is explained in Section 4. Section 5 presents the technical details of SAA. 
We illustrate the solution technique with a numerical study and discuss the findings in Section 6. We conclude with final re-
marks in Section 7.   

2 MODEL 

We consider a supplier serving N retailers, or stocking locations, which face random customer demand. The demand distribu-
tion of each stocking location in a period is assumed to be known and stationary over time. The stocking locations review 
their inventory periodically and place replenishment orders with the supplier that has a finite total production capacity, C. In 
any period, transshipments provide a means to reconcile demand-supply mismatches. 

Within each period, events occur in the following order: the first event in each period is the arrival of replenishment or-
ders placed in the previous period. These orders are used to satisfy any outstanding backlog and to increase inventory. Next in 
the period is the occurrence of demand. Since the realization of demand represents the only uncertain event of the period, 
once it is observed, all the decisions of the period, namely, the determination of the transshipment and replenishment quanti-
ties, are taken. The transshipment transfers are then made immediately, and demand is subsequently satisfied. Different from 
Özdemir, Yücesan and Herer (2006), we assume that unsatisfied demand is backlogged. At this point, backlogs and invento-
ries are observed, and resulting penalty and holding costs, are incurred. The remaining inventory, if any, is carried to the next 
period. Note that items in stock elsewhere in the system are supplied immediately through transshipments while backlogged 
items have to wait until the beginning of the next period. Thus, transshipments provide an additional source of supply whose 
reaction time is shorter than that of regular supply. 

We consider modified base stock policies for replenishment. The policy is “modified” in the following sense. In a base 
stock policy, when the supplier does not have a capacity constraint, the inventory positions at all stocking locations are raised 
up to Si units at the beginning of each period. Given the finite supplier capacity, however, the locations may not receive the 
full replenishment quantity ordered in the previous period. Therefore, order-up-to levels may not be attained at the beginning 
of each period. Furthermore, when replenishment through the supplier is capacitated, different allocation rules must be speci-
fied to reflect how the supplier rations its limited capacity among the locations. 

2.1 Notation 

In developing our model, we use the following parameters: 
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ic = unit procurement cost at stocking location i ;  

ijt̂ = direct transshipment cost per unit transshipped from stocking location i  to stocking location j; this is the additional 
administrative and logistics costs (packaging, re-labeling, transferring, etc.) per unit due to transshipment. 

ijt = effective transshipment cost, or simply transshipment cost, per unit transshipped from stocking location i  to stock-

ing location j, jiijij cctt −+= ˆ ; 

ih = holding cost incurred at stocking location i  per unit held per period; 

ip = penalty cost incurred at stocking location i  per unit backlogged per period. 

We assume (as was assumed in Tagaras (1989), Robinson (1990), and Herer and Rashit (1999) as well as others) the fol-
lowing relationships regarding the problem parameters: 

ijji thh +<    i, j = 1,…,N 

ijij tpp +<    i, j = 1,…,N 

jiij pht +<    i, j = 1,…,N 
The first relationship reflects the fact that shipping items to a stocking location is not allowed, if there is already a sur-

plus item there. Similarly, stocking locations don’t transship goods to other locations if they already have a shortage, as re-
flected by the second inequality. Finally, we assume that if there is a shortage at one of the stocking locations and surplus at 
another, lateral transshipment is (myopically), cost advantageous. These inequalities ensure that transshipments from location 
i to location j are economically justifiable only if location i has excess inventory and location j has a shortage. These inequali-
ties imply that the complete pooling transshipment policy (Tagaras 1989) is optimal with no constraints on supplier capacity 
(Herer, Tzur, and Yücesan 2006); hence, we will continue to use complete pooling here. 

In addition, we have 
iD  = random variable associated with demand at location i  in each period with E[Di] = µi <∞; 
n
id  = actual realization of demand at stocking location i  in period n;   

)( n
ii dF  = cumulative distribution function of demand at location i  , i.e. the probability that n

ii dD < ;   
C = total production capacity per period ( ][∑>

i
iDEC ); 

n
iI 0  = net inventory level at stocking location i  at the end of period n; 
n
iI  = net inventory level at stocking location i  at the beginning of period n after replenishment.  n

iI  is the net inventory 
level in period n after the arrival of replenishment orders from the previous period (and before demand is observed). When 
we consider quantities in an arbitrary period, time superscripts are dropped. 

 
Two decisions need to be made for each stocking location every period: Transshipment quantities between any pair of 

stocking locations and replenishment quantities.  The associated decision variables are the following: 
Si = target inventory level (or order-up-to level) at stocking location i  at the beginning of each period; 

n
ijX = number of items transshipped from stocking location i  to stocking location j in period n;  
n
iR  = number of items received from the supplier by stocking location i  in period n+1 that were ordered from the sup-

plier in period n. Note that, when production is capacitated, the number of items received is not necessarily equal to the num-
ber of items ordered. 

3 DETERMINING THE REPLENISHMENT QUANTITIES  

In any period n, the net inventory level at stocking location i  at the end of the period is the sum of the inventory level in pe-
riod n, immediately after demand is observed, and the difference between the total quantity received (via transshipments from 
other locations) and sent (via transshipments to other locations) during period n.  Furthermore, in period n+1, the net invento-
ry level at stocking location i  immediately before demand is observed, is equal to the sum of the inventory level at the end of 
period n and items received from the supplier in period n.  In each period, the replenishment quantity n

iR  is the minimum of 
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remaining production capacity and the difference between the order-up-to value (Si) and the inventory level at the end of the 
period at location i . Therefore, the sample path of the system in any period n can be described as follows: 
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The total cost of the system in period n is given by: 
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n
i

−+ −= . The unit purchase cost at location i  
is multiplied by the demand at location i  and not by the replenishment quantity at location i  since the procurement cost dif-
ferentials are included in the transshipment costs. 
When total replenishment orders exceed total supply capacity, not all locations will be able to attain their base stock levels. 
We will refer to this difference between the order-up-to level (Si) and the inventory level at location i  at the beginning of pe-
riod n+1 as the shortfall at location i  at the end of period n.  We will use the shortfall values later in the analysis. Moreover, 
for the allocation of the available supply among stocking locations, we propose to implement and test five allocation rules. 
These allocation rules are described in the next section. 

3.1 Replenishment Allocation Rules 

3.1.1 Shortfall Balancing Rule 

In a multi-location setting, with identical cost structures, the location of the shortfall does not affect the service level in each 
location nor the total cost of the system in that particular period. However, to provide balanced service at each location in the 
subsequent period, it is desirable to distribute the shortfall at the end of the period evenly across the locations.  We therefore 
distribute the available stock in such a way so as to balance the shortfall or, if this is not possible, to minimize the maximum 
shortfall. If all locations are identical, i.e., all locations have the same cost structure and their demand distributions are iden-
tical, then all locations will have the same base stock levels. Thus, balancing the beginning inventory at each location ( 1+n

iI ) 

is equivalent to balancing shortfall ( 1+− n
ii IS ) at each location.  On the other hand, in the case of non-identical cost and de-

mand structures, since base stock levels will be different for each stocking location, reflecting not only the mean and standard 
deviation of the demand but the safety stock levels based on underage and overage costs, the allocation among stocking loca-
tions will also be different.  

The allocation scheme that minimizes total expected backorders, proposed by Jönsson and Silver (1987), uses expected 
backordered units to calculate a unique safety stock factor for all locations. Although in the shortfall balancing rule original 
safety stock factors are not necessarily identical, for demand structures with identical standard deviations, both allocation 
rules suggest similar allocations.  

3.1.2 Equal Allocation Rule 

We also implement a simple allocation rule whereby an equal amount is allocated to each location, unless the replenishment 
quantity needed to reach the base stock level is less than the allocated amount. This unallocated quantity is then shared equal-
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ly among those locations, which did not yet reach their base stock levels. This rule was tested mainly for benchmarking pur-
poses and not as a proposal for implementation. 

3.1.3 Pretransshipment Service Balancing Rule 

The above rules while naively intuitive, do not take into account all the important available information. In particular they do 
not consider the distribution of the demand in general and in the probability of a stockout in particular. The pretransshipment 
service balancing rule minimizes the maximum probability of having a pretransshipment shortage at a location in the next pe-
riod, i.e. it minimizes the maximum value of )(1 n

ii IF− . In other words we allocate inventory to locations with the greatest 
chance of a pretransshipment stockout next period. Of course we constrain ourselves not to allocate a location more than its 
order-up-to quantity iS .  

3.1.4 Prioritized Pretransshipment Service Balancing Rule 

Whereas the Pretransshipment Service Balancing Rule takes into account more information (the demand distribution) it does 
not consider the cost information. The Prioritized Pretransshipment Service Balancing Rule adds this information to the prior-
ity rule by weighting the pretransshipment stockout probability by the cost of a stockout at the location. That is we minimize 
the maximum ))(1( n

iii IFp − . In other words we allocate inventory to the location with the greatest expected marginal pre-
transshipment stockout cost.  

3.1.5 Pretransshipment Cost Balancing Rule 

Our final rule is similar to the Prioritized Pretransshipment Service Balancing Rule except that it recognizes that when a loca-
tion is allocated inventory, in addition to reducing the risk of a stockout, it increases the risk of having excess inventory. The 
Pretransshipment Cost Balancing Rule thus reduces the marginal expected benefit of decreasing the pretransshipment stock-
out cost by the marginal expected loss of the inventory being unused before transshipments, i.e. by )( n

iii IFh . In other words 

we allocate inventory such as to minimize the maximum )())(1( n
iii

n
iii IFhIFp −− . Note that this is the very marginal ex-

pected benefit that is examined by the single location periodic review stochastic inventory problem. 

4 DETERMINING THE TRANSSHIPMENT QUANTITIES  

In each period, the replenishment and transshipment quantities must be determined.  Herer, Tzur, and Yücesan (2006), who 
focused on the uncapacitated version of our problem, proved that, if transshipments are only made to compensate for an ac-
tual shortage (instead of building up inventory at another stocking location), there exists an optimal order-up-to S = (S1, S2, 
…, SN) policy for all possible stationary transshipment policies.  Order-up-to S policies are widespread in practice because 
they are not only simple to implement but are also shown to be very effective.  For the capacitated case, the determination of 
the optimal replenishment policy is an open problem. Nevertheless, since the transshipment policy is stationary and the fixed 
ordering cost is negligible, we will continue to adhere to an order-up-to S replenishment policy. 
Once demand is observed, for a given base stock level, it is possible to solve the transshipment decision problem via a net-
work flow formulation. After solving for the myopically optimal transshipment decision, instead of using the Ri values ob-
tained through the LP (which represent a lexicographic priority rule imposed by the LP algorithm), we will make the reple-
nishment decisions in accordance with one of the allocation rules introduced in Section 3.1. 
We adapt the complete network flow problem and the associated LP formulation approach of Herer, Tzur, and Yücesan 
(2006) and Özdemir, Yücesan, and Herer (2006) to model the multi-location capacitated transshipment problem. We will use 
the following decision variables in our LP formulation: 

:n
ijX  transshipment quantity from stocking location i  to stocking location j in period n; 

)(0 nIi
+ : inventory held at stocking location i  in period n; 

)(0 nIi
− : shortage at stocking location i  satisfied through replenishment in period n. Therefore )()()( 000 nInInI iii

−+ −= . 
n
iR : total replenishment for stocking location i  in period n; 

)(nIi
+ : on-hand inventory at stocking location i  at the beginning of period n, after arrival of orders and flushing of 

backlogs; 
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)(nIi
− : backordered inventory at stocking location i  at the beginning of period n, after arrival of orders and flushing of 

backlogs. 
We formulate the LP for the transshipment decision in period n as follows: 
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While on-hand inventory or backordered inventory levels at stocking location i at the beginning of period n+1 
( 1)++ nIi (  and 1)+− nIi ( , respectively) are decision variables, the values of on-hand or backordered inventory at the begin-

ning of period n ( )nIi (+  and )nIi (− , respectively) are calculated from (Pn-1) and are thus known at period n. Therefore, )nIi (+  

and )nIi (− are parameters in (Pn). 
The constraint sets (4) and (6) ensure the balance of the inventory position of each stocking location at the beginning and 

at the end of each period, respectively.  Constraint set (5) guarantees that the observed demand at location i  ( n
id ) and the 

shortfall from previous period ( )nIi (− ) will be satisfied either from the location’s own inventory ( n
iiX ), transshipped from 

another location ( n
jiX ) or backlogged and satisfied through the replenishment from the supplier ( )(0 nIi

− ).  Moreover, due to 
the supplier capacity constraint, the inventory position may not attain the order-up-to levels, Si, which is captured by the con-
straint set (7). Finally, constraint (8) guarantees that total replenishment to all stocking locations will be at most C units, re-
flecting supplier capacity.  Non-negativity constraints (9) are also included.  The objective is to minimize the cost of demand-
supply mismatch (inventory holding and shortage penalty costs) and transshipment costs. 

5 THE SOLUTION ALGORITHM 

For the capacitated transshipment problem, determining the exact order-up-to levels is analytically difficult. To determine the 
optimal order-up-to-S values, we therefore use the sample average approximation method to minimize the average total cost 
per period.  More specifically, the stochastic optimization problem we are addressing has the following form: 
  [ ]),()(min ξθθ

θ
fEf =

Θ∈
 

for some random variable ξ (representing, in our case, stochastic demand faced by the retailers) and parameter θ∈Θ is 
the set of possible values for the parameter θ (representing, in our case, the retailer order-up-to levels).  For a fixedθ, we gen-
erate the independent random sample 1 2, ,..., Uξ ξ ξ  (of demand realizations) to define the sample mean over 

( ( , ) :1 )if i Uθ ξ ≤ ≤  as  
1

1( ) ( , ).
U

U i
i

f f
U

θ θ ξ
=

= ∑
 

The sample average approximation problem is then defined as one of minimizing the sample average, i.e., 

  
min ( ),Ufθ

θ
∈Θ                (10) 

since, by the strong law of large numbers, ( )Uf θ  converges to ( )f θ  w.p. 1 as U →∞ .  Large deviations results (e.g., 
Dai, Chen, and Birge 2000) further show that one may not need a large sample in order to solve the original problem exactly 
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with a high probability by solving the SAA problem. The required sample size is, however, problem dependent, which may 
be difficult to estimate in an a priori fashion. We solve the minimization problem in (10) by random search (as a benchmark) 
and by gradient search. 

One of the attractive features of random search is its simplicity of construction as no potentially costly computation of 
derivative or Hessian matrix is involved.  Properties of simulation-based optimization via random search have been studied 
extensively.  A comprehensive review along with new convergence results is given by Chia and Glynn (2007).  We have dep-
loyed two versions of random search.  The naïve version randomly generates a vector of order-up-to levels and estimates the 
associated average total cost.  The vector that yields the lowest average cost is reported as the minimizer of (10) provided that 
it has been evaluated a minimum number of times (Andradóttir 1999).  In the second version of random search, we first ran-
domly generate a vector of order-up-to levels and estimate the associated average total cost; we then explore the neighbor-
hood of that vector by randomly picking one of its components, say j, and randomly perturbing its order-up-to level as Sj±1.  
The associated average total cost is then estimated with the resulting vector. This approach strives to maintain a balance be-
tween global search, or exploration, and local search, or exploitation (Andradóttir and Prudius 2009).   As before, the vector 
that yields the lowest average cost is reported as the minimizer of (10) provided that it has been evaluated a minimum number 
of times.  Figure 3 summarizes our algorithm. 

GENERATE

COMPUTE TOTAL COST

GENERATE

REPLENISHMENT ALLOCATION
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STOP

INITIALIZE ),...,,( 00
2
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R
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Figure 1: Random search 

 
The fact that the dual of a constraint in an LP formulation is the derivative of the objective function with respect to the 

right-hand side of that constraint motivated us to solve (10) using gradient search guided by IPA. Under the assumption that 
, we have a convex, possibly non-smooth, stochastic performance function. With IPA, instead of using finite differ-

ences in a gradient search method, we use the mean value of the sample path derivative, which is obtained through a single 
simulation (Glasserman 1991). Applications of perturbation analysis have been reported in simulations of Markov chains 
(Glasserman 1992), inventory models (Fu 1994), manufacturing systems (Glasserman 1994), finance (Fu and Hu 1997), and 
control charts for statistical process control (Fu and Hu 1999).  IPA-based methods have also been introduced to analyze 
supply chain problems (Glasserman and Tayur 1995).  In a set-up similar to ours, Plambeck Dai, L., Chen, C.-H., and Birge. 
(1996) use the sample path optimization method with IPA gradient estimates for the optimization of stochastic PERT prob-
lems with respect to parameters of the activity length distributions. 

IPA gradients will be unbiased provided that the objective function of (Pn) is convex and smooth with respect to the or-
der-up-to levels.   The objective functions of linear programs are convex (piecewise linear) functions of their right-hand sides 
(Theorem 5.1 in Bertsimas and Tsitsiklis 1997).  Note that, for a given demand realization, all Si variables appear on the 
right-hand side of (Pn), establishing convexity.  On the other hand, the objective function is piecewise linear and differentia-
ble almost everywhere except on a set of Lebesgue measure zero assuming that demand is a continuous random variable.  As 
a result, the generalized gradient is well defined everywhere (Clarke 1990).  Complete technical details are also given by 
Shapiro Dai, L., Chen, C.-H., and Birge (2002). 

In addition, we need to calculate the IPA gradient over one complete regenerative cycle, which will most likely last for 
more than a single period.  In our algorithm, the period in which all stocking locations simultaneously reach their order-up-to 
levels, Si, is a regeneration point.  Therefore, we need to propagate the gradients through the periods in the cycle. That is, we 
use the LP to compute the transshipment quantities, but not the replenishment quantities; we further use the LP output to ac-
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cumulate the IPA gradients ( iSTC ∂∂ / ), which are used in sample path optimization to determine the optimal order-up-to le-
vels This is indeed the specialization of stochastic approximation to the capacitated transshipment problem. The stochastic 
optimization algorithm we used exploits this property; the technical details are presented in Özdemir (2004).  

6 COMPUTATIONAL STUDY 

We analyze the impact of different factors on transshipment relations with limited production capacity under 5 configurations 
of 10 stocking locations.  In all configurations,  
a) We consider stocking locations with identical cost parameters.  In particular, we set the holding cost to hi = $ 1 and penalty 

cost to pi = $ 4 for all ten locations.  
b)We consider stocking locations with nonidentical cost parameters. Particularly, split the stocking locations into two groups, 

each having 5 retailers. We define two values for the holding and shortage cost: we set high holding cost to hi
H = $ 2 and 

low holding cost to hi
L = $ 1. Similarly, we set high penalty cost to pi

H = $ 8 and low penalty cost to pi
L = $ 4. We gener-

ate 6 scenarios with following cost combinations: 
Table 1: Nonidentical Cost Parameter Setting 

Locations 1 to 5 
(hi, pi) 

Locations 6 to 10 
(hi, pi) 

(hi
L, pi

L) (hi
H, pi

H) 
(hi

H, pi
L) (hi

L, pi
H) 

(hi
H, pi

L) (hi
H, pi

H) 
(hi

L, pi
L) (hi

L, pi
H) 

(hi
L, pi

H) (hi
H, pi

H) 
(hi

L, pi
L) (hi

H, pi
L) 

 
Each location faces an independent demand with Gaussian distribution with mean 100 and standard deviation 20.  As 

summarized in Table 2, we consider five alternative system configurations with different unit transshipment costs, tij, for 
units transshipped from stocking location i  to stocking location j.  Note that tij = ∞ implies that transshipments are not al-
lowed between locations i  and j. 

Table 2: System Configurations 
System t1i ti1 tij 
1 ∞ ∞ ∞ 
2 0.5 ∞ ∞ 
3 0.5 0.5 ∞ 
4 0.5 0.5 1.0 
5 0.5 0.5 0.5 

 
As a base case, in system #1, no material movement is allowed among stocking locations, turning the system into 10 in-

dependent newsvendors.  In system #2, only the first stocking location can transship to the other stocking locations.  In sys-
tem #3, transshipments from all stocking locations to the first stocking location are also allowed.  In systems #4 and #5, all 
material movement is allowed.  In system #4, however, transshipments between any two stocking locations (which do not in-
clude location #1) are twice as expensive.  Note that, in systems #2, 3, and 4, we can view the first stocking location as a dis-
tributor for the entire network, while in systems #1 and 5, all locations are identical.  For each system, we generate three sce-
narios with different supplier capacity. The capacity values used are: C= {1100, 1250, 1400} 

In addition to sample average approximation algorithm with IPA gradients, we implement 2 variants of random local 
search algorithms: Random search with restart and Random search with local search. Moreover, for all cost and capacity sce-
narios five replenishment allocation rules discussed above are implemented. 

In general, the selection of effective values for algorithm parameters is a difficult problem.  After conducting an exten-
sive search with different strategies, we set the total number of steps for the path search to K= 10000, the number of regenera-
tive cycles at each step to U= 2000, and the step size to kk 1000=α for IPA gradient search. As a stopping criterion, we 
compare the computed order-up-to levels over 1000 iterations and require that these values do not differ by more than 0.1.  
The total average cost of 2000 periods is calculated and reported for each scenario. 

For random search with restart, we restart the search K = 100 000 times, and to evaluate quality of the random basestock 
configuration, we calculated the total average cost of 1000 periods. For the best 5 basestock configuration, total average cost 
of 2000 periods is calculated and reported. 
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For random neighborhood search, we restart the search K = 1000 times, and generate a new “neighbor configuration” 

500 times. To evaluate quality of the random basestock configuration, we calculated the total average cost of 50 periods. For 
the best 10 basestock configuration, total average cost of 2000 periods is calculated and reported. 

In all systems, independent of the replenishment allocation rule implemented, we observe an increase in the total cost 
and in the total inventory level of the configuration when, we observe an increase in the total cost and in the total inventory 
level of the configuration when the supplier capacity constraint is incorporated. As the number of items that can be reple-
nished per period increases, the total cost and the total inventory levels decrease. We observe that even a little extra capacity 
leads to great cost savings by allowing the order-up-to levels to decrease. 

Comparing the simulation-based optimization algorithms, as it can be seen in Figure 2, we observe that gradient based 
search algorithm always converges to a better objective function, given approximately identical run times. The average total 
cost estimation calculated by naïve random search algorithm with restart improves if the number of simulation increases, e.g. 
for 1 million repetition estimation is very close to the IPA estimator, however this ends up with very long (more than 30 
hours) runs compared to IPA estimations. The random search with neighborhood exploration on the other hand results in a 
reasonable cost estimate with small number of simulations however, we observe that after a good estimate the further im-
provement is very slow. 
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Figure 2: Total Average Cost for System 3 

7 SUMMARY 

We consider a supply chain, which consists of N stocking locations and one supplier. The locations may be coordinated 
through replenishment strategies and lateral transshipments. The supplier has limited production capacity. Therefore, the total 
amount of product supplied to the N locations is limited in each time period. When total replenishment orders exceed total 
supply, not all locations will be able to attain their base stock values. Therefore, different allocation rules are considered to 
specify how the supplier rations its limited capacity among the locations. 

We team up the modeling flexibility of simulation with sample path optimization to address the multi-location trans-
shipment problem. Under a modified base stock policy, we determine a myopically optimal transshipment policy using an 
LP/Network flow framework. Then using IPA estimators, we calculate the optimal values of base stock levels, employing 
simulation-based optimization. We analyze the outcomes on system behavior and performance measures of the stocking loca-
tions when the supplier may fail to satisfy all the replenishment order of locations.  With this numerical approach, we can 
study problems with non-identical costs and correlated demand structures. 

It is interesting to note that the sample path optimization framework deployed with IPA gradients established in Herer 
Dai, L., Chen, C.-H., and Birge. (2006) did not require any major technical modifications to analyze transshipment systems 
with transportation capacity (Özdemir Dai, L., Chen, C.-H., and Birge. 2006).  Incorporation of limited supplier capacity, 
however, necessitated a significant overhaul of gradient calculations.  In particular, instead of easily recovering the gradient 
information from the output of the LP in a single-period setting, we were obliged to propagate the gradient information 
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throughout a regenerative cycle that might take several periods due to limited supplier capacity and various capacity alloca-
tion policies. 
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