
Proceedings of the 2009 Winter Simulation Conference 
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, eds. 
 
 
 

SEQUENTIAL MONTE CARLO-BASED FIDELITY SELECTION IN DYNAMIC-DATA-DRIVEN ADAPTIVE 
MULTI-SCALE SIMULATIONS (DDDAMS) 

 
 

 
 

 
 

 

ABSTRACT 

In DDDAMS paradigm, the fidelity of a complex simulation model adapts to available computational resources by incorpo-
rating dynamic data into the executing model, which then steers the measurement process for selective data update. Real-time 
inferencing for a large-scale system may involve hundreds of sensors for various quantity of interests, which makes it a chal-
lenging task considering limited resources.  In this work, a Sequential Monte Carlo method (sequential Bayesian inference 
technique) is proposed and embedded into the simulation to enable its ideal fidelity selection given massive datasets. As dy-
namic information becomes available, the proposed method makes efficient inferences to determine the sources of abnormali-
ty in the system. A parallelization frame is also discussed to further reduce the number of data accesses while maintaining the 
accuracy of parameter estimates. A prototype DDDAMS involving the proposed algorithm has been successfully imple-
mented for preventive maintenance and part routing scheduling in a semiconductor supply chain. 

1 INTRODUCTION 

In today’s global and competitive market, different companies (e.g. suppliers, manufacturers, retailers, distributors, and 
transporters) form a supply chain to transform raw materials into finished goods and distribute the finished goods to the cus-
tomers in a collaborative manner.  For success in a supply chain, coherent planning and control across as well as within each 
of strategic, tactical, and operational issues are of critical importance (Beamon 1999, Son et al. 2002 and Samaddar et al. 
2006). In the decision making process of coherent planning and control, the latest information reflecting immediate supply 
chain status is to be used to make planning and control orders in the best possible harmony with current systems capabilities.  
However, the large-scale, dynamic and complex nature of supply chains makes coherent planning and control very challeng-
ing.  While it is true for the strategic and tactical levels, it becomes even more so at the operational level as the number of pa-
rameters as well as the frequency of update for each parameter grow significantly.  In order to enable timely planning, moni-
toring, and control of these supply chains at the operational level in an economical and effective way, we have earlier 
proposed dynamic-data-driven adaptive multi-scale simulation (DDDAMS) architecture (Celik et al. 2007).  This research is 
believed as the first efforts available in the literature to 1) handle the dynamicity issue of the system by selectively incorpo-
rating up-to-date information into the simulation-based real-time controller, and 2) introduce adaptive simulations that are 
capable of adjusting their level of detail according to the altering conditions of a supply chain in the most economic way.  
The components of DDDAMS architecture include 1) a real-time DDDAM-Simulation, 2) grid computing modules, 3) a web 
service communication server, 4) a database (online and archival), 5) various sensors, and 6) a real system.  In addition, ma-
jor functions enabling DDDAMS capabilities such as abnormality detection, fidelity selection, fidelity assignment, and pre-
diction and task generation are performed by the algorithms embedded in the real-time DDDAM-Simulation. 

Among the above mentioned algorithms (functions), the fidelity selection algorithm, whose goal is to determine a proper 
fidelity level of a simulation model, plays a crucial role for several reasons.  First, it enables the simulation to adapt to chang-
ing system conditions (available computational resources).  Second, it determines how much information is necessary to fully 
monitor and control the system while the conditions evolve over time.  Depending on a specified fidelity, the simulation re-
trieves corresponding data from various types of sensors placed throughout the shop floor and its partners at the correspond-
ing frequencies.  Third, as it is a main decision-making module together with prediction and task generation algorithm in 
DDDAMS architecture, its accuracy affects performance of the overall system (governed by the DDDAMS-based planning 
and control structure) most significantly.  Fourth, a successive and rigorous computation of such intelligent monitoring algo-
rithms which are developed for large-scale, dynamic and complex systems, consumes considerable amount of computational 
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resources, where its efficiency and parallelization become of primary importance for realization of the proposed architecture 
in a real-world distributed computing setting. 
 In our earlier work (Celik et al. 2007), we have proposed a skeleton of the above mentioned fidelity selection algorithm 
using Bayesian Belief Network (Jensen 2001, Pourret, Naim, and Marcos 2008) as it is a virtuous technique to embody cause 
and effect interactions in a system via a directed acyclic graph.  Also, via a BBN, possible parental causes for an observed 
event (result) can be traced and analyzed (inductive reasoning) even when some information is uncertain or unavailable.  
However, all the nodes considered in that research are limited to discrete variables, and conditional distributions between 
nodes and their parents are modeled via empirical distributions only.  Although using empirical distribution might be advan-
tageous as it is calculated directly from the actual data, it involves some critical issues that need to be addressed.  First, the 
data used may not represent the entire spectrum of the system behaviors.  Second, capturing rare but important events be-
comes problematic.  Third, using every single data point leads to massive datasets whose processing become computationally 
insupportable in short amount of time for large-scale systems.   
 In this study, to address the above-mentioned issues on the empirical distributions and to employ both discrete as well as 
continuous variables to formulate the dynamic systems under uncertainties, we propose a generic, modified Sequential Monte 
Carlo algorithm adopting Bayesian inference.  It is a continuous-discrete (hybrid) filtering method (continuous parameters 
measured at discrete instances of time) that performs fidelity selection in a rigorous but efficient manner.  The specific goal 
of this study is three-fold: 1) to extend the structure of DDDAM-Simulations in such a way to involve numerous fidelities (as 
opposed to a fixed number in the current work (Celik et al. 2007)), 2) to be able to predict the system status accurately using 
selective, massive sensor data coming from a large-scale, dynamic manufacturing environment and hence, to trace back the 
possible parental causes for an observed event in the most effective way, and 3) to perform a parallel Bayesian computation 
for different portions of the network in order to monitor specific parts of the manufacturing system in detail while monitoring 
the rest in an aggregated manner.  In this study, the proposed algorithm, which is embedded into the DDDAMS architecture, 
is applied to help optimize preventive maintenance scheduling and part routing in a semiconductor supply chain in a distri-
buted computing environment.   

The rest of the paper is organized as follows. Section 2 provides a background and literature survey of Bayesian infe-
rence and modeling of Sequential Monte Carlo algorithms. Section 3 then describes the Sequential Monte Carlo-based fideli-
ty selection algorithm proposed in this paper. Section 4 describes the designed experiments and results obtained to demon-
strate the accuracy and efficacy of the proposed approach and Section 5 summarizes the conclusions derived from this study. 

2 BACKGROUND AND LITERATURE SURVEY 

2.1 Dynamic Systems 

Dynamic system is a part of the real world whose behavior changes over time due to its inherent dynamicity, randomness and 
complexity (e.g. economics, weather, a moving object, signal processing).  A state of a dynamic system can be represented 
using state variables, rate variables, and parameters. Dynamic system considered in this study is a large-scale and complex 
supply chain where we are interested in analyzing its evolving behavior for us to be able to make critical decisions when ne-
cessary.  If a state of a dynamic system only depends on its previous state, its state sequence is called to follow a first order 
Markov random process, and can be represented by state space models using state and observation equations. Here, the gen-
eral state (motion) and measurement (observation) equations are given in Eq. (1) and Eq. (2), respectively, where xk is state 
vector at time instant k, fx is state transition function, uk is process noise with a known distribution, zk is observations at time 
instant k, fz  is observation function, and vk is observation noise with a known distribution.  
       

                                                                    xk   = fx(xk-1,uk) ,  zk  = fz(xk ,vk)                                                          (1) 
                                                                             

The state equation based on fx(·) and density uk characterizes state transition probabilities p(xk|xk-1) for every k-1 given 
p(x0), whereas measurement equation based on fz(·) and density vk describes measurement probabilities p(zk|xk) (i.e., Hidden 
Markov Model). The state space approach is convenient for handling multivariate data and nonlinear/non-Gaussian 
processes, and it provides a significant advantage over traditional time-series techniques (West and Harrison 1997).  As op-
posed to classical time series approach, it usually results in a much better fit to the data.  Also, they explicitly take the time 
dependencies between the observations of a time series data into account.  This results in residuals that are much closer to in-
dependent random values than in classical models (Commandeur and Jan Koopman 2007).   
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2.2 Recursive Bayesian Filters 

A Bayesian approach generates enhanced analyses as it takes into account what is actually known and what is not regarding 
the system to be simulated during its execution. It incorporates prior information into the analysis in a precise and rational 
manner. When gaining detailed simulation data is costly due to need for large numbers of data points for numerous parame-
ters, Bayesian technique allows for a desired level of precision in knowledge with the minimal amount of data.   

In the Bayesian framework, prior distributions (i.e., p(x0)) are defined to specify initial uncertainty about unknown pa-
rameters; likelihood models (p(zk|xk)) to relate unknown parameters to observable data, and numerical tools (i.e., algorithms, 
filters) to update beliefs about unknown quantities as data becomes available using Bayes’ rule .  The posterior probability 
p(xk|z1:k) of xk, based on all available measurements up to time k (abbreviated as z1:k), summarizes uncertainty about xk via 
the likelihood model and prior distribution and performs probabilistic state estimation for a dynamic system (Chick 2006).  In 
this study, we are interested in estimating the posterior distribution of the dynamic supply chain system, which will then help 
us compute all kinds of estimates for the current state or for future observations (e.g., expected value). In order to estimate the 
state of a dynamic model, which evolves over time, the Bayesian filtering should be applied in a recursive manner.  
 Recursive Bayesian filters enable sequential update of previous estimates as new data becomes available.  Therefore, 
they allow for batch processing of data by which not only the state of a dynamic system is derived faster, but also rapid adap-
tation to changing signal characteristics are enabled through on-line processing of data.  Recursive Bayesian filters essentially 
consist of a prediction step, where the next state is predicted using probability density function (p(xk|z1:k-1) = ∫ p(xk|xk-1) p(xk-

1|z1:k-1)dxk-1) and an update step where the likelihood of current measurement is combined with the predicted state to build the 
posterior (see Eq. 2). 
 
   

 )z|p(z
)z|)p(xx|p(z

=  )z|p(x    
evidence

priorlikelihood posterior 
1-:k1k

1-:k1kkk
:k1k=>

•
=

    
where p(zk| z1:k-1) = ∫ p(zk| xk) p(xk| z1:k-1)dxk                       (2) 

2.2.1 Kalman Filters 

Bayesian analysis, in principle, can be applied in a wide variety of situations, in particular for cases where simple closed-
form (i.e., natural conjugates) results are available. In a linear state space model, when the posterior distribution of an un-
known at time k-1, p(xk-1|zk-1) and the measurement noise are both Gaussian, then new posterior p(xk|zk) also becomes Gaus-
sian and can be computed optimally in a linear state space using Kalman filter. In the present literature, Kalman Filters have 
proven useful by being applied to a variety of research areas including economy, radar, computer vision, navigating and 
tracking a target, robot localization, audio and video localizations. While Kalman Filter presents an exact optimal solution for 
the posterior distribution, assumptions that need to be hold for its implementation are highly restrictive and not realistic for 
many real world systems. When the process to be estimated or the measurement relationship to the process is non-linear, Ex-
tended Kalman filter (EKF) can be used to approximate the optimal solution. The EKF, basically, linearizes the non-linear 
process model about the current first two moments of the state (i.e., mean and covariance). Unfortunately, the linear approx-
imators to the nonlinear functions (i.e., derivation of the Jacobian matrices) can be complex causing implementation difficul-
ties and these linearizations can lead to filter instability if time step intervals are not sufficiently small (Julier, Jeffery, and 
Hugh 1995). 

2.2.2 Sequential Monte Carlo Methods (Particle Filters) 

Particle filters are defined as sequential Monte Carlo methods based on point mass (or “particle”) representations of probabil-
ity densities, which can be applied to any state-space model and which generalize the traditional Kalman filtering methods 
(Arulampalam et al. 2002). If a natural conjugate prior either does not exist, or is not a suitable way of representing the avail-
able prior knowledge in a particular case, then the Bayesian analysis can be carried out by numerical integration, which is 
computationally harder.  In such cases, Particle filters represent the posterior probabilities by a set of randomly chosen 
weighted samples, where random selection of samples is enabled by Monte Carlo simulations (to approximate integrals). The 
approximation depends on the ability to sample from the original distribution depicting the system behavior. Almost sure 
convergence to a true probability density function is assessed as the number of samples increases. 
 Sequential Monte Carlo methods update the estimates of posterior distributions as new data arrives. Particle filtering is 
the often used term to describe methods that use importance sampling (sequential) to filter out those “particles” that have the 
least posterior mass after incorporating the additional data. Importance sampling is a general Monte Carlo method for compu-
ting integrals. When a sampling mechanism is not readily available for the “target density”, but one is available for another 
“sampling density”, we can use importance sampling where the relevant distribution is contained in the pairs of samples and 
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weights, known as particles. It has been demonstrated in the literature (e.g., Liu 1996, Arulampalam et al. 2002, Doucet, 
Godsill, and Andrieu 2005, Wan and van der Merwe 2001) that the particle filter approach greatly reduces the number of data 
accesses while maintaining accurate parameter estimates.  Several of these studies are compared in Table 1.  Other applica-
tions include target tracking (Gordon, Harrison, and Smith 1993), enhancement of speech  and audio signals in digital envi-
ronment (Godsill and Rayner 1998) and establishment of a relationship between finite set statistics and conventional proba-
bility (Vo, Singh, and Harrison 2005).   

Table 1: Selected works on Bayesian filters 

Authors Problem Assessed Benefits Limitations/Areas of Improvement 

Andradottir 
and Bier 
(2000) 

Application of Bayesian 
ideas to simulation 

Bayesian ideas used in verification and 
validation of simulation models (output 
analysis) and input analysis 

Results are checked by their conformance 
to prior expectations/ distributions, hence 
approach is inapplicable to cases when they 
are not known  

Ridgeway and 
Madigan  
(2002) 

Bayesian analysis of 
massive datasets via 
modeling of web traffic 
and robotics 

Allows to stop when parameter uncertain-
ty drops below a tolerance limit 
Parallelization is possible with ease 
Convergence of MCMC sampler 

Empirical work needs to undergo to test its 
limitations and this approach might not be 
applicable to high dimensional applications 
where throwing data away might be costly 

Doucet, God-
sill and An-
drieu (2005) 

Multi-sensor Multi- tar-
get Filtering: Establish-
ing the relationship be-
tween finite set statistics 
and conventional proba-
bility  leading to multi-
target filter 

Demanding  task of computing probability 
densities of random finite sets is achieved 
via finite set statistics 
A principled and computationally tractable 
SMC implementation of the Bayes multi-
target filter is developed 

Viability of the proposed approach needs to 
be tested in real applications 
Importance distributions should be chosen 
so as to minimize the (conditional) variance 
of the weights 
 

Linsker  
(2008) 

Learning via Kalman 
prediction or control in 
recurrent Neural Net-
work algorithm  

Circuit is built to enable comparison with 
aspects of biological neural networks, par-
ticularly in cerebral cortex (CC) 
Design enables analyzing the restrictive 
effect of computational tasks on the result-
ing NN architecture, circuitry and signal 
flows 

Association between certain types of com-
putational tasks and specific architectural 
features in NN’s can be studied in broader 
context 
CC signal flows and their sequencing used 
in the study as well as CC connectivity are 
incomplete  

 
As mentioned earlier, in this study, we are interested in preventive maintenance and part routing scheduling problems in 

supply chain systems.  Effective online scheduling mechanism based on DDDAM-simulations requires estimation of the state 
of a system that changes over time using a sequence of noisy measurements made on the system.  In this paper, we will con-
centrate on the state-space approach to modeling dynamic systems (i.e., supply chains) and enable near optimal fidelity selec-
tion in DDDAM-simulations via Sequential Monte Carlo methods.  

3 SEQUENTIAL MONTE CARLO-BASED FIDELITY SELECTION ALGORITHM 

3.1 Overview of DDDAMS 

The goal of the DDDAM-Simulation is to achieve the effective synchronization of time and information between the simula-
tion and real-system. This synchronization will then let the simulation run with the most up-to-date data (see Figure 1).  In 
this study, in order to enable effective time synchronization, DDDAM-Simulations are implemented via real-time simula-
tions. A considerable amount of computational resource is consumed by simulation due to its execution as well as sensor data 
update to reach such an accurately synchronized system. Therefore, DDDAM-Simulations should dynamically adjust their 
levels of fidelity still assuring information synchronization (without missing ant significant measurement). It is noted that a 
level of fidelity affects both the simulation execution time as well as the time taken to collect required sensory updates. In our 
earlier work in DDDAMS (Celik et al. 2007), we have developed four algorithms, which are embedded into the simulation to 
enable the DDDAMS capability (see Figure 1). The purpose of Algorithm 1 is to filter noise and detect an abnormal status of 
the system based on the measurement of the current sensory data (such as temperature and pressure). The purpose of Algo-
rithm 2 is to select the proper fidelity level of each component in the system via Bayesian Belief Network (BBN).  The pur-
pose of Algorithm 3 is to opt for the available fidelity level of each component by taking the system level computational re-
source constraint into account.  This algorithm obtains a matrix which encapsulates the proper (desirable) fidelity level of 
each component discussed in Algorithm 2 as an input as well as the available computational resource capacity from the grid 
computing service, and returns a new matrix which holds the assigned fidelity level for each component in the system that 
was evaluated at the current time point as an output. The purpose of Algorithm 4 is to obtain optimal control tasks based on 
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prediction of future system performance.  For the considered preventive maintenance scheduling, Algorithm 4 provides rec-
ommendations on when the next maintenance operation should take place.  For the operations scheduling, it generates control 
tasks based on the optimal sequence of operations.   

 

Sensory 
data

Predetermined 
fidelity level

Assigned 
fidelity level 

Data filtering 
algorithm

Algorithm 1

Fidelity selection 
algorithm

Algorithm 2

Algorithm 4

Algorithm 3

Fidelity assigning 
algorithm

Real System

Machine 2Machine 1 Machine 3 Machine n
.  .  .

Information 
request

Task generation 
algorithm

Task generation

Information 
update 

Filtered data/
Detected 

abnormality

Available computational 
resource

DDDAMS

Data flow
Control flow

Assigned 
fidelity level 

 
Figure 1: Embedded Algorithms in DDDAM-Simulation 

  

 In the proposed work, via advances made in Algorithm 2 (the particle filtering method keeps track of the system status in 
time), there is no need for Algorithm 1 to detect abnormality. Algorithm 1 still can be used to filter the measurement data 
from noise, however computation-wise it would be another burden to the system. Therefore, it is disabled in the revised 
DDDAMS system. On the other hand, Algorithm 2 can handle noisy data via its Bayesian filtering capability. In addition, al-
though Algorithm 2 is built to enable highest computational efficiency, it still assumes that resources are always available for 
data retrieval and process whenever there is a need to obtain more measurement in higher frequencies. Hence, Algorithm 3 is 
still required under the revised DDDAMS umbrella. Algorithm 4 is unchanged and used to generate necessary control tasks 
for the real system based on the real-time sensing capability (Algorithms 2 and 3) of DDDAMS. 

3.2 Definition of Fidelities and States 

In this study, a fidelity is defined as a measure of accuracy of a model (i.e., simulation) when compared to the real world sys-
tem. As the fidelity increases, the similarity, both physical and functional, between the simulation and the real system in-
creases. This is enabled via the usage of a greater amount of data which is more frequently updated. However, as the re-
quested amount of data increases, its measurement and processing costs increase as well resulting in a higher computational 
resource usage and response (processing) time. Particularly, when the simulation is aimed to be used as part of a real-time 
controller for large-scale, dynamic systems (e.g., supply chains), timely (online) collection of data becomes critical, but hard-
er due to the spread sensors and slower processing of massive information loads. For such cases, selection of optimal or near 
optimal fidelities for each set/subset of the entire system becomes crucial for the simulation efficacy. 

In this study, our goal is to help DDDAM-Simulation determine the near optimal fidelities for each and every cell in the 
shop by effectively using the measurement data. The measurement data used in this study can be of two types: sensory data 
or performance metric data. Figure 2(b) depicts various sensor types as well as performance metrics used in this study, to-
gether with their numbers, measurement units and range of possible values (performance metric data is shown in the last 
three rows of Figure 2(b) in a separated box). The sensory data shows the instantaneous system change whereas the perfor-
mance metric data shows the cumulative effect of the successive changes in system state or sensory data.  That is why the 
performance metric data are obtained from machines regardless of the model fidelity whereas the sensory data is used when 
we go in detail with the system behavior.  For instance, if the model fidelity for cell 4 is 2.X, then although we are not in ma-
chine level in terms of the decision hierarchy (see Figure 1), we still collect CT (mean cycle time) data from machines in cell 
4 in a random manner and average them. The difference is, we basically do not know from which machine this data is coming 
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from.  In contrast, the sensory data can only come from single machines depending on the model fidelity (only in Fidelities 
3.X).   

 
 

 

Sensor Type/ 
Performance 

Metric 
Description Range Unit Abbrevia-

tion for Unit 

Temp Temperature [ 60-85] Fahren-
heit 

oF 

Press Pressure [9800-
10100] 

Pressure 
per 

square 
 

psi 

Snd Sound [0-140] Desibel dB 

AirQuality Air quality [0-500] 
Air 

quality 
index 

AQI 

Hmd Humidity [0-30] 
Gram per 

cubic 
meter 

g/m 3 

Vib Vibration [0-10] Desibel dB 

PR Production 
rate  [0-1] - - 

RawMatSt Raw material 
status [0-100 ] Unit - 

CT Mean cycle 
time 

[ 130-
150] Minute min 

Figure 2(a) Markov chain property defined in terms of aggregated states for each machine, cell and shop (b): Details of sen-
sor types/performance metrics used in this study  

 
Most of the sensor types used in the considered system in this research and their measurement units are commonly 

known, whereas AirQuality and Snd might be exceptions.  The measurement unit used to scale the data obtained from the Air 
Quality sensors is called Air Quality Index (AQI), which is a standardized indicator of the air quality in a given location.  It 
measures mainly ozone and particulates, but may also include sulfur dioxide, and nitrogen dioxide.  Various agencies around 
the world measure such indices, though definitions may change between places.  AQI structure used by the United States En-
vironmental Protection Agency (EPA) recognizes the ranges [0-50], [51-100], [101-150], [151-200], [201-300] and [301-
500] as ‘Good’, ‘Moderate’, ‘Healthy’, ‘Unhealthy’, ‘Very unhealthy’ and ‘Hazardous’ respectively. Snd sensors are also 
known as acoustic sensors.  Although there are other measurement units such as Hz (1/frequency) and dB, the most widely 
used unit to quantify sound levels is by measuring it relative to 0 dB reference. 

In this work, the fidelity of a DDDAM-simulation is defined by two numbers separated by a dot (e.g., 2.3) (see Figure 3). 
The first number indicates the level of decision hierarchy where the decisions are made on which type of measurements 
should be collected from which portion of the facility (i.e., shops, cells or machines).  For example, “1” denotes the shop lev-
el, meaning data coming from each performance metric is collected randomly from machines located throughout the entire 
shop. While the data still have a tag regarding which machine it is associated with, simulation is not necessarily interested in 
this information as at this level all the machines in the shop are assumed to operate under similar conditions (i.e., same room 
temperature). If it is “2” for a cell in the manufacturing shop, the selected fidelity of the simulation is in the cell level for this 
specific cell, but aggregated for the rest (still in Fidelity 1). For a cell with simulation fidelity “2”, data coming from each 
performance metric is collected randomly from machines located only in this cell. Similarly, if it is “3” for a cell in the shop, 
the selected fidelity of the simulation is in machine level for this specific cell, but can be different for different portions of the 
shop (either Fidelity 1, 2 or 3). For a cell with simulation fidelity “3”, data coming from each sensor type as well as perfor-
mance metric is separately collected for each machine located in this cell.  Once these levels of decision hierarchies are de-
termined, levels of data retrieval frequency are determined by the second number.  Although levels for the first selection are 
predetermined, levels for the second selection can change from “1” to infinite, meaning one single data or infinite amount of 
data can be collected at simulation time from each machine (see Figure 3).  

 1 
 

 2 
 

 3 
 

 4 
 

 5 
 

States 
 

p(x1|x2) 
 

p(x2|x3) 
 

p(x3|x4) 
 

p(x2|x1) 
 

p(x3|x2) 
 

p(x4|x3) 
 

p(x5|x4) 
 

p(x1|x5) 
 

1: Cell/shop is operating under normal conditions  
2: Cell/shop is operating under abnormal conditions  
3: Cell/shop is operating under serious conditions  
 
 

Cell/Shop 

Machine 

 1 
 

 2 
 

 3 
 p(x1|x2) 

 
p(x2|x3) 
 

p(x2|x1) 
 

p(x3|x2) 
 

1: Machine got [0~19] % degraded (Brand New) 
2: Machine got [20~39] % degraded (Good) 
3: Machine got [40~59] % degraded (Normal) 
4: Machine got [60~79] % degraded (Abnormal) 
5: Machine got [80~100] % degraded (Failed) 

1: Machine got [0~19] % degraded (BrandNew) 
2: Machine got [20~39] % degraded (Good) 
3: Machine got [40~59] % degraded (Normal) 
 

4: Machine got [60~79] % degraded (Abnormal) 
5: Machine got [80~100] % degraded (Failed) 
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Once near optimal fidelities are chosen for each and every cell in the shop, measurements are collected accordingly.  

These measurements are then used to determine the very next fidelities and hence very next measurements. This process re-
peats during the simulation run. Given new measurements, simulation uses them to derive new Bayesian inferences through 
the particle filter algorithm developed in this study. Bayesian inferences are derived to reflect the system status in terms of 
machine status, cell conditions and/or shop statuses based on the sensory data.  The five states for each machine and the three 
states for each cell and shop as well as transitions between them are shown in Figure 2(a). In the considered system, each ma-
chine can be only at one of these five states and similarly, each cell/shop can be only at one of these three states. Once the 
system status is determined as such at the end of each processing of Algorithm 2, Algorithm 4 is invoked in order to re-
schedule (change a current schedule) preventive maintenance and send operational tasks. 
  

 
Figure 3: Definition of simulation fidelity with levels of decision hierarchy and data retrieval frequency 

3.3 Considered Supply Chain System  

In this work, a manufacturing supply chain is used as a case study.  The considered supply chain is comprised of three eche-
lons including wafer manufacturing, semiconductor die manufacturing, and assembly/packaging facilities.  In the wafer fab, 
the raw silicon wafers are formed.  The wafers are then sent to the semiconductor die fabs, where multiple layers of circuits 
are developed on the silicon wafers, and they are cut into individual chips called dies.  The dies are transferred to an assembly 
and packaging fab to be packaged into integrated circuits.  In this considered supply chain, we aim to find best possible pre-
ventive maintenance scheduling and part routing.  In addition, each facility’s shop floor is comprised of five production cells.  
There are total of 10 operational machines located in each of these facilities where each machine utilizes 9 sensors of various 
types.  Each cell area is responsible for avoiding possible accumulations or rapid increases in its own work-in-process (WIP).  
Reducing overall WIP in the facility reinforces importance of the communication within the maintenance team in order to 
prevent avoidable delays due to machine breakdowns through preventive maintenance (PM). 
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3.4  Adaptive Backward Sequential Fidelity Selection Algorithm 
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                          Figure 4: Operations of particle filter                               Figure 5: Acquiring measurement data at time k 

 
The adaptive backward sequential fidelity selection algorithm developed in this work is explained in this section (see Figure 
4 for an overview of the algorithm).  At the beginning, the historical data is used to obtain enough number of samples to at 
least generate the prior distribution of the interested variable.  Later, the algorithm is tuned in a sequential manner as more 
sensory data arrives.  Aggregated state definitions for machine level, cell level and shop level particle filters are shown in 
Figure 4.  In this work, each machine, cell and shop has their dedicated particle filters.  The switch between these filters is 
dependent on how much accuracy is needed in what frequency during the abnormality detection process.  There are no jumps 
allowed between hierarchical levels of fidelities (i.e., model has to go from fidelity 1.X to 2.X and then 3.X, immediate 
jumps from 1.X to 3.X is not allowed).  The posterior distribution sought here is the p(x|z), where x stands for the state varia-
ble reflecting the machine’s status in terms of how close it is to a failure, cell’s status in terms of normality/abnormality and 
shop’s status in terms of the same.  In addition, z reflects the measurement data involving both sensory data (i.e., temperature, 
sound, vibration, air quality, humidity, pressure) and performance metric data (i.e., production rate, raw material status and 
cycle time) for machine level fidelities (i.e., fidelity 3.X’s) and only performance metric data for cell level and shop level fi-
delities (i.e., fidelities 2.X’s and 1.X’s).   
 The sample size of particle set, Ns and time for retrieving single measurement update, δt are determined by the previous 
level of data retrieval frequency.  As the level of data retrieval frequency increases, Ns increases whereas δt decreases in order 
to have more accurate results in terms of current system status. Here, regardless of the computation time of the algorithm, 
measurement takes ‘δt.Ns’ time units to complete (see Figure 5). Computational resources are used in three separate places.  
First, they are used to retrieve the measurement data from the real time machinery to the fidelity selection algorithm (hence 
the real time simulation).  Second, they are used for the prediction step of the particle filtering algorithm in order to derive the 
estimated states of the machines.  Lastly, they are used for the update step of the algorithm where the current model is res-
tored with the usage of new data in order to have better predictions in the future. Therefore, although increased Ns helps us 
better estimate the posterior, it is costly in terms of both time and computational resource usage.  As a result, Ns, should be 
kept as minimum as possible while obtaining desired accuracy in estimating posterior. The time to re-iterate the algorithm 
from iteration k-to-k+1 (sampling frequency ΔT) is determined by the previous level of decision hierarchy. The specifications 
of the fidelity levels included in our DDDAMS work are summarized in Table 2 and details of the algorithm are as follows. 
 

Table 2: Specifications of various fidelities included in DDDAMS 
 Fidelity 1.X Fidelity 2.X Fidelity 3.X Ns 

Sampling Horizon (T) Ts=300 time steps Tc=200 time steps Tm=100 time steps -- 

Sampling Frequency (ΔT) ΔTs=30 time steps ΔTc=20 time steps ΔTm=10 time steps -- 

Time for retrieving single 
measurement update (δt) 

3 < δt < 6 time steps 2 < δt < 4 time steps 1 < δt < 2 time steps -- 

Data type collected Performance metric Performance metric Sensory -- 

when  RMSE < 0.1 1.1 2.1 3.1 50 
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when 0.1≤  RMSE < 0.2 1.2 2.2 3.2 60 

when 0.2≤  RMSE < 0.3 1.3 2.3 3.3 70 

when 0.3≤  RMSE < 0.4 1.4 2.4 3.4 80 

when 0.4≤  RMSE < 0.5 1.5 2.5 3.5 90 

when 0.5 ≤  RMSE  1.6 2.6 3.6 100 

RMSE: Root Mean Square Error of State Estimation 

  
 The selection of proposal (importance) density is crucial in realizing any particle filter algorithm as a carefully selected 
proposal density enables benefits in both the number of particles generated and the computational expense that is necessary 
for each of these particles.  Proposal distribution used in importance sampling is preferred to be a heavy-tailed density.  From 
Bayesian perspective, we know that the proposal distribution q(x|z) is assumed to approximate the posterior p(x|z) and 
q(x|z)∝ p(z|x) p(x). Although it does not take measurements into account, for its ease of implementation, we accept the prior 
distribution as the proposal density in this study (i.e., q(·)= p(xk|xk−1)). 
 

Initialization step is held assuming that there are adequate historical measurements obtained for each of the sensor types as 
well as performance measures in order to generate the prior distribution. 

Step 1: Initialization 

• k =0, where k stands for the iteration number.  Since initialization happens only once while setting the fidelity selec-
tion algorithm, k becomes equal to zero. 

• For i=1,…, Ns sample )(~ 00 xpxi where Ns denotes the sample size and ix0 denotes each individual sample drawn at 
iteration 0. 

• Set k=1 
 

• For i=1,…, Ns sample 
Step 2: Importance Sampling 
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where kz :1 are the measurements from time 1 to time k 

This step is to avoid potential degeneracy problem, where only one particle has a normalized weight of “1” whereas all the 
rest has almost zero weight.  In this step, the particles with low weights are eliminated whereas more particles in more proba-
ble regions are selected.   

Step 3: Diffusion (Resampling) 

 
Rule 1: Stratified sampling proposed by Kitagawa (1996) which is optimal in terms of variance. 

If the effective number of particles is less than a given threshold

( )
thresholdNs

i

i
k

eff N
w

N <=

∑
=1

2~
1~ , then perform resampling. 

Rule 2: Resampling proposed by Liu (1996).  If the variance of the the normalized importance weights, i
kw~ exceeds given thre-

shold
22

_ thresholdsamplewk σσ < , then perform resampling. 

• Resample Ns particles randomly with replacement ),,1;( :0 Nsixi
k = from the current particle set ),,1;~( :0 Nsix i

k =  

with probabilities proportional to their normalized importance weights, i
kw~  

• For each particle ),,1;( :0 Nsixi
k =  set 

Ns
1wi

k =~   

• Loss of diversity might become a problem during the resampling process. 
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Proceed to the Step 2, as the next measurement arrives. 
Step 4: Set kk+1 

 

Discrete weighted approximation to the true posterior is computed as 

Step 5: Estimate posterior 

∑
=

−≈
Ns

1i

i
k0k0

i
kk1k )xx(w)zx(p ::: δ where δ are the Dirac peaks. 

 
 In this work, the above-mentioned algorithm has been implemented in MATLAB 7.6.0 (R2008a) using Object Oriented 
Programming and data structure featuring of MATLAB where particle filters are embodied in objects.   There are three sepa-
rated particle filters built for each level of decision hierarchy (i.e., Fidelity 1.X, 2.X and Fidelity 3.X).  The developed par-
ticle filter for Fidelity 1.X, 2.X and 3.X determines the optimal fidelity level at the shop level, cell level and machine level 
respectively.   When a particle filter object is called from the main simulation, it runs until it reaches a decision.  In order to 
reach a decision, the algorithm filter part has to determine the optimum level of data retrieval frequency first which is based 
on the desired accuracy level.  It should be noted here that the sampling horizons and sampling frequencies are different for 
each particle filter developed as the used sensory data as well as how fast they are needed are different.  The particle filter for 
Fidelity 1.X samples data from the past 300 time steps where each sampling is 30 time steps apart and time for retrieving sin-
gle measurement update (δt) changes from 6 time steps to as low as 3 time steps.  In addition, the data is only sampled from 
the specified performance data.  However,  the particle filter for Fidelity 3.X samples data from the past 100 time steps where 
each sampling is 10 time steps apart and time for retrieving single measurement update (δt) changes from 2 time steps to as 
low as 1 time steps.  Besides, the data is only sampled from the specified sensory data. 

3.5 Parallelization of Fidelity Selection Algorithm 

As mentioned above, for the current experimentation three separate particle filters are built for three different fidelities (Fi-
delities 1.X, 2.X and 3.X).  Although in the main model, these three objects can be called from each other, they are all located 
at one central computer.  When the fidelity selection algorithm is embodied in a DDDAM-simulation for a real distributed 
large scale system, this fidelity selection algorithm can be further split in order to allow process parallelization using distri-
buted computing resources.  This parallelization schema can be implemented in two ways.  First, a separate particle filter can 
be built for each level of data retrieval frequency instead of level of decision hierarchy.  Then these filters can be called from 
the main model when the situation shows that it is necessary.  Since each filter has different sampling frequency and sample 
size, the necessary ones can be selected based on the need and distributed resource availabilities.  However, in this case, some 
of the sampling regions (shop, a specific cell or a specific machine) for sensor data can overlap.  For instance, particle filter 
for Fidelity 2.4 and 2.5 can try to access the same data of the same cell or machine leading to either over-emphasizing some 
specific signals or repetitive consideration of the same information.  The second and more concise way of parallelization re-
quires keeping the particle filters as they are for each level of decision hierarchy whereas splitting the data regions among 
each fidelity of data retrieval frequency.  For instance, Fidelity 2.4 samples data from the machines 1, 2, 3 whereas Fidelity 
2.5 samples data from machines 4, 5, 6 all of which are located in the same cell, say cell 3.  This way, no overlap occurs in 
terms of the sensory data used.  In addition, some of the computational resources such as the ones closely located to specific 
machines can be dedicated to them.  Therefore, no additional control system for resource allocation would be needed.  While 
this work focuses on the realization of the actual sequential Monte Carlo-based fidelity selection algorithm (particle filter for 
each fidelity), the future work will concentrate on the parallelization of the same algorithm. 

4 EXPERIMENTS AND RESULTS 

In this section, the preliminary results obtained from the proposed and developed fidelity selection algorithm are presented to 
demonstrate its effectiveness in reflecting the status of system under consideration.   An exhaustive experimentation using the 
proposed fidelity selection algorithm in the integrated DDDAMS system is left as future research. 
 As shown in section 3, three separate fidelity selection algorithms were developed for each level of hierarchy. Since the 
real data for actual semiconductor supply chain is not available at this phase of the research, the functions shown in Eq. 3, 4, 
5 are used for particle filters for Fidelity 1.X, 2.X and 3.X, respectively for testing performance of developed particle filters.  
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where the process noises 1
ku , 2

ku , and 3
ku  are generated from Gaussian function.  Here it should be noted that the dimensionali-

ty of the vectors 1
kx , 2

kx , and 3
kx  are not necessarily the same. In fact, although they are all generated from multivariate func-

tions, 1
kx and 2

kx capture three performance parameters and one overall system status parameter whereas 3
kx captures five sen-

sory parameters in addition to one overall system status parameter. The representative results obtained from the original 
function, as well as their estimates generated from the particle filter for Fidelity 3.X in this study are shown in Figures 6(a). 
During our experimentation, Kitagawa (1996) resampling rule which is explained in detail in Section 3.4 is adapted arbitrari-
ly.  Here, we have set the resampling threshold value to 0.6 * Ns (number of particles). 

The results are coalesced from two sets of experiments. In the first set, each run is composed of five independent replica-
tions lasting 900 time steps.  During the first set of experimentation, the maximum root mean square error of state estimation 
(RMSE) is found to be 0.3148 and grand mean RMSE is found to be 0.2096 for particle filter for Fidelity 2.X.  Similarly, 
maximum RMSE and grand mean RMSE are found as 0.3678 and 0.2817, respectively for particle filter for Fidelity 3.X. 
Lastly, the maximum RMSE of state estimation and grand mean RMSE are found to be 0.4012 and 0.3562, respectively for 
particle filter for Fidelity 1.X. Figure 6(a) depicts an output snapshot of results obtained from particle filter for Fidelity 3.X.  
In the second and more exhaustive experiment, each run is composed of 10 independent replications lasting 1000 time steps.  
Results for this experiment is shown in Figure 6(b), where the maximum RMSE of state estimation is found to be around 
0.35 for particle filter for Fidelity 1.X and around 0.45 for particle filters for Fidelity 2.X and 3.X. As can be concluded from 
these promising results, sequential Monte Carlo-based fidelity selection would lead to highly accurate results while saving 
computational resources and time.   
  
 
 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6(a) Output snapshot of results obtained from particle filter for Fidelity 3.X (b) Results from Sequential Monte Carlo-
based fidelity selection algorithm for all fidelities   
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5 CONCLUSION AND FUTURE WORK 

In this work, a Sequential Monte Carlo method (sequential Bayesian inference technique) has been proposed and embedded 
into the DDDAM-Simulation to enable its ideal fidelity selection given large datasets. The proposed method has been built in 
such a way to reveal cost-efficient inferences for determining the sources of abnormality in the system while saving from 
computational burden of the overall simulation system. Preliminary results have been obtained from a prototype DDDAMS 
involving the proposed algorithm for preventive maintenance and part routing scheduling problems in a semiconductor 
supply chain.  The developed Sequential Monte Carlo-based fidelity selection algorithm was  able to catch the real system 
status quite closely where the maximum root mean square error recorded was only 0.45. A parallelization frame has also been 
discussed on how further reductions and distribution of the computational burden of the algorithm can be enabled while 
maintaining the accuracy of parameter estimates. Future work of this research primarily concerns itself with the efficient rea-
lization of the Sequential Monte Carlo-based fidelity selection algorithm in a parallel computing setting. The synchronization 
issues regarding both the distributed DDDAS system and distributed computational resources are among the challenges to 
face. 
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