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ABSTRACT 

This paper describes an experiment exploring the potential of  kriging metamodeling for multi-objective simulation optimiza-
tion. The experiment studies an (s, S) inventory system with the objective of finding the optimal values of reorder point  s and 
maximum inventory level  S so as to minimize the total cost of the system while maximizing customer satisfaction.   This ex-
periment compares classical response surface methodology to kriging metamodeling as experimental approaches. The results 
of this experiment indicate that kriging metamodeling offers new opportunities for solving multi-objective optimization prob-
lems in stochastic simulation. 

 
1 INTRODUCTION 

 
A metamodel, also called a response surface, is an approximation of an input/output (I/O) function that is defined by an un-
derlying simulation model (see Kleijnen, 2008). The metamodel is the surrogate for the real-world system that is used for ex-
perimentation and analysis; that is, experimentation with the actual system is far too costly and time consuming, so that com-
puter-based experimentation, or simulation, is preferred. Most metamodeling studies focus on low-order polynomial 
regression using factorial-based experimental designs. For the first-order regression model with n design variables xi, i = 
1,…n, the form of the regression metamodel is 
 

 E(y) = β0 + β1x1 + … + βnxn (1) 
 
while the second-order model is given by  

 
 E(y) = β0 + ∑iβixi  + ∑iβiixi

2 + ∑i∑jβijxixj (2) 
 

The classic design used to estimate a first-order metamodel is the factorial design, or in the case where n is large (say, n > 5), 
the fractional factorial design. For the second-order metamodel, the central-composite design is the experimental design most 
often used. Kleijnen (2008) gives an excellent treatise on the development of regression metamodels in simulation. 
 
  
2 MULTI-OBJECTIVE OPTIMIZATION 

 
The multiple objective optimization problem can be written as follows: 

 

 

max (min) G(fj(x), j = 1,…,m) 
 

subject to a ≤ x ≤ b 
 

(3) 

where x is the n-vector of input factors xi, i = 1,…,n, a and b are lower bounds and upper bounds, respectively, on x, and the 
function G( ) is a policy for prioritizing the fj(x), j = 1,…,m.   
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 Hawe and Sykulski (2008) discuss several algorithms by which to apply kriging to the solution of the so-called MOOP 
(Multiple Objective Optimization Problem) shown in (3) above, but the one evaluated here is the approach of transforming 
the MOOP formulation (3) to a sequence of SOOP (Single Objective Optimization Problem) formulations. That is, alternately 
solve the constrained optimization problem (4) below until an optimal solution is found:  
 

 

max(min) fj(x) for some j 
 

subject to constraints  fk(x) {≤, =, ≥} c,  k = 1,…,m for k ≠ j and a ≤ x ≤ b 
 

(4) 

where c is the vector of bounds on the objective functions fk(x), k = 1,…,m.  
 Another approach to solving the MOOP problem is to weight each of the m objective functions fj(x), j = 1,…,m with a 
weight wj, j = 1,…m to form the weighted objective ∑w jf(x) such that 0 ≤ wj ≤ 1 and Σwj = 1. For an objective fj(x) which is 
to be maximized, the coefficient of wj is 1, whereas for those objectives being minimized the coefficient of wj  is -1. The con-
straints a ≤ x ≤ b also apply. We shall refer to this formulation as SWOOP (Single Weighted Objective Optimization Prob-
lem). 

   
3 RESPONSE SURFACE METHODOLOGY (RSM) 
 
As stated earlier, most metamodeling studies focus on low-order polynomial regression using factorial-based experimental 
designs. The central composite design (CCD) is a popular experimental design for estimating a quadratic regression in a lo-
cal, unimodal region of the design space. Figure 1 illustrates a spreadsheet showing the deployment of k = 2n + 2n + c design 
points, where n is the number of input parameters or design variables, and c is the number of replications of the center point 
of the design space which is selected to achieve some desired statistical performance in the regression models. In the case 
shown in Figure 1, n = 2 and c = 5, therefore k = 13. There are 22 = 4 points arrayed in a square (generally, an n-dimensional 
hypercube with 2n corner points), 2x2 = 4 points along the two axes (generally, 2n), and c = 5 replications of the center point. 
In the case of simulation experimentation, r replications of the simulation are carried out at each of the design points using 
common random numbers, except in the case of the c repetitions of the center point where independent random number 
streams must be employed. The mean values for each of the m simulation responses are recorded and multiple regression is 
applied to fit the response functions yj(x), j = 1,…,m. An optimization procedure (e.g., LINDO, 2008) is used to find an op-
timal solution to the problem formulation of (3) or (4) above. 

                              
   S  s 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 Sum 

40         1        1 
45                 0 
50    1          1   2 
55                 0 
60                 0 
65                 0 
70                 0 
75  1       5       1 7 
80                 0 
85                 0 
90                 0 
95                 0 

100    1          1   2 
105                 0 
110         1        1 

 Sum 1 0 2 0 0 0 0 7 0 0 0 0 2 0 1 13 
                  

Figure 1: A Central Composite Design for the (s, S) Inventory System 
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 To illustrate the regression metamodeling procedure using the central composite design (CCD) approach, an Arena mod-
el of the (s,S) inventory system was simulated (Kelton et al, 2007). The multi-objective optimization formulation of this sys-
tem is to find the values of maximum inventory position S, or x1, and the reorder point s, or x2, so as to minimize total cost 
y0(x), while maximizing customer satisfaction y1(x), subject to the non-negativity conditions x1 ≥ 0 and x2 ≥ 0 and the con-
straint x1 > x2 (or S > s).  Total Cost is the sum of holding cost, ordering cost and shortage cost, while customer satisfaction is 
the proportion of customers whose demand is met immediately without resorting to backorders. The Arena-based (s, S) 
model was simulated for r = 5 replications at each of the k =13 design points in the CCD, yielding the results shown in Ta-
ble1. The response surfaces for total cost y0(x) and y1(x) are shown in Figure 2. It should be pointed out that the Minitab 
(2007) surface graph function utilizes the raw data and does not necessarily produce very regular looking surface graphs. 
  
 The quadratic regression models for total cost and customer satisfaction are, respectively, 
 

y0 = 145 - 0.310s - 0.507S + 0.00928s2 + 0.00439S2 - 0.00318s*S 
 

y1 = - 0.154 + 0.0270s + 0.0159S - 0.000188s2 - 0.000064S2 - 0.00015s*S 
 

First solving the constrained optimization problem to minimize total cost y0 subject to the constraint that customer satisfaction 
y1  ≥ 0.95, we find the solution y0 = $123.36 and y1 = 0.952 at s = 28 and S = 68. Then solving the alternate problem of max-
imizing customer satisfaction y1 subject to the constraint that total cost ≤ $124, we obtain the solution y0 = $124and y1 =1 at  
s = 36 and S = 76. No better solution was found. 
 

Table 1: Simulation Results for a CCD Experimental Design with the (s, S) Inventory System 

 s S s^2 S^2 s*S Total Cost 
$ 

Customer 
Satisfaction 

1 24 75 576 5625 1800 119.78 0.944 
2 34 50 1156 2500 1700 125.24 0.948 
3 34 100 1156 10000 3400 128.74 0.992 
4 14 50 196 2500 700 123.66 0.725 
5 14 100 196 10000 1400 130.34 0.921 
6 24 40 576 1600 960 128.18 0.755 
7 24 110 576 12100 2640 131.55 0.969 
8 10 75 100 5625 750 129.23 0.820 
9 38 75 1444 5625 2850 123.37 0.986 

10 24 75 576 5625 1800 124.61 0.953 
11 24 75 576 5625 1800 126.54 0.935 
12 24 75 576 5625 1800 124.48 0.952 
13 24 75 576 5625 1800 124.01 0.955 

 

            
 
 

4 KRIGING METAMODELING 
 

Kriging is an interpolation method that predicts unknown values of a random function; see, for example, Cressie (1993) and 
Wackernagel (2003). More precisely, a Kriging prediction is a weighted linear combination of all output values already ob-
served: 

 

 
Yλxx ⋅′=⋅=∑ =

n

i ii YY
10 )()(ˆ λ  

with ∑=
=

n

i i1
1λ  

(5) 
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The weights λ in (5) are inversely proportional to the Euclidean distance from the prediction point x0 and the experimental 
points xj. An extensive description of the mathematical development for the kriging metamodeling approach can be found in 
Biles et al (2007). 
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Figure 2: Surface Plots for Total Cost and Customer Satisfaction for the (s, S) Inventory System 
 
 

 Figure 3 is a spreadsheet representation of a Latin Hypercube Design (LHD) for an experiment involving 20 design 
points for the two input factors s and S. The recommended number of design points in the LHD is 10n, where n is the number 
of input factors. The column of 1’s at the right side of the spreadsheet and the row of 1’s at its bottom demonstrate the essen-
tial space-filling character of the LHD – that is, there must be exactly one 1 in every row and exactly one 1 in every column 
of the LHD. Harking back to Figure1, we see that the central composite design does not possess this feature and hence cannot 
be applied with kriging metamodeling.  
 Table 2 gives the simulation results for the 20 design points in the LHD. Figure 4 shows surface plots of total cost and 
customer satisfaction, respectively. The kriging features of the Matlab DACE toolbox (Lophaven et al, 2002) are applied to 
the data x and y. The optimal solution (x)* is found by examining predictions at all possible combinations of x over the ex-
perimental region and signifying a constraint violation with a 1 and non-violation with a 0.  This Boolean vector is then 
scanned to find the minimum total cost, or maximum customer satisfaction, among feasible kriging predictions.              
 

The quadratic regressions for total cost y0 and customer satisfaction y1 are, respectively, 
 

y0 = 203 - 1.97s - 1.84S + 0.032s2 + 0.0134S2 - 0.00577s*S 
 

y1 = - 0.475 + 0.0409s + 0.0204S - 0.000335s2 - 0.000085S2 - 0.000233s*S 
 

Again the irregularity of the surfaces in Figure 4 arises because the plots use the raw data, not the estimating response func-
tion.  
 The results of the kriging study of the (s, S) inventory system are depicted in the Pareto chart shown in Figure 5. The red 
curve connecting a series of red squares shows the solution set that minimizes total cost. The green curve connecting a series 
of green triangles gives the solution for the maximization of customer satisfaction. The blue curve connecting a series of blue 
circles gives a weighted compromise between total cost and customer satisfaction. The blue X’s on this Pareto chart show a 
set of kriging predictions for both total cost and customer satisfaction that satisfy the constraints that total cost be not more 
than $125 and customer satisfaction exceed 0.96. Clearly the decision maker can choose how to meet his (her) objectives 
from this set of kriging predictions. For instance, there is a set of predictions that give solutions between $122 and $123 with 
customer satisfaction exceeding 0.98. Alternatively, there are predicted solutions for which total cost is less than $120 but 
with customer satisfaction around 0.96. When the two constraints are tightened, the set of orange circles show solutions for 
which total cost is between $120 and $121 with customer satisfaction exceeding 0.98. This Pareto optimal approach is ideal 
for examining kriging results. 
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s  S 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78  Sum 
20      1                 1  
21           1            1  
22                1       1  
23                     1  1  
24  1                     1  
25       1                1  
26            1           1  
27                 1      1  
28          1             1  
29   1                    1  
30        1               1  
31             1          1  
32                  1     1  
33               1        1  
34    1                   1  
35         1              1  
36              1         1  
37                   1    1  
38                    1   1  
39     1                  1  
                         
Sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  20  
                        

Figure 3: A Latin Hypercube Design Applied to the (s, S) Inventory System 
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Figure 4: Surface Plots of Kriging Predictions for Total Cost and Customer Satisfaction Based on a LHD 
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Table 2: Simulation Results for a LHD Design with 20 Design Points 

  s S s^2 S^2 s*S 
Total Cost 

$  
Customer 

Satisfaction 

1 20 48 400 2304 960 124.99 0.759 

2 21 58 441 3364 1218 119.63 0.855 

3 22 68 484 4624 1496 121.41 0.911 

4 23 78 529 6084 1794 123.27 0.936 

5 24 40 576 1600 960 128.18 0.755 

6 25 50 625 2500 1250 122.06 0.856 

7 26 60 676 3600 1560 118.24 0.915 

8 27 70 729 4900 1890 120.27 0.947 

9 28 56 784 3136 1568 120.62 0.918 

10 29 42 841 1764 1218 125.62 0.866 

11 30 52 900 2704 1560 121.96 0.916 

12 31 62 961 3844 1922 120.23 0.949 

13 32 72 1024 5184 2304 121.08 0.972 

14 33 66 1089 4356 2178 119.68 0.966 

15 34 44 1156 1936 1496 126.22 0.913 

16 35 54 1225 2916 1890 125.45 0.961 

17 36 64 1296 4096 2304 123.20 0.973 

18 37 74 1369 5476 2738 122.26 0.986 

19 38 76 1444 5776 2888 124.74 0.985 

20 39 46 1521 2116 1794 127.47 0.942 
 

 
5 CONCLUSIONS 

 
This experiment has shown that kriging metamodeling has the potential to identify superior solutions to those obtained by 
classical response surface approaches when faced with a multi-objective optimization environment. This superiority traces 
both to the space-filling character of Latin Hypercube Designs, as opposed to the relative sparceness of design points in a 
central composite design, as well as to the more accurate predictions offered by the kriging approach. One downside to krig-
ing metamodeling, however,  is that it only works when there are a relatively large number of design points in the LHD. We 
tried without success an LHD of 10 design points to a simulation model of a cellular manufacturing system having 4 input 
factors. The four input factors were the queue capacities at each of four machine cells and were restricted to integer values. 
Yet, the finite queues would ideally only range in size from 1 to 5 (the mean queue sizes for typical simulation trials were in 
the range from 1.5 to 3), so even letting 1 ≤ xi ≤ 10 was a stretch. In this case, CCD designs permitted 1 ≤ xi ≤ 5and gave ex-
cellent results. An LHD design over the same range would have only had 5 design points, far fewer than the 10n recommend-
ed for kriging metamodeling. 

We shall investigate other formulations of the multi-objective optimization problem in future investigations. The SOOP 
formulation studied  here captures the advantages of  the  constrained optimization  problem  formulation reported by 
Biles et al (2007). We are able to report the highly successful application of the Pareto-based trade-off approach illustrated in 
Figure 5, and will pursue that avenue further in future research. 
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Figure 5: A Pareto Chart of Kriging Results for the (s, S) Inventory System 
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