
Proceedings of the 2009 Winter Simulation Conference
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, eds.

A JAVA CLASS LIBRARY FOR SIMULATING PERI-OPERATIVE PROCESSES

Philip M. Troy

Lawrence Rosenberg

Les Entreprises TROYWARE Department Of Surgical Services
5755 Eldridge The Sir Mortimer B. Davis Jewish General Hospital

Cote Saint-Luc, QC H4W 2E3 CANADA Montreal, QC H3T 1E2 CANADA

ABSTRACT

To address the mismatch between supply and demand for peri-operative capacity, senior management of the Department of
Surgical Services at the Sir Mortimer B. Davis Jewish General Hospital in Montreal designed and developed a discrete event
simulation platform for modeling its peri-operative processes. Design goals included ensuring that the platform could be
used for both long-term capacity planning and short-term scheduling, that it could be readily modified and extended, that it be
comprehensive and fast, that it have a multi-level 2D animation capability, that it reuse software components, and that it
could be embedded into other software. The primary outcomes achieved were the development of a Java class library to sup-
port the development of peri-operative process simulation models, and a preliminary model, built with the class library, that
is currently being used to help understand the need for surgical beds.

1 INTRODUCTION

The Jewish General Hospital Center provides a broad range of inpatient and outpatient services to a large and diverse popula-
tion in and around Montreal. It has 637 beds, including 154 surgical beds and a combined Medical-Surgical ICU (Intensive
Care Unit) of 20 beds, of which 16 to 18 are usually staffed. The department of surgical services performs approximately
15,000 operative procedures per year, of which approximately 40% lead to overnight patient stays in the hospital. There has
been a steady increase of about 2% per year in the volume of these procedures, and this increase is expected to continue until
at least 2015. The institution is a full service medical center having a large cancer center, and tertiary and quaternary pro-
grams that include cardiac surgery and neurosurgery, but not major trauma or transplantation.

A consequence of the fixed capacity of the hospital, and the random nature of the demands placed on that capacity, is
that it has not always been possible to find beds in the PACU (Post Anesthesia Care Unit), ICU (Intensive Care Unit) and
surgical wards when needed. This in turn has lead to cancellations of operative procedures and delayed care for patients. In
particular, in addition to occasional days in which operative procedures needed to be canceled because of a lack of appropri-
ate beds, in the last year and a half there was an extended period in which all operative procedures requiring ICU stays were
canceled because of the unavailability of beds in the ICU. There was also a period of time in which an unusually large num-
ber of operative procedures were canceled because of a lack of available beds on the surgical wards.

To gain insight into the mismatch between supply and demand for operative capacity, to provide bed utilization forecast-
ing tools for schedulers, and to make it possible to investigate alternative approaches to address these problems, a decision
was taken to design, develop and deploy a detailed and comprehensive simulation model of the hospital's peri-operative
processes. This decision was made based on the understanding that there are many interactions, most of them involving ran-
domness, that affect peri-operative throughput, and that it was important to have an analytic capability that reflected this re-
ality. It was expected that this model would be used to develop a better understanding of these interactions, to predict short
term bed insufficiencies, to improve short-term scheduling, and to support long-term capacity decision- making. It was also
expected that in addition to using this model for specific individual analyses, it would be embedded into decision support
tools to be used by hospital staff.

There has been a considerable amount of published research on the application of simulation to analyze and improve
surgical processes. This research appears to have been championed first by Fetter and Thompson (1965), who performed a

1927978-1-4244-5771-7/09/$26.00 ©2009 IEEE

Troy and Rosenberg

simulation study intended to evaluate the effect of surgery scheduling policy changes. A more recent study Carter (2006)
reported the application of simulation to surgical processes to determine the number of beds required in the ICU and in the
surgical wards in context of expanding operating room activity. In order to determine management guidelines for evaluating
the utilization of an operating room suite, Tyler, Pasquariello and Chen (2003) used simulation to investigate the optimal uti-
lization for those suites when the first procedure of each room starts within fifteen minutes of the start of the day, and the last
procedure ends at most fifteen minutes after the end of the day. While trying to determine the best approach to sequencing
operative procedures, e.g. to determine whether short procedures should be performed before longer procedures, Marcon and
Dexter (2006) examine the impact of surgical sequencing on PACU staffing. Faced with numerous cancellations of operative
procedures requiring ICU stays because of a lack of available ICU beds, Troy and Rosenberg (2009) used simulation to de-
termine the number of ICU beds needed for surgery patients. Cahil and Render (1999) used simulation to determine the need
for ICU bed needs for a Veterans Administration hospital in the context of a rapidly expanding growth of medical and neuro-
logical patients. Of particular note is their finding that “increased ICU bed availability resulted in increased telemetry and
medical floor bed utilization downstream and increased length of stay on the medical service as the proportion of post-ICU
patients increased on the floors.” This unexpected finding illustrates the interconnectedness of peri-operative processes, and
the need for analytical capabilities that include all peri-operative processes. In an effort to “describe the entire trajectory that
patients have to fulfill,” Cardoen and Demeulemeester (2007) investigated the use of “clinical pathways to structure” simula-
tion models.

To build a simulation platform that could be used to address our hospital's needs, design constraints and guidelines were
specified, design decisions were made, and a Java class library was developed and used to build a preliminary model. The
purpose of this paper is to discuss these efforts and their results.

2 DESIGN CONSTRAINTS & GUIDELINES

2.1 Discrete Event Simulation

To meet these analytical needs, it is necessary to use a tool that could address the randomness inherent to peri-operative
processes. Queuing theory, the approach preferred for such analysis by many Operations Management analysts, was not, in
the authors' opinions, appropriate for the analyses described above. This is because the queuing models that are most tracta-
ble when dealing with sequences of processes, i.e. operative intervention, followed by a stay in the ICU or PACU, followed
by a stay in a surgical ward, possibly followed by another stay in the ICU, require that the underlying stochastic processes
exhibit characteristics not typically found in these peri-operative processes. Thus it was decided to build a discrete event
simulation of the processes, as this approach can be used in much more general situations, though it tends to require consi-
derably more processing capability than does queuing theory.

2.2 Performance

Because of this need for more processing capability, and because the platform was planned to be used frequently for schedul-
ing peri-operative resources, it needed to run quickly, and/or be able to be run in parallel on multiple computers. This is be-
cause evaluation of an individual test schedule generally requires simulation experiments consisting of many simulation tri-
als, and because simulation based scheduling generally involves experimenting with a large number of individual schedules.
Thus if the scheduling process were to experimentally test 10,000 schedules, and each experiment were to consist of 100 tri-
als, and each trial were to take 36 seconds, and only one processor was used, it would take 10,000 hours to find the best sche-
dule. If however each trial were to take .36 seconds and one processor was used, it would take 100 hours to find the best
schedule, and if each trial were to take .36 seconds and 100 processors could be used in parallel, it would take 1 hour to find
the best schedule.

2.3 2D Multi-Level Animation Engine

While animation is not needed to obtain useful simulation results and tends to significantly slow down the computation of
those results, animation is generally needed to make it possible for hospital administrators and staff to understand complex

1928

Troy and Rosenberg

simulation models, to ensure that the models are valid, and to get buy in for results obtained from the models. Thus any si-
mulation development capability that was used needed to include an animation engine.

A decision was made by management that the animation capability be geographically based, i.e. that it present physical
movements around the hospital, rather than animate the steps of a flow chart. The reason for this was that management felt
that geographic animation would make it easier for staff to understand the model.

In addition, while the animation only needed to be 2-dimensional, it was necessary that users of the simulation be able to
limit the animation to specific areas of the hospital, and to be able to interactively vary the areas being displayed while the
simulation was running. Applying this requirement to the hospital's multiple levels required that users also be able to interac-
tively change the floor of the hospital being animated at a particular time.

2.4 Component Reuse

An important goal of modern software development is to maximize the reuse of software components; more recently this has
also become a goal of simulation model development. Reuse can be particularly helpful when building simulation models
involving hierarchies of staff objects such as doctors, nurses, respiratory therapists, orderlies, unit agents; reuse can also be
particularly helpful when building hierarchies of physical objects such as operating rooms, surgical wards, and beds. Thus an
important design guideline for the project was to facilitate component reuse.

2.5 Design Methodology

While it may seem unnecessary to use a design methodology for building discrete event simulation models, the authors' had
previously found that when using simulation software in which models were built by drawing them, as simulation model
complexity increased, it often became harder to maintain and expand the models. One reason for this was that when building
simulations using drawing tools, when editing the simulation, it often becomes necessary to move around other visual objects
in the simulation model to make room for new objects; it can also become necessary and increasingly more difficult to move
around the lines connecting simulation objects so as to make it possible to follow them and differentiate between them. Even
when not using drawing tools to build simulation models, as models built without a methodology grow, the likelihood of dif-
ficulty in modifying or expanding them seems likely to increase.

Thus to facilitate the development of detailed and comprehensive models, and hence complex models, it was decided to
select a design methodology before beginning platform design and development. The particular goals for the design metho-
dology were that it be simple, efficient, straightforward to translate designs into implementation, expandable and easily vali-
dated, and that it lend itself to component reuse.

3 DESIGN DECISIONS

To address these constraints and guidelines, several design decisions, discussed in the sub-sections below, were made.

3.1 Design Methodology

As a starting point for specifying a design methodology, Leung and Lai's (1997) methodology, based on Yourdon's
Structured Methodology (YSM), was considered for analyzing simulation modeling requirements. Their methodology con-
sists of three stages. The system definition stage consists of building a diagram that specifies the boundaries of the system by
specifying the entities in the system, and building a list of external and internal events that trigger activities in the system.
Their modeling formulation stage consists of building a state transition diagram for each entity type that indicates the effect
of events on the state of individual entities, building a data flow diagram to specify the activities to occur in response to spe-
cific events, and building an entity relationship diagram to specify the attributes of each entity, and the relationships between
entities, including relationships because of data, activities and events. Their validation stage consists of using the above dia-
grams to validate the analysis

A limitation of the Leung and Lai methodology, from the perspective of making it as simple, direct, and fast as possible
to build simulation models, is their emphasis on the difference between determining what needs to go into the model, and
how the model is built, i.e. "A key principle for YSM is to model the functional requirements and the implementation re-
quirements separately." In particular, by not using the same approach for both analyzing and building the simulation model,

1929

Troy and Rosenberg

their methodology requires that one map the first set of requirements into a second, possibly very different set of require-
ments. It also becomes necessary to perform two steps, design and building.

To bypass these limitations, the discrete event simulation model for the hospital was conceptualized in terms of pro-
gramming language based objects used in several Java based discrete event simulation tools such as SSJ (L'Ecuyer 2009). In
particular, it was decided that entities would be built using Java objects hereafter referred to as entity objects, events would be
built as Java objects hereafter referred to as event objects that are scheduled to occur in the future, and the activities to occur
in response to those events objects would be programmed as procedures, or methods, owned by the entity objects. This ob-
ject orientation would make it possible to adapt most of Leung and Lai's steps so that they could be simultaneously used to
analyze, build, and document the simulation model. The initial set of steps that resulted from this adaptation were:

• Specify the the system's entities and build them as entity objects.
• Specify the attributes of those entities and build them as fields of the entity objects.
• Specify the system's events and build them as event objects.
• Specify the activities to be performed by entities in response to those events and build them as methods of the entity

objects.
To facilitate the validation of models built with this methodology, the following steps were added:

• Specify the states each entity object can take on.
• Initialize the state of each entity object upon its creation.
• Modify the state of each entity object whenever that state is modified in response to an event.
• Before performing an activity, have entity objects check whether they are in an acceptable state for performing that

activity, and if not, log the simulation time, the event, the entity object, and the entity objects' current state, and then
stop the simulation.

• Add a logging capability that could be turned on or off as needed to log all state changes, the activities that per-
formed them, and the events that triggered those activities.

It is interesting to note that the derived set of steps are similar to those suggested in Gilbert (2004) as a methodology for
building agent based social simulations, which tend to have a lot in common with discrete event simulations.

3.2 Simulation Environment

To address the need for performance, it was deemed necessary to use an enterprise capable development environment that
would run simulation trials quickly, that could be used to distribute the simulation so that individual trials could be run in
parallel on different computers, and that would not require expensive licensing for that distribution. Likewise, to address the
need for component reuse, it was deemed necessary to use an object oriented development environment. These needs sug-
gested the use of Java, whose performance now comes close to that of compiled object oriented programming languages;
Java applications can also be easily distributed due to the existence of Java engines for a large number of modern operating
systems and processors, and also because Java applets can be distributed via web pages in a manner that can securely take
advantage of unused personal computer processing power.

To preclude the need for developing core simulation capabilities such as the pseudo-random number generator needed
for repeated random sampling, or the event list needed to track future simulation events, it was originally planned to use a
publicly available Java simulation class library such as SSJ (L'Ecuyer et al 2009), a simulation class library developed by
Pierre L'Ecuyer and his team. However, since L'Ecuyer's random number generator had been translated into Fortran by Mil-
ler (2001) and since Sun had publicly published the code for its TreeMap object which could be readily adapted for use to
track future events, it was decided to take advantage of them so as to preclude possible licensing problems. This was also
done to optimize the implementation of the TreeMap object, which (L'Ecuyer et al 2009) "was not efficient." It was relative-
ly straightforward to add code for the main simulation event loop.

To maximize performance of the core simulation capabilities, a few changes were made to the code described above.
Perhaps the most important of these was that simulation time was defined to be an integer between 0 and 2^31 - 1 minutes,
rather than the floating point simulation time used by SST, or the Object field used as an index in Sun's TreeMap class. In
addition, the main simulation event loop was designed so that it runs in a thread, so that multiple simulation runs could poten-
tially be run simultaneously on multi-core processors such as the eight core processors expected to be available within the
next two years. The simulation engine was also designed to support, in future versions, the distribution of simulation
processing to other personal computers in the hospital via web pages.

1930

Troy and Rosenberg

3.3 2D Multi-Level Animation Engine

As SSJ does not have an animation capability, and as no Java toolkits were found to have an animation ability that could be
set interactively to change the floor being animated, it was decided to build the animation capability. To help obtain user
acceptance of the simulation model, it was decided to provide users with an interactive ability to specify the ratio between
simulation time and real time. To ensure that the animation engine would have minimal impact upon performance when
animation was turned off, it was also decided to integrate calls to the animation engine into the simulation event loop via a
single if statement that would check whether the simulation time of the next animation update was less than the simulation
event time of the next event. When this was not the case the simulation would proceed, and when it was the case the simula-
tion would be delayed until the appropriate real time for the next animation update.

To make it possible for users to view different areas of the hospital, the simulation frame displaying the animation was
designed to allow users to click on buttons, painted on the frames, to scroll the animation forward, backward, left and right,
and to move the animation up or down one floor at a time.

3.4 Simulation Class Library

While many of the base classes of the simulation class library were designed to be similar to that of other Java event oriented
simulation libraries, the class library was also designed to include base classes that could be used for logging and animation.

To model entities, an Entity interface was designed to provide the basis for a hierarchy of general simulation entity ob-
jects that need to respond to simulation events such as the simulation is about to start, the simulation has ended, the simula-
tion is being reset, and the simulation's warm-up period has ended. Numerous implementations of this interface were made to
represent hospital entities such as beds, patients, doctors and operating rooms

To model those and other events, an Event interface was designed, and numerous event objects were built to represent
events such as patients calling a surgeon's office for an appointment, patients arriving for the appointment, receptionists leav-
ing for work and surgeons finishing operative procedures. Of particular note is the simplicity of the event classes, whose
design was motivated by SSJ's (L'Ecuyer et al 2009) Event class. When events are created they are initialized with needed
references and values; when events occur their actions method is invoked and in general a single method call to one of the
reference objects is made using the other references and values. Thus the purpose of the event class is to trigger activities;
these classes generally leave activity details to entity objects.

4 USAGE

This section discusses the efficacy of using the class library, after implementing it as described above, to build a preliminary
peri-operative simulation model currently being used to evaluate surgical bed requirements at the hospital. This model entails
surgical requests being generated randomly by all of the hospital's surgeons at historical rates, operative procedures taking
random lengths of time based on actual procedures performed by the same surgeons, and patient post-operative bed stay dura-
tions randomly generated using bed stay data collected for those operative procedures from all surgeons at the hospital. The
model was run for four 28 day periods to generate a backlog of surgical requests, for an additional thirteen periods to bring
the simulation to a state closer to steady state, and for twenty two data collection periods. While the model currently only
collects the maximum number of beds utilized, it will soon be modified to collect the amount of time 1, 2, 3, . . . 200 beds
are needed per year, both overall, and by individual surgical services. Subsequent to that it will also be used to investigate
whether scheduling changes can be used to increase peri-operative throughput.

4.1 Design Methodology

As anticipated, the design methodology simplified and speeded up the building of the preliminary model. In particular, the
first step of the methodology resulted in classes for each of the entities being modeled (see Table 1); the major effort entailed
by this step was just to list the set of entities. The second step resulted in the addition of a set of attributes for each of those
entities (see Table 2 for a list of the bed manager entity's attributes); the major effort entailed by this step was just to list the
attributes. The third step resulted in a set of event classes (see Table 1); the major effort entailed in this step was just to list
the events being modeled, or more precisely the list of happenings corresponding to the end of each activity in the model.
The fourth step resulted in the specification of the activities for each entity class (see Table 2 for a list of the bed manager's

1931

Troy and Rosenberg

activities); this step required both the straight forward identification of the activities, as well as the identification, by a simula-
tion analyst, of how these activities were to be translated into Java. Of particular note is that it the design and development
steps were and could be done simultaneously.

Table 1: Entities and Events in Preliminary Peri-Operative Simulation Model

Entities Events
Bed Bed Cleaning Finished
Bed Manager Doctor Arrives At Office
Bed Request Doctor Arrives Home
Bed Unit Doctor Time To Leave Home
Doctor Doctor Time To Leave Office
Exam Room Patient Admitted To Bed
Major OR Suite Patient Arrival At Doctor Office
Medical Office Patient Arrival At OR For Surgery
Medical Office Receptionist Patient Arrives Home
Minor OR Suite Patient Bed Stay Finished
One Day Surgery Patient Discharged From Bed
Operating Room Patient Generation
Post Anesthesia Care Unit Patient Registration At Doctor Office Completion
Patient Patient Time To Go To Doctor Office For Exam
Patient Generator Patient Time To Go To OR For Surgery
Surgeon Surgeon Arrives At OR
Surgery Request Surgeon Surgery Completion
Surgical Ward Surgeon Time To Leave Home For OR
Unit Agent Surgeon Time To Leave OR
 Unit Agent Arrives At Home
 Unit Agent Arrives At Unit
 Unit Agent End Of Work Day
 Unit Agent Time To Leave Home

The design methodology also systematized and speeded up the process of modifying the model. In particular, to modify
the model, it was only necessary to revise the results of the steps discussed above so that they were consistent in context of
the modified model. This is in contrast to the modification of visually created models where it becomes necessary to move
the constructs used by those models, and the inter-connections between those constructs, so as to conform with the modified
model.

1932

Troy and Rosenberg

Table 2: Bed Manager Entity Attributes and Activities

Attributes Activities
Bed Types Assign Patients To Beds
Bed Requests Be Notified That Bed Has Been Cleaned
Available Beds Be Notified That Patient Stay Has Finished
All Beds Be Notified That Patient Has Been Admitted To Bed
 Be Notified That Patient Has Been Discharged
 Order Bed To Be Cleaned
 Order Patient Discharge
 Order Patient To Be Moved And Admitted To Bed
 Receive Bed Request

4.2 Animation Engine

As illustrated in Figure 1, the animation capability made it possible to see the geographical flow of entities through the hos-
pital. In that figure, orange balls surrounding a “P” are used to represent patients and blue balls are used to represent surge-
ons; in other parts of the animation other colors are used to represent unit agents, nurses, respiratory therapists and orderlies.
In addition, the black triangles, plus sign, and minus sign icons in the bottom right hand corner of the display can be used to
scroll the display left, right, forward, backward, up and down instantaneously, even when incorporating architectural plans as
the background of the display.

1933

Troy and Rosenberg

Figure 1 – Geographical animation of OR suites, PACU and a surgical ward

4.3 Performance

The class library is fast. In particular, for a preliminary peri-operative simulation model just involving surgeons and patients,
when the animation speed was set to 50 frames per second and one day simulation time per frame, 1092 days (i.e. 39 four-
week periods) of simulation were processed and animated in approximately 22 seconds, indicating that both the simulation
and the animation were able to perform at the targeted speeds. These timings were performed on a ThinkPad T61 running
Windows XP Professional with Service Pack 2, 2 GBytes of RAM, and a T9300 dual core processor. In addition, for the
same model on the same computer, when animation was turned off, the total run time, including model creation and initializa-
tion was approximately two seconds; it is anticipated that when running experiments with multiple trials that the time for a
single trial of 1092 days of simulations will be less than 1 second.

5 OTHER POTENTIAL USES

It is our firm belief that given the resource constraints that are pervasive in the provision of health care services, the mis-
match, either short-term or long-term, between supply of services and the demand for services, is a fundamental issue that
must be addressed. It is also our contention that the class library described in this paper can be readily used by other depart-
ments and hospitals to analyze alternative approaches to addressing this mismatch. As such, it is tentatively planned to re-
lease the class library as implemented to date at no charge for stand-alone usage.

1934

Troy and Rosenberg

6 FUTURE ENHANCEMENTS

While currently of considerable value to the hospital, to facilitate the further design, building and documentation of simula-
tions, several enhancements are being considered.

6.1 Design Methodology

To facilitate future use of the class library described in this paper, the authors envision:
• The addition of a user interface to the Java IDE (Eclipse) to allow developers to directly enter the specifications for

entity objects, i.e. their parent class, their additional attributes, changes and additions to their activities, their states,
and the states allowed for each activity.

• The addition of a user interface to the Java IDE to allow developers to directly enter the specifications for event ob-
jects, i.e. their name, their parameters, and the actions to be performed when they occur.

• Extensions to the Java's built in documentation capability (JavaDoc) to make it possible to generate a document con-
taining a hierarchical list of entity objects with their attributes, states, and activities.

• Extensions to the Java's built in documentation capability to make it possible to generate a document containing a
list of event objects with their names, parameters and the actions to be performed when they occur.

6.2 Class Library

It is expected that as more detail is added to the peri-operative simulation model, and as the class library is used for other
simulations within the hospital, that the class library will be expanded to facilitate those additions.

6.3 Animation Engine

As the use of the class library is extended, it is expected that there will be a need to display the animation of several parts of
the hospital at one time. In turn it is expected that this may lead to:

• The development of a capability to simultaneously display animation of several parts of the hospital, one per com-
puter monitor.

• The extension of the current capability to allow zooming in and out within a particular animation display.
• The extension of both of these capabilities so that they work over the internet.

To facilitate getting staff to accept models, it would also seem useful to provide an ability to display or verbally announce the
events, activities and state changes as they occur for selected objects.

6.4 Performance

While a significant amount of effort has already been expended to ensure that the class library is fast, there are a few capabili-
ties, including the future event list and surgeon schedules, whose speed could potentially be improved. However, it seems
likely that most future performance efforts will be on the extension of the class library to enable it to distribute the processing
of individual simulation trials, so that simulation experiments can be run in approximately the same time it takes to perform a
single simulation trial.

REFERENCES

Bloch, J., D. Lea, Available via <http://www.docjar.com/html/api/java/util/TreeMap.java.html> [accessed August 11, 2009].
Cahill, W., M. Render. 1999. Dynamic Simulation Modeling Of ICU Bed Availability. In Proceedings of the 1999 Winter

Simulation Conference, ed. P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, 1573-1576. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Cardoen, B., E. Demeulemeester. 2007. Evaluating The Capacity Of Clinical Pathways Through Discrete Event Simulation.
Working Paper KBI 0712, Department Of Decision Sciences and Information Management, Faculty Of Economics and
Applied Economics, Katholieke Universiteit Leuven, Leuven, Belgium.

1935

Troy and Rosenberg

Carter, M. 2006. A Case Study of a Simulation-Based Decision Support Tool. Available via
<http://www.ioz.pwr.wroc.pl/Pracownicy/Zabawa/ORAHS1/pliki/Carter_ORAHS.ppt> [accessed August 11, 2009].

DiLeo, J. J. 2005. FreeSML: Delivering On The Open Source Simulation Language Promise. In Proceedings of the 2005
Winter Simulation Conference, ed. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, 2513-2522. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Fetter, R.B., J.D. Thomson. 1965. The Simulation of Hospital Systems. Operations Research 13(5):689-711.
Gilbert, N. 2004. Agent-based social simulation: dealing with complexity. Available via

<http://cress.soc.surrey.ac.uk/web/resources/ABSS%20-%20dealing%20with%20complexity-1-1.pdf> [accessed August
12, 2009].

L'Ecuyer, P. 2009. Pseudorandom Number Generators. In Encyclopedia of Quantitative Finance, ed. E. Platen and P. Jaeck-
el. Hoboken, New Jersey: Wiley.

L'Ecuyer, P., et al. 2009. SSJ User's Guide, Package SimEvents, Simulation Clock and Event List Management. Available via
<http://www.iro.umontreal.ca/~simardr/ssj/doc/pdf/guidesimevents.pdf> [accessed August 12, 2009].

Leung, J. W. K., K. K. Lai. 1997. A Structured Methodology To Build Discrete-Event Simulation Models. Asia-Pacific Jour-
nal of Operational Research 14:19-37.

Marcon, E., F. Dexter 2006. Impact Of Surgical Sequencing On Post Anesthesia Care Unit Staffing. Health Care Manage-
ment Science 9:87-98.

Miller, A. 2001. MODULE Lin_Feedback_Shift_Reg. Available via
<http://users.bigpond.net.au/amiller/random/lfsr258.f90> [accessed August 12, 2009].

Troy, P. M., L. Rosenberg 2009. Using simulation to determine the need for ICU beds for surgery patients. Surgery(in press).
Tyler, D. C., C. A. Pasquariello, C. H. Chen 2003. Determining Optimum Operating Room Utilization, Anesth Analg

96:1114-21.

AUTHOR BIOGRAPHIES

PHILIP TROY is the principal consultant for Les Entreprises TROYWARE, a consulting and software development corpo-
ration focusing on health care Operations Management. He received his Ph.D. In Operations Research from Yale University
in 1992. He is also a part time faculty member of the John Molson School of Business at Concordia University.

LAWRENCE ROSENBERG is a Professor of Surgery and Medicine and Director of the Division of Surgical Research at
McGill University, A.G. Thompson Chair of Surgical Research at the McGill University Health Center, and Chief of Surgical
Services at the Sir Mortimer B. Davis Jewish General Hospital. He obtained his M.D.,C.M. From McGill University in 1979,
trained in General Surgery at McGill, completed his surgical residency and Ph.D. in Experimental Surgery in the area of pan-
creatic cell differentiation in 1985, and undertook post-doctoral studies and fellowship training in transplantation surgery at
the University of Michigan.

1936

