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ABSTRACT 

This paper suggests a new methodology for effectively describing and analyzing manufacturing processes with uncertainties. 
Uncertain information in the form of variance and vagueness are captured using probability distribution and fuzzy logic. The 
captured uncertainties are incorporated into a new Petri Net model referred to as Fuzzy colored Petri Net with stochastic time 
delay (FCPN-std). Through FCPN-std,  general  manufacturing uncertainties such as unclear operation rules, unfixed re-
source plan and processing time variances can be incorporated. This paper focuses on how FCPN-std model is generated and 
simulated for analyzing system performances. The procedure is illustrated using an example process. The main advantages of 
FCPN-std model are in the ability to capture and analyze manufacturing uncertainties, and  provide an opportunity to im-
prove process performance in the presence of uncertainties.  These characteristics help modelers design exactly manufactur-
ing process without approximations/ignorance and guide how manufacturing process can be improved through incorporated 
information. 

1 INTRODUCTION 

One of the main difficulties that is encountered during the modeling of manufacturing process is in how unclear manufactur-
ing information and operation rules can be captured into the model. In its simplest form, designers often attempt to quantify 
uncertain information using approximation or discrete values, or ignore them completely. However, these attempts result in 
distorted modeling. Distorted modeling is being used to indicate inexact modeling of targeted processes through approxima-
tion or ignorance. It often results in incorrect analysis and produces unsuitable decisions. There is a need to capture and in-
corporate uncertain information in a manufacturing model to minimize the effect of distorted modeling, Even, manufacturing 
processes with clear well-defined information and rules may have uncertainties due to the random occurrence of various 
events, such as resource failure, change in order/demand, change of scheduling, or other emergency situations. The other rea-
son for incorporating manufacturing uncertainties is to capture the operation knowledge and knowhow possessed by engi-
neers and operators. The incorporation of such knowledge in a model is an essential element for reproducing and simulating 
successful operations of a manufacturing process. Usually, such knowledge is described using if-then clauses and these 
clauses may contain unclear linguistic expressions such as “very”, “high”, “low”, “approximately” and so on. These situa-
tions make it difficult for designers to capture such information. Many researchers and designers have tried to capture these 
uncertainties using fuzzy logic, probabilistic information, interval theory or data-driven methodologies. Even though these 
methodologies have been successful in  capturing some manufacturing uncertainties and were incorporated into modeling 
methodologies such as Petri Nets, they only covered some partial uncertainties and failed to capture many general types of 
uncertainties that are present in manufacturing systems. In addition, knowledge capturing techniques and modeling metho-
dologies were not integrated well with good modeling frameworks. Table 1 shows a few examples of manufacturing uncer-
tainties and existing knowledge capturing methodologies.  

This paper uses a fuzzy colored Petri Net with stochastic time delay (FCPN-std) methodology for incorporating manufac-
turing uncertainties that are shown in table 1. The FCPN-std model captures manufacturing uncertainties using fuzzy logic 
and probabilistic functions (Lee and Banerjee 2009). The uncertain operation rules and knowledge such as resource plan or 
knowhow are captured using fuzzy logic, and unclear time information such as arrival time or processing times are described 
using stochastic time delay. These capturing methodologies are incorporated within Petri Nets. Although there are various ex-
isting fuzzy based Petri Nets and stochastic/queuing based Petri Nets, FCPN-std has the unique ability for representing gen-
eral uncertainties that exist in manufacturing systems.   
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This paper focuses on how existing manufacturing process can be accurately modeled, analyzed and simulated using 

FCPN.A new defuzzification method is suggested for analysis and simulation of FCPN-std models. Section 2 provides a de-
scription of background and review of manufacturing uncertainties, modeling methodologies, and the definition of FCPN-std. 
Section 3 introduces a manufacturing process example with two parallel batch processors. Section 4 and 5 show the represen-
tation and simulation of his example using FCPN-std respectively.  

 
Table 1:  Examples of Manufacturing Uncertainties and Capturing methodologies. 

 
Type of 

Uncertainties Examples Capturing 
Methodologies 

Unclear 
resource plan If process A is busy, add  1~2 more resources Fuzzy Logic . Interval theory 

Uncertain  
time information 

The processing time may take anywhere between  
30~45 minutes

Probabilistic functions  

 . Data driven methodologies 
Interval theory 

Operation rules If the bottleneck at process B is high Fuzzy Logic , next arrivals 
are handled in process B’. 

Knowledge 
/Knowhow 

If pressure is very high and temperature is high Fuzzy Logic , set 
the dial to position C. 

 

2 BACKGROUND AND LITERATURE REVIEW 

Manufacturing uncertainties as described in the previous section, can be broadly classified into two types of uncertainties: in-
formation with variance and information with vagueness. Information with variance can be normally captured using probabil-
istic distributions. Many researchers including Buzachott and Shanthikumar (1993) and Hopp and Spearman (1993) have 
used probability distributions to express manufacturing processes with variance, and have explained how it can be analyzed. 
As another type of uncertainty, information with vagueness can be depicted using fuzzy logic (Yen and Langari 1999). This 
concept was originally suggested by Zadeh in 1965 and since then it has been one of the popular methodologies for describ-
ing vagueness. Vagueness including linguistic variables are captured using fuzzy membership functions and they are ana-
lyzed through fuzzy operators, inference rules and various defuzzification methods.  
  Another important issue that exists in designing manufacturing process is in modeling methodologies itself. Even 
though manufacturing processes can be captured well, insufficient representation in modeling methodologies may result in 
the loss of captured information. There are many methodologies and software that can be used to model manufacturing 
processes, such as IDEF-3, Petri Nets, Message based Part State Graph (MPSG), Arena, ExtendSim, and so on. Among them, 
Petri Nets (PN) has been widely used as a representation, control and monitoring tool. Petri Net is considered as an useful 
modeling tool, since it can describe asynchronous processes and used to analyze processes by utilizing properties such as 
boundedness, liveness, and so on (Zhou and Venkatesh 1999).  

There have been some attempts to combine Petri Net concept and methodologies for describing uncertainties. Genera-
lized stochastic Petri Net (GSPN) and queuing Petri Net (QPN) incorporated stochastic approaches into Petri Nets (Zhou and 
Venkatesh 1999; Bause and Kritzinger 2002). These PNs can capture information with variance. However, they failed to cap-
ture information with vagueness. A few different approaches such as  expert enhanced colored fuzzy Petri Net (EECFPN), 
fuzzy colored Petri Net (FCPN) and  fuzzy timing high level network (FTHN) were suggested for incorporating fuzzy logic 
into Petri Nets (Kumar, Kumar and Tiwari 2005; Yeung, Liu, Shiu and Fung 1996; Cardoso and Camargo 1999). These PNs 
incorporate fuzzy logic into places and/or transitions for describing information with vagueness. Since these methodologies 
can capture only information with variance or information with vagueness, extended general PN (Extended GPN) was sug-
gested for incorporating both types of information. Even though it captures uncertainties using probabilistic distribution and 
fuzzy logic, it does not consider multi color tokens which are needed for describing manufacturing process with multiple 
products or routes.  

To overcome these limitations and capture general uncertainties, Lee and Banerjee (2009) have proposed FCPN-std me-
thod. FCPN-std has a 15-tuple definition: FCPN-std =(∑, Λ, P, T, D, A, N, C, G, E, β, FM, F, S, I). Table 2 provides a sum-
mary of the FCPN-std definition. In FCPN-std, stochastic time information is incorporated in transitions and fuzzy informa-
tion can be described in both - place and transition. Another advantage of FCPN-std is that it supports multiple color-token 
concept and modular design concept, which is discussed in Lee and Banerjee 2009.  
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Table 2:  Definition of FCPN-std (Lee and Banerjee 2009)  
 

Notation Meaning Relations 
∑ Set of color tokens ∑={σ1, σ2, ···}, where, σi = ith colored token  
Λ Set of distribution Λ ={Dist1, Dist2 , ···} 
P Set of places P = Pg U Pf , where Pg is the set of normal places and Pf is the set 

of fuzzy places. 
T Set of transitions T= Tg U Tf, where Tg is the set of normal transitions and Tf is the 

set of fuzzy transitions. Normal transition can have stochastic 
time delay and fuzzy transition can have fuzzy membership val-
ues. 

D Set of fuzzy description / 
propositions 

D = { Des1, Des2, ···} 

A Set of arcs P ∩ T = P ∩ A= A ∩ T=∅  
N Node function  A→ P × T U T× P 
C Color function P U T → ∑ 
G Guard function ∀ t∈T : [Type(G(t))=Boolean ∧  Type(Var(G(t))) ⊆  ∑] 
E Arc expression function ∀ a∈A : [Type(E(a))=(C(p),R) ∧  Type(Var(E(a))) ⊆  

∑],where R is real number to represent a capacity of arc. 
β Bijective function Pf U Tf  → D 

FM Set of Fuzzy membership 
functions 

FM={ m1, m2, ···} 

F Fuzzy mapping function D → FM 
S Stochastic mapping function ∀ t∈Tg : [Type(S(t))= Λ ∧  Type(Var(S(t))) ⊆  ∑] 
I Initial Marking ∀ p∈P : [Type(δ(p))=C(p)]  Where, δ : P → ∑ 

 
In this paper, the focus is on simulation methods of FCPN-std and described with an example. It is shown how the simulation 
and analysis of FCPN-std model can lead to the improvement of the modeled process..  
 

3 PROBLEM DESCRIPTION 

As an example of manufacturing process with uncertainties, two parallel processes with batch processors are considered. Fig-
ure 1 describes the example process to be modeled. This example consists of two parallel processes. Each parallel process is 
composed of three sub processes; (A, B, C) and (D, B’, E). Sub processes B and B’ are batch processes with different batch 
sizes. This type of setup is commonly encountered in semiconductor manufacturing processes such as wafer producing opera-
tions. In a semiconductor manufacturing process, sub processes A and D can be considered as upstream processes, and C and 
E can be considered downstream processes. Each parallel process handles two different product types (σ1 and σ2). 
 

 
 

Figure 1: Two parallel processes with batch processors (time unit is in minutes ) 
 
Batch processes B and B’ are handled by two identical machines; machine 1 and 2. Currently, machine 1 is used for process 
B only, and machine 2 is used for process B’ only. In first process line, product type σ1 arrives exponentially with inter-
arrival time rate of 2 minutes. The bottleneck of first process line occurs in batch process B. Batch process B follows mini-
mum batch size (MBS) policy. Similarly, the bottleneck in second line occurs in batch process B’. Also, process B’ follows 
MBS rule. Based on two types of product’s arrival distribution and processing time, batch process B encounters more fre-
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quent  bottlenecks subsequently  machine 1 has less idle time. Using Monte Carlo simulation, performances of the two paral-
lel processes are shown in table 3.  

 
Table 3:  System Performance of Current Manufacturing Processes  

(replication length = 1 day;(8hours), replication  = 30) 
 

 Cycle Time 
(Minutes) WIP Bottleneck in batch processes (Queue Size) 

Max Average Min 
Line1 21.95 5.9021 6 2.43 0 
Line2 10.61 2.7042 4 0.79 0 

 
From this simulation, designers can identify bottlenecks in both batch processes. Figure 2 shows the average queue length 
trends of in the batch processes indicating the bottlenecks during the simulation run.  
 

 
 

Figure 2: Bottleneck (Queue length) in two batch processes. 
 

This bottleneck trend shows that batch process B has higher periods of bottleneck than process B’, and machine 2 has more  
idle time. In order to improve these processes, process designers and engineers want to change control rules of machine 1 and 
2. For example, one of the rules that is specified is in the following form: “if machine 2 is idle and machine 1 is busy, ma-
chine 2 can be used for process B as well as process B’ ”.  A machine’s idleness can be measured using queue size of batch 
process. Table 4 describes 9 operation rules which are defined by process designers and engineers. For example, rule #3 de-
scribes “If bottleneck status in process B is high and bottleneck status in process B’ is low then machine 2 can be used for bo-
th
 

 batch processes ”. It is perceived by the designers that bottlenecks could be decreased using these operation rules. 

Table 4 : Operation Rules of Machine Controller for Improving System Performance 
 

 Bottleneck Status in Process B 
Low Medium High 

Bottleneck  
Status  

in  
Process B’ 

Low 
<Rule #1>  
Process B : Machine1 
Process B’ : Machine2 

<Rule #2>  
Process B : Machine1, 
Process B’ : Machine2 

Machine2 
<Rule #3>  
Process B : Machine1, 
Process B’ : Machine2 

Machine2 

Medium 
<Rule #4>  
Process B : Machine1 
Process B’ : Machine2, 

<Rule #5>  

Machine1 
Process B : Machine1 
Process B’ : Machine2 

<Rule #6>  
Process B : Machine1, 
Process B’ : Machine2 

Machine2 

High 
<Rule #7>  
Process B : Machine1 
Process B’ : Machine2, 

<Rule #8>  

Machine1 
Process B : Machine1 
Process B’ : Machine2 

<Rule #9>  
Process B : Machine1 
Process B’ : Machine2 

 
Since the targeted processes have fuzzy operation rules, stochastic processing time and multiple product types, it is difficult 
to model and analyze using existing methodologies. In the following sections, this manufacturing process is represented and 
simulated using the FCPN-std model.  
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4 MODELING AND REPRESENTATION OF FCPN-STD MODEL 

4.1 Incorporating Manufacturing Uncertainties 

The example process has two types of uncertainties in processing time and machine control rules. Processing time in each sub 
process is captured using probability distribution. This distribution is acquired through past data history and statistical data 
fitting procedures. The distributions used in this example are shown in figure 1. Machine control rules are captured using 
fuzzy logic. As described in section 3, a machine’s idleness is identified through bottleneck status. In the example, the bottle-
neck status is classified into 3 classes: low, medium, and high. By analyzing the current manufacturing process (as shown in 
table 3 and figure 2), the fuzzy membership functions are derived for bottleneck status of process B and B’. Bottleneck status 
of process B can be captured using these fuzzy sets: 
 

• Low = {1/0, 0.7/1, 0.3/2, 0/3} 
• Medium = {0/1, 1/2, 0.8/3, 0/4} 
• High = {0/2, 0.3/3, 0.8/4, 1/5} 

 
The expression of fuzzy set follows the representation by enumerating membership values and their elements in the set. For 
example, the first element of the Low set (1/0) represents that the element 0 has the fuzzy membership value 0. This represen-
tation can be replaced by the mathematical function form using indicator function. The bottleneck status of process B’ are de-
scribed using the fuzzy sets mentioned below: 
 

• Low = {1/0, 0.3/1, 0/2} 
• Medium = {0/0, 1/1, 0.6/2, 0/3} 
• High = {0/1, 0.3/2, 0.8/3, 1/4} 

 
Figure 3 shows the fuzzy membership function plots with respect to the bottleneck of batch processes. In figure 3 (a), the X 
axis represents the waiting queue size of process B and Y axis describes the fuzzy utility values with respect to the queue 
size. For instance, if the waiting queue size in process B is 2, the low, medium, and high have 0.3, 1, and 0 values respective-
ly. Using fuzzy inference rule, medium status is selected since it has the maximum fuzzy utility value.  
 

      
(a)Fuzzy membership functions for process B       (b) Fuzzy membership functions for process B’ 

 
Figure 3: Plots of fuzzy membership functions. 

 
These fuzzy sets and characteristics of fuzzy membership functions can be varied with respect to characteristics of manufac-
turing process and improvement targets/objectives. As the fuzzy membership functions are driven from if-clause, another 
fuzzy membership function is needed to describe then-clause. In rule #3 (table 4), machine 2 can be used by process B or 
process B’. This situation is also captured by a fuzzy membership function as illustrated in figure 4. It describes machine 2’s 
control strategy in the case when the bottleneck of process B is high and the bottleneck of process B’ is low. In this function, 
X axis has real number with interval [0, 1]. 0 signifies that machine 2 is being used for process B, and 1 signifies that ma-
chine 2 is being used for process B’. Using the suggested fuzzy inference rule as described in section 5.1, the defuzzificated 
value is rounded and process which machine will be used for can be selected. These fuzzy membership function is characte-
rized by manufacturing operators or process engineers.  
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Figure 4: Fuzzy membership function for machine 2’s working process 

4.2 Representation of FCPN-std Model 

The uncertainties described in section 3 are incorporated into FCPN-std using fuzzy logic and probability distribution . As 
mentioned in section 2, a FCPN’s place and transition can have fuzzy description/proposition (D = { Des1, Des2, ···}) using 
bijective function β (β : Pf U Tf  → D).  This proposition  can be used as a representation of if-else-then clauses for fuzzy 
rules. This proposition may consist of sub propositions as well. Each sub proposition (for example, Des5) has fuzzy member-
ship function (m1; FM={ m1, m2, ···}) using fuzzy mapping function F (F: D → FM). A transition can have stochastic time 
delay. These information are represented with the color token concept. In this example, four types of color tokens are used. A 
circle-type token represents product 1 and a plus-type token represents product 2. A triangle-type token depicts machine 1 
and a box-type token describes machine 2. Based on these tokens, places can have multiple interpretations. Figure 5 shows 
the FCPN-std model of this example. Place p1 represents start position of process A or D depending on token types. If token 
type is circle, place p1 is considered as a starting status of process A. Otherwise, it is considered as a starting status of process 
D. The detailed definition and representation follows the definition of FCPN-std in (Lee and Banerjee 2009). The following 
section describes how this FCPN-std model is simulated and analyzed. 

 

 
 

Figure 5: FCPN-std model of processes used in the example 
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5 EXECUTION AND SIMULATION OF FCPN-STD MODEL 

This section describes the simulation methodology of FCPN-std model. In this section, new inference rule and defuzzification 
method are described for executing an effective simulation. This is followed by the simulation procedure and results.  

5.1 Fuzzy Inference Rule and Defuzzification Method 

General fuzzy inference is executed through 4 stages: fuzzy matching, inference, combination, and defuzzification (Yen and 
Langari 1999). In the fuzzy matching stage, each fuzzy degree in if-clause is calculated. Based on these fuzzy degree, the if-
clause’s conclusion is generated as a format of fuzzy membership function. It is used for drawing the fuzzy degree of then-
clause. Finally, the decision is made using defuzzification methods such as Mean of Maximum (MOM) method or Center of 
Area (COA) methods. Figure 6 shows the general procedure of fuzzy inference execution. This execution method varies 
based on a model’s characteristics and problem domain.  
  

 
 

Figure 6: General procedures of fuzzy inference execution 
 

 In this generated FCPN-std model, fuzzy inference rules are executed differently. As described in table 4, each fuzzy in-
ference rule has the same format: “If (A) is (a) and (B) is (b), then (C) is (c) and (D) is (d)”.  
For example, fuzzy inference rule 3 says that “if the bottleneck status of process B (A) is high (a) and bottleneck status of 
process B’ (B) is low (b), then machine 1(C) is used for process B (c) and machine 2 (D) can be used  for both process B and 
B’
In this format of fuzzy inference rule, the clause (A is a) is called as a “action condition” and (B is b) is called as a “guiding 
condition”. (C is c) and (D is d) is classified into “normal action” and “fuzzy action”. By checking the bottleneck status of 
both process B and B’, the fuzzy degree of action condition and guiding condition is determined. Based on the two fuzzy de-
gree values, the current fuzzy inference rule is determined. When the fuzzy inference rule is selected, only guiding condition 
and fuzzy action are considered. The fuzzy degree of guiding condition is used for calculating fuzzy degree of fuzzy action. 
The calculated fuzzy degree is defuzzificated using MOM method. Finally, the machine’s working process is determined us-
ing rounding defuzzificated value. Table 5 describes classified conditions and actions per each fuzzy inference rule.  

 (d) ”.   

2268



Lee, Park and Banerjee 
 

 
Table 5: Fuzzy Inference Rule and its Classification 

 
Fuzzy  

Inference 
Rule 

If statement Then statement 

Bottleneck status in B Bottleneck status in B’ Machine 1  
Works for process 

Machine 2 
works for process 

1 Low (G) Low(G) B (N) B’(N) 
2 Medium (G) Low (A) B (N) B & B’(F) 
3 High (G) Low (A) B (N) B & B’(F) 
4 Low (A) Medium (G) B & B’(F) B (N) 
5 Medium (G) Medium (G) B (N) B’(N) 
6 High (G) Medium (A) B (N) B & B’(F) 
7 Low (A) High (G) B & B’(F) B (N) 
8 Medium (G) High (G) B (N) B’(N) 
9 High (G) High (G) B (N) B’(N) 

{G: Guiding condition, A: Action condition, N: Normal action, F: Fuzzy action} 
 
Figure 7 shows the overall procedure of fuzzy inference execution in this FCPN-std model. When place p3 (in figure 5) has 
only 4 Circle-shape tokens, the 3rd fuzzy inference rule is selected by evaluating fuzzy membership function. Using table 5, 
the action condition and fuzzy action are extracted. From MOM defuzzification and rounding, the future action (Machine 2 to 
be used for process B for reducing bottleneck in B) is fulfilled. Using this process, the high bottleneck status of process B can 
be potentially decreased. 
 

 
Figure 7 : Execution of fuzzy inference rule  
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5.2 Simulation and Results of FCPN-std model 

Using the method described in section 5.1, the batch processor generates and controls each machine’s action. Through gener-
ated future actions, transitions are enabled and fired and matched tokens are moved. If a transition has stochastic time delay, 
the token is delayed at the transition using a random variate generated from the underlying probability distribution. The re-
maining simulation follows the general simulation rule of CPN (Jensen, Kristensen and Wells 2007) and Monte Carlo simula-
tion procedure. Table 6 shows the simulation results of this FCPN-std model.  
 

Table 6:  System Performance of FCPN-std model  
(replication length = 1 day;(8hours), replication = 30) 

 

 Cycle Time 
(Minutes) WIP Bottleneck in batch processes (Queue Size) 

Max Average Min 

Line1 21.87 
(21.95) 

5.89 
(5.90) 

6  
(6) 

2.41 
(2.43) 

0  
(0) 

Line2 10. 22 
(10.61) 

2.62 
(2.70) 

4  
(4) 

0.72 
(0.79) 

0  
(0) 

Values in () represents the system performance before applying FCPN-std. 
 
This result shows that the system performance has slightly improved after applying fuzzy operation rule. The system per-

formance can be further improved through better control of used fuzzy membership functions. 

6 CONCLUSION AND DISCUSSION 

This paper proposed a new and efficient method for modeling, simulating and analyzing manufacturing uncertainties. Manu-
facturing uncertainties are classified into information with variance and information with vagueness. Information with va-
riance are captured using probability distribution and information with vagueness are captured using fuzzy logic. These un-
certainties are incorporated into FCPN-std. FCPN-std model can handle general uncertainties and supports colored token 
concept. With these characteristics, the targeted manufacturing process can be modeled without creating distortions in the 
form of approximation and ignoring of uncertainties. It helps designers interpret their targeted process clearly and precisely.  
 The simulation of FCPN-std model is fulfilled by the execution of incorporated fuzzy inference rule and delay of sto-
chastic time. The execution of incorporated fuzzy inference rule is started from the evaluation of fuzzy membership func-
tions. Their executions vary based on process domain knowledge and design objectives. After acquiring actions from execu-
tion algorithms, the FCPN-std model is simulated using Monte Carlo simulation methodology.  

As further studies, control of fuzzy membership functions needs to be considered. The system performance of FCPN-std 
is influenced by manufacturing process itself, the stochastic time delay characteristics and incorporated fuzzy inference rule. 
Among them, the fuzzy inference rule can be an important key for improving processes. As more manufacturing processes 
are becoming complex, it is getting difficult to apply mathematical programming to obtain optimal solution or queuing 
theory. In such cases, a FCPN-std model can be an alternative test bed for process improvement. Also, the file format and 
tool for FCPN-std needs to be developed and standardized for convenient usage and data exchange. 
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