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ABSTRACT 

MRP (Material Requirements Planning) has been widely used as a production scheduling system in many companies for at 
least the past twenty-five years. However, it is a deterministic planning tool, and therefore its ability as an effective planning 
tool when there is a high degree of uncertainty is questionable. In this study, we develop a multi-item MRP simulation model 
and design experiments to determine the effects of factors such as forecast errors, process variability and updating on key 
performance measures. The analysis of variance (ANOVA) results show that these factors affect the inventory and fill rate 
significantly. 

1 INTRODUCTION 

MRP is one of the earliest computerized production scheduling approaches. Although it started slowly, MRP got an extensive 
boost in 1972 because the American Production and Inventory Control Society (APICS) launched its “MRP Crusade” to 
promote its use (Hopp and Spearman 2008). MRP is still regarded as one of the most widely used systems for production 
scheduling (Mohan and Ritzman 1998). However, there is a conflict between MRP’s deterministic nature and the uncertainty 
seen in most operations which makes an MRP planning system vulnerable to the effects of uncertainty. This paper is de-
signed to investigate the MRP effects on key performance measures due to forecast errors, process variability and updating 
frequency in the system.  

MRP’s deterministic calculation is based on the forecast demand, and it is well known that the actual demand cannot be 
predicted exactly. MRP determines the start times of the jobs by offsetting the due dates of the jobs by fixed planned lead 
times, which is rarely achieved in practice due to the uncertainty in the system, e.g. process variability. Also a key determi-
nant of the effectiveness of an MRP system is the updating frequency. If we update too frequently, the shop is busy constant-
ly changing planned order releases. If we update too infrequently, we can end up with old plans that are often out of date. 
Hence, in this paper, we chose forecast errors, process variability and updating frequency as the factors to be investigated in 
the MRP system. 

We use simulation to estimate the performance of an MRP system under different operating conditions. Simulation is a 
commonly used tool to examine complex manufacturing systems.  
 Lee and Adam (1986) conducted a simulation study to examine two dimensions of forecast error - standard deviation and 
bias. They found that standard deviation is relatively less important in terms of the magnitude of the total cost impact, which 
includes inventory carrying cost, setup cost and enditem shortage cost. Their results suggest that higher forecast error level 
may not result in higher total cost, which seems to contradict what we intuitively believe.  
 Wemmerlov (1986) conducted a simulation study which was observed under three conditions: no demand uncertainty, 
demand uncertainty present but no safety stocks are available, and demand uncertainty present with safety stocks maintained 
to counter its effects. The results showed that stockouts, larger inventories, and more orders occurred simultaneously when 
demand uncertainty was introduced in the system. Service levels decreased and inventory levels increased when forecast er-
ror became larger. In addition, the experiments showed that introduction of safety stocks to counter the effect of the forecast 
errors leads to reduction of shortages, but increases the expense of additional inventories and orders.  
 Enns (2001) conducted a series of experiments to investigate the effects of forecast bias and demand uncertainty in a 
batch production environment. An inflated planned lead time and safety stock are used to compensate for forecast error. The 
analysis of performance focused on the MPS due dates and customer delivery requirements. Forecast bias and demand uncer-
tainty were shown to have a bigger impact on customer delivery service levels than on master scheduling performance. Enns’ 
(2001) results also showed that increasing planned lead times and adding safety stock are both effective in improving deli-

2107978-1-4244-5771-7/09/$26.00 ©2009 IEEE



Sun, Heragu, Chen and Spearman 
 

very performance. If demand uncertainty dominates completion time variability, safety stock will meet delivery objectives 
with smaller finished goods inventory.  
 Grasso and Taylor (1984) employed a MRP/Production simulator to examine the impact of operation policies on the total 
cost of the MRP system given supply uncertainty resulting from timing factors, such as the amount of lead time variability, 
the amount of safety stock or safety lead time, the lot-size rule, the holding cost and lateness penalty. Their results showed 
that the total cost of the MRP system is affected by all the factors.  
 Ho and Ireland (1998) conducted a simulation experiment to examine the impact of forecasting errors on the scheduling 
instability in a MRP system. They found that forecasting errors might not cause a higher degree of scheduling instability, 
which can be mitigated by using an appropriate lot-sizing rule. They suggested that applying EOQ and lot-for-lot (LFL) 
creates a significantly more nervous MRP system than applying part-period balancing (PPB) and the Silver-Meal (SM) ap-
proach. They also found that the selection of an appropriate lot-sizing rule can be effective in dealing with forecast errors 
when lead time tends to fluctuate.  
 Yeung, Wong, and Ma (1998) reviewed important parameters which have an impact on the effectiveness of MRP sys-
tems. They classified papers in the literature into seven groups based on their impact on MRP performance: 1) MPS frozen 
interval; 2) MPS replanning frequency; 3) MPS planning horizon; 4) Product structure; 5) Forecast error; 6) Safety stock; 7) 
Lot-sizing rules.  

This paper is designed to investigate the important effects on inventory and fill rate levels due to forecast errors, process 
variability and updating frequency. The simulation experiments are developed via factorial design. ANOVA results are ana-
lyzed to show the effects of the main factors and their interactions. 

2 SIMULATION MODELING OF AN MRP SYSTEM 

Basically the MRP system procedure consists of three main steps. The first step is to determine net requirements by deduct-
ing on-hand inventory and any scheduled receipts from the gross requirements. The next step is to divide the net requirements 
into appropriate lot sizes to form jobs. The last step is to determine start times of the jobs by offsetting the due dates of the 
jobs by planned lead times.  
 In our MRP simulation model, three components are included.  
 In the first component, we update the inventory position based on forecast demand for a planning time horizon. Then we 
calculate the net requirement for each product deterministically based on the updated inventory. We then calculate the 
planned order receipts and determine the planned order release by taking into consideration the production lead times (see 
Figure 1). 

 

Forecast 
Demand

Update
Inventory
Position

Update Net 
Requirement

Determine 
Planned Order 

Receipts

Determine 
Planned Order 

Releases
 

Figure 1: planning procedure in MRP simulation model 

 Table 1 shows the notations used in the procedure calculation.  

Table 1: Notations 

Notations  
D ti ( )  forecast demand for product i in period t 
IP ti ( )  projected inventory position for product i in period t 
Di ( )0  demands due before the first period for product i 
w ti ( )  work orders for product i in period t 

NR ti ( )  net requirements for product i in period t 
PO ti ( )  planned order receipts for product i in period t 
PW ti ( )  planned work orders for product i in period t 

 
 Consider a set of forecast demand, denoted as D ti ( ) , t n= 0, ... , ,  where D ti ( ) equals the forecast demand for product i 
in period t. Note that Di ( )0  is the sum of the demands due before the first period. The period in our model is one day and the 
default planning horizon is four weeks.  
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 The projected inventory position in period t, IP ti ( )  is computed as:  
IP t IP t D ti i i( ) ( ) ( )= − −1  
IP w Di i i( ) ( ) ( )0 0 0= −  

 wi ( )0  is the current on-hand inventory.  
 The next step is to get the net requirement for each product in each period, which is the demand beyond what the on-
hand inventory and the scheduled receipts can cover.  NR ti ( )  is calculated as 

 { }{ }NR t D t IP ti i i( ) min ( ), max , ( )= −0  
 This formula makes the net requirement equal to the magnitude of the first negative projected inventory or the demand 
for the period, whichever is smaller. 
 Then we compute the planned order receipts PO ti ( ) . In our model we use reorder quantity Q as the lot size. Thus the 
planned order release is an integer multiple of Q.  
 The last step is to assign the planned work orders. We determine the planned work orders by taking into consideration 
the production lead times. We calculate the planned lead time l by dividing reorder point by average daily demand. Then, the 
planned work orders, PW ti ( )  are given by  

PW t PO t li i( ) ( )= +  
 The second part of the MRP model triggers production based on the order release plan schedule, which is illustrated in 
Figure 2. First, we check the production plan each day to see if there are any planned order releases for the products. If so, we 
trigger a production and update the inventory level.  
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Figure 2: Production process in MRP simulation model 

 The third part of the MRP system is about examining the actual order demand to update the inventory level, which is il-
lustrated in Figure 3. When a demand is realized, we update the inventory level and compare the inventory level with the 
reorder point. If the inventory level is greater than reorder point, the order is filled directly from the stock. Otherwise, it be-
comes backorder.   
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Figure 3: Order demand procedure in MRP simulation model 

3 EXPERIMENTAL DESIGN 

We now evaluate the effects of demand uncertainty, forecast bias, process variability and updating frequency on inventory 
level and fill rate. Factorial design is used to develop simulation experiments for a multi-item MRP system to determine the 
effects of the above factors and their interactions. Table 2 shows the levels of the factors we examined. 
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 Table 2: Levels of factors 

Factors Levels 
Process Variability moderate, none 
Demand Uncertainty moderate, none 
Forecast Bias base, underestimated, overestimated 
Updating Frequency once a week, once in two weeks 

 
 The overall environment for the multi-item system considers 23 parts manufactured in a single-machine flowshop. We 
consider two levels of process variability - moderate variability and zero variability. In the scenario with moderate process 
variability, the process time is exponentially distributed, while in the scenario without process variability, the process time is 
constant. The forecast error is the combination of both forecast bias (the difference between the mean of the demand distribu-
tion and the forecast for a given point in time) and demand uncertainty (the fluctuation in demand), as discussed in Enns 
(2002). We consider three levels of forecast bias - base demand, overestimated demand and underestimated demand scena-
rios. In the base demand scenario, the mean of actual order demand per period is equal to the forecast demand. In the overes-
timated demand scenario, the forecast demand is overestimated by 20% for each product, which means that the actual mean 
demand for each product is 20% lower than the forecast demand. In the underestimated demand scenario, the forecast de-
mand is underestimated by 20% for each product, which means that the actual mean demand for each product is 20% higher 
than the forecast demand. We examine two levels of demand uncertainty as well, which are moderate demand uncertainty 
and no demand uncertainty. In the scenario with moderate demand uncertainty, the number of actual orders per period fol-
lows a Poisson distribution, and the order size is normally distributed. In the scenario with no demand uncertainty, the num-
ber of orders per period and the order size are constant. Updating frequency is another factor to be examined. We consider 
two levels of updating frequency in the experiments – once a week and once in two weeks. In other words, the MRP plan is 
updated once or twice a week. The simulation experiments are conducted based on four different factors shown in Table 2.  
 A full factorial design is employed to examine the effects of the above factors and their interactions under the MRP sys-
tem. All possible combinations of factor setting are examined. A total of 2*3*2*2 = 24 scenarios (two process variability, 
three forecast biases, two demand uncertainty, and two updating frequencies) are examined. 
 Fill rate and inventory are the two output performance measures used to examine the MRP performance under different 
scenarios in our study. Fill rate is related to customer satisfaction. The higher the fill rate, the greater the customer satisfac-
tion is. We consider two kinds of fill rate - fill rate based on time and fill rate based on units. Fill rate based on time is the 
fraction of time the system does not have backorders, while fill rate based on units is the fraction of demand (based on units) 
that will be filled from stock. Both fill rates represent a reasonable definition of the customer service level. An MRP system 
aims to achieve a high fill rate, while keeping a relatively low inventory level because units in inventory incur a holding cost. 
Thus, inventory is another important measure in our study. We use the aggregate value of fill rate and inventory for compari-
son under different scenarios, which is a weighted average over average demand rate for each product.   

We set each of the simulation scenarios run for ten independent replications. The warm up period for each simulation run 
is one year and the run length is ten years. 

4 RESULTS OF EXPERIMENTATION 

After we run 10 replications of each of the 24 simulation experiment scenarios, 240 response values are obtained for each 
performance measure (i.e. aggregate average inventory, aggregate fill rate based on time and aggregate fill rate based on 
units). The output performance measures are given in Table 3, which are the average values from 10 replications. Examining 
experimental data visually reveals some intuitive results. We can see that the forecast bias affects the performance measures 
consistently, i.e. underestimated forecast can decrease the average inventory and fill rate, while overestimated forecast can 
increase the average inventory and fill rate, when other three factors keep constant. The similar results also can be obtained 
within the levels of process variability and demand uncertainty, i.e. no process variability and no demand uncertainty can im-
prove the fill rate compared to moderate variability.  

Table 3: Summary of output performance measures 

Sce-
nario 

Updating 
Frequency 

Process  
Variability 

Demand  
Uncertainty 

Forecast  
Bias 

Average  
Inventory 

Fill Rate  
Based on 

Time 

Fill Rate  
Base on 

Units 
1 once a week moderate moderate base 34161 81.0% 91.4% 
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2 once a week moderate moderate underestimated 26772 46.4% 79.8% 
3 once a week moderate moderate overestimated 39513 94.4% 97.4% 
4 once a week moderate none base 33920 82.9% 93.6% 
5 once a week moderate none underestimated 26561 50.1% 83.0% 
6 once a week moderate none overestimated 39523 96.4% 99.8% 
7 once a week none moderate base 34968 92.4% 92.6% 
8 once a week none moderate underestimated 28182 73.1% 82.4% 
9 once a week none moderate overestimated 39709 98.6% 97.6% 
10 once a week none none base 35268 95.2% 95.6% 
11 once a week none none underestimated 28128 76.3% 85.8% 
12 once a week none none overestimated 39453 99.9% 99.8% 
13 once in two wks moderate moderate base 33617 79.2% 89.6% 
14 once in two wks moderate moderate underestimated 18810 41.8% 64.8% 
15 once in two wks moderate moderate overestimated 43367 96.5% 98.4% 
16 once in two wks moderate none base 34134 82.9% 94.1% 
17 once in two wks moderate none underestimated 20081 43.6% 70.1% 
18 once in two wks moderate none overestimated 43027 97.5% 100.0% 
19 once in two wks none moderate base 34688 91.3% 91.0% 
20 once in two wks none moderate underestimated 20829 60.3% 68.2% 
21 once in two wks none moderate overestimated 43431 99.2% 98.5% 
22 once in two wks none none base 35613 95.7% 96.1% 
23 once in two wks none none underestimated 22911 67.1% 76.0% 
24 once in two wks none none overestimated 43025 100.0% 100.0% 

 
 In order to further examine the performance effects of all the factors and their interactions rather than visual observa-
tions, the results are analyzed using ANOVA which can evaluate the significance of several different factors and their poten-
tial interactions. We completed ANOVA in the statistical software MINITAB at 95% confidence level. The ANOVA results 
for the three performance measures (i.e. aggregate inventory, aggregate fill rate based on time and aggregate fill rate based on 
units) are presented in Tables 4-6. Because the ANOVA assumptions are met, we can interpret our results based on ANOVA 
results. The ANOVA assumptions are that residuals are normally distributed and have a mean of zero and constant variance. 
The F-test is applied to compare variance. The bigger the F value, the more likely it is that the factor is significant. We ar-
range the ANOVA Tables 4-6 according to descending order of F values to determine the most significant factors visually. 
The P values in last columns in Tables 4-6 indicate whether or not the main and interaction factor effects are significant. If 
the P value is smaller than 0.05, the effect is significant. Otherwise, it is not. The rows of all significant factors (P<0.05) are 
shown in bold in each table. From the ANOVA tables, we find the following: 

• Main effects of the factors: The main effect of a factor is the average change in the output due to the factor shifting 
from one level to other levels, while holding all other factors constant. P values for all the factors (i.e. updating fre-
quency, process variability, demand uncertainty and forecast bias) are less than 0.05, which means that the factors 
all significantly affect all the performance measures (i.e. inventory, fill rate based on time and fill rate based on 
units).  

• Two-way interactions: Two-way interactions involve the interaction of two variables and indicate that the effect of 
one factor is different at different levels of the other factor. All the two-way interactions, except the interaction be-
tween process variability and demand uncertainty, are significant for the inventory performance. All the two-way in-
teractions, with the exclusion of process variability*demand uncertainty and updating frequency*demand uncertain-
ty, are significant for the fill rate based on time. All the two-way interactions significantly affect the fill rate based 
on units. 

• Three-way interactions: Three-way interaction effect means that there is a two-way interaction that varies across le-
vels of a third variable. Two of the four three-way interactions are significant to inventory, which are Updating Fre-
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quency*Process Variability*Forecast Bias and Updating Frequency*Demand Uncertainty*Forecast Bias. Only one 
three-way interaction significantly affects the fill rate based on time, which is Updating Frequency*Process Varia-
bility*Forecast Bias. Three of the four three-way interactions are significant to fill rate based on units, only exclud-
ing Updating Frequency*Process Variability*Demand Uncertainty. 

• Four-way interactions: Four-way interactions occur when three-way interactions differ as a function of the level of a 
fourth variable. There is only one performance measure (i.e. fill rate based on unit) affected by four-way interaction 
significantly. 

Table 4: ANOVA results for aggregate inventory 

Source DF Seq SS Adj SS Adj MS F P 
Forecast Bias 2 12216651884 12216651884 6108325942 22206.58 0 

Updating Frequency*Forecast Bias 2 1114124243 1114124243 557062121 2025.18 0 
Process Variability 1 67413963 67413963 67413963 245.08 0 

Updating Frequency 1 66418320 66418320 66418320 241.46 0 
Process Variability*Forecast Bias 2 36854690 36854690 18427345 66.99 0 

Updating Frequency*Demand Uncer-
tainty 1 8442883 8442883 8442883 30.69 0 

Demand Uncertainty 1 5391553 5391553 5391553 19.6 0 
Updating Frequency*Demand  

Uncertainty*Forecast Bias 2 10626446 10626446 5313223 19.32 0 

Demand Uncertainty*Forecast Bias 2 10572378 10572378 5286189 19.22 0 
Updating Frequency*Process Variability 1 2020019 2020019 2020019 7.34 0.007 

Updating Frequency*Process  
Variability*Forecast Bias 2 2560698 2560698 1280349 4.65 0.01 

Process Variability*Demand Uncertainty 1 1050073 1050073 1050073 3.82 0.052 
Process Variability*Demand  
Uncertainty*Forecast Bias 2 1385623 1385623 692811 2.52 0.083 

Updating Frequency*Process  
Variability*Demand Uncertainty 1 217909 217909 217909 0.79 0.374 

Updating Frequency*Process Variability 
*Demand Uncertainty*Forecast Bias 2 392629 392629 196315 0.71 0.491 

Error 216 59414760 59414760 275068   
Total 239 13603538072         

 

Table 5: ANOVA results for aggregate fill rate based on time 

Source DF Seq SS Adj SS Adj MS F P 
Forecast Bias 2 7.07904 7.07904 3.53952 6373.19 0 

Process Variability 1 1.01883 1.01883 1.01883 1834.48 0 
Process Variability*Forecast Bias 2 0.42476 0.42476 0.21238 382.41 0 

Updating Frequency*Forecast Bias 2 0.09797 0.09797 0.04898 88.2 0 
Demand Uncertainty 1 0.04685 0.04685 0.04685 84.35 0 
Updating Frequency 1 0.04153 0.04153 0.04153 74.78 0 

Updating Frequency*Process Variability 1 0.00603 0.00603 0.00603 10.86 0.001 
Updating Frequency*Process  

Variability*Forecast Bias 2 0.00978 0.00978 0.00489 8.8 0 

Demand Uncertainty*Forecast Bias 2 0.00719 0.00719 0.00359 6.47 0.002 
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Updating Frequency*Process  
Variability*Demand Uncertainty 1 0.00138 0.00138 0.00138 2.49 0.116 

Updating Frequency*Process Variability 
*Demand Uncertainty*Forecast Bias 2 0.00254 0.00254 0.00127 2.29 0.104 

Process Variability*Demand Uncertainty 1 0.00107 0.00107 0.00107 1.93 0.166 
Process Variability*Demand  
Uncertainty*Forecast Bias 2 0.00182 0.00182 0.00091 1.64 0.196 

Updating Frequency*Demand  
Uncertainty*Forecast Bias 2 0.0015 0.0015 0.00075 1.35 0.262 

Updating Frequency*Demand Uncertainty 1 0.00052 0.00052 0.00052 0.95 0.332 
Error 216 0.11996 0.11996 0.00056   
Total 239 8.86077         

 

Table 6: ANOVA results for aggregate fill rate based on units 

Source DF Seq SS Adj SS Adj MS F P 
Forecast Bias 2 2.20517 2.20517 1.10259 19051.22 0 

Updating Frequency*Forecast Bias 2 0.226 0.226 0.113 1952.49 0 
Updating Frequency 1 0.11281 0.11281 0.11281 1949.21 0 
Demand Uncertainty 1 0.07366 0.07366 0.07366 1272.8 0 
Process Variability 1 0.01964 0.01964 0.01964 339.35 0 

Process Variability*Forecast Bias 2 0.01324 0.01324 0.00662 114.4 0 
Demand Uncertainty*Forecast Bias 2 0.00903 0.00903 0.00452 78.04 0 

Updating Frequency*Demand Uncertainty 1 0.00382 0.00382 0.00382 65.96 0 
Updating Frequency*Demand  

Uncertainty*Forecast Bias 2 0.00442 0.00442 0.00221 38.2 0 

Updating Frequency*Process Variability 1 0.00067 0.00067 0.00067 11.56 0.001 
Updating Frequency*Process  

Variability*Forecast Bias 2 0.00119 0.00119 0.00059 10.27 0 

Process Variability*Demand Uncertainty 1 0.00058 0.00058 0.00058 10.04 0.002 
Process Variability*Demand  
Uncertainty*Forecast Bias 2 0.0006 0.0006 0.0003 5.19 0.006 

Updating Frequency*Process Variability 
*Demand Uncertainty*Forecast Bias 2 0.0004 0.0004 0.0002 3.48 0.033 

Updating Frequency*Process  
Variability*Demand Uncertainty 1 0.00017 0.00017 0.00017 2.91 0.089 

Error 216 0.0125 0.0125 0.00006   
Total 239 2.68391         

 
 Overall, it can be concluded that MRP is not robust enough to deal with the process variability and forecast error, and the 
MRP performance is affected by updating frequency as well. Also the interactions of the factors have significant effects on 
MRP performance. 

5 CONCLUSION 

 
In this study, simulation experiments are conducted to examine the effects of forecast errors, process variability and updating 
frequency on MRP performance in terms of fill rate and inventory. We consider two levels of process variability (i.e. mod-
erate and no), two levels of updating frequency (i.e. once a week and once every two weeks). The forecast error is combined 

2113



Sun, Heragu, Chen and Spearman 
 

by forecast bias and demand uncertainty. In our study, forecast bias has three levels (i.e. base, under-estimated, and over-
estimated) and demand uncertainty has two levels (i.e. moderate and no). A full factorial design is employed in the simulation 
experiments to evaluate 24 scenarios. ANOVA is used to assess the significance of the factors and their interactions. The re-
sults show that all the factors and most of their interactions significantly affect the MRP performance in terms of fill rate and 
inventory.  
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