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ABSTRACT 

OptAgent is a new framework which enhances the practical applications of agent-based models by giving them an optimiza-
tion and analysis capability.  Embedding such an ability within agent-based systems greatly expands their usefulness and ap-
plicability.  Developed through an Army Research Office SBIR Phase II grant, OptAgent is built on our existing OptQuest 
engine to create a system that can be used alike with agent-based and other complex simulation models. Important compo-
nents of the OptAgent system include new predictors based on Markov blankets and satisfiability data mining that speed the 
search for high quality solutions.  OptAgent is structured to assist with the verification, validation, and accreditation process 
for a new model and can also be used to enhance the analysis accomplished with a more mature model.  

1 INTRODUCTION 

With increases in computing power in the last decade, agent-based models have become increasingly common and useful.  
Currently these models are being used to analyze a wide variety of military, government, and commercial problems.  Agent-
based simulation, a critical function of these models, provides a powerful tool to evaluate the behavior of systems that are too 
complex to be given tractable mathematical formulations.  Recent applications of agent-based models in the commercial 
realm include modeling of financial markets and actors, supply chain and logistics; marketing and consumer behavior, social 
networks and information flow, distributed computing, diversity and manpower planning, and traffic management.   

For the military, agent-based modeling represents the latest in analytic simulation technology and provides a simulation 
environment in which small- to large-scale joint war fighting scenarios are being constructed and explored.  Agent based 
modeling tools are also being used to represent military operations other than war and irregular warfare.  To see these models 
in the commercial or the defense arena reach their full potential, an integrated software environment that intelligently couples 
optimization and analysis with these agent-based models is needed. 

Despite their widespread and growing use, agent-based simulations face the criticism that they have too many parame-
ters, and that the impact of varying these parameters is not well understood.  The complex interacting effects among these pa-
rameters renders customary analysis incapable of determining whether the parameters values selected are best. There is no 
guarantee that other parameter choices will not yield better performance.   

Another commonly noted weakness in the use of agent-based simulations is a lack of understanding of the scope and 
sensitivities of model outputs for varying parameter choices.  One would like to know the best- and worst-case behavior of 
the model, given different parameter choices.  Similarly, it would be valuable to know if there are ranges of parameter values 
for which model outcomes remain above or below certain thresholds.   

A user wrestling with such issues is compelled to rely on repeated what-if analysis or perhaps “expert judgment.” A 
complex simulation of the type required to model real-world applications, however, will typically have myriad potential 
combinations of agent and environment parameters.  The probability that a user iteratively manipulating the simulation will 
find optimal inputs is effectively zero.  Large agent-based simulations are generally computationally intensive.  Thus, enume-
rating all combinations of agents and environment parameters is not a practical strategy for such models.   

A preferable alternative is to wrap an optimization algorithm around an agent-based model to search for high-quality pa-
rameter settings, offering the potential to obtain such parameter settings with a limited number of runs.  Classical mathemati-
cal programming techniques such as linear and integer programming cannot be applied to optimize the settings for agent-
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based models, which are highly nonlinear and stochastic.  Instead, an intelligent search metaheuristic, to iteratively adjust in-
put parameters and evaluate model responses, has been shown to be an effective approach to optimizing simulation models. 

Integrating a generalized framework for optimization and robust analysis with agent-based simulations has the potential 
to offer far greater than the current mode of operation where a user manually manipulates the agent-based simulation. Meta-
heuristic-based stochastic optimization libraries can overcome this limitation of current systems by answering the question of 
whether the best combination of parameters was chosen to meet certain goals, and more particularly by identifying such a 
combination as a foundation for better decisions. The inclusion of an intelligent analysis component has the additional ability 
to  provide statistics describing model behavior and to give decision makers a previously unmatched capacity for sensitivity 
analysis.   

2 OPTAGENT OVERVIEW 

OptAgent is a framework that wraps around agent-based models to provide support for optimization, analysis, and distributed 
computing.  OptAgent is comprised of a series of additions and enhancements to the existing OptQuest simulation optimiza-
tion software developed by OptTek Systems.  Figure 1 depicts the three-stage process that is used to optimize and analyze 
agent-based models.   

The OptQuest engine combines state-of-the-art metaheuristic procedures including Tabu Search, Neural Networks, and 
Scatter Search with classical mathematical programming techniques such as Linear and Integer Programming.  This compo-
site methodology chooses a set of values for the model input parameters (i.e., factors or decision variables) and uses the res-
ponses generated by the simulation model to make decisions regarding the selection of the next trial solution.   
 

OptAgent

Stage 3
Post Analysis

Stage 2
Agent-based 

Model 
Optimization

Stage 1
Initial Analysis

Distributed 
Processing 
Manager

Distributed Agent-based Model Instances
 

Figure 1: Conceptual View of OptAgent and a Distributed Set of Agent-based Model Instances 
 

Prior to Stage 1, the user identifies the agent and environment attributes from the agent-based model whose values the 
user wishes OptAgent to determine.  These attributes are the decision variables over which OptAgent optimizes and performs 
model analysis.  Decision variables may be continuous, discrete, integer, binary, or enumerations.  The user also identifies 
outputs of the agent-based model to collect following each model run. 

The user specifies an objective in terms of decision variables and outputs of the agent-based model.  The objective may 
be a linear or nonlinear combination of decision variables and model outputs.  The objective can also be a user-defined evalu-
ation function of arbitrary form that takes the decision variables and model outputs and returns an objective value. 

The user optionally sets constraints involving decision variables and model outputs.  The constraints may be a linear or 
nonlinear combination of decision variables and model outputs or contain user-defined functions of arbitrary form.  If a con-
straint is defined only in terms of the decision variables, variable values sent to the simulation will never violate the con-
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straint.  For constraints defined in terms of model outputs, the constraint will be tested for feasibility once the model outputs 
are returned. 

For distributed optimization, the required software is set up on each participating node with one node selected as the op-
timization manager and the others as agent-based model simulators.  Each simulator node registers with the optimization 
manager.  If distributed computing is selected, each agent-based model run in each stage will be sent out as a job through the 
optimization manager to one of the available simulators. 

2.1 Stage 1: Initial Analysis 

OptAgent runs the agent-based model multiple times initially (based on internal criteria) to create a diverse initial set of solu-
tions.  Statistics are collected on this solution set and displayed to the user, such as the range of objective values found in the 
initial solutions. 

Using the initial solution set, a collection of Markov blanket and Satisfiability Data Mining solution predictors are 
created.  These predictors are used to evaluate the expected results of model runs based on the proposed variable values.  As 
shown in Figure 2, the search adaptively exploits the information from the predictors, allowing its focus to be strictly limited 
to runs with good expected results or to be skewed toward searching more frequently in areas with good expected results. 

Between Stage 1 and Stage 2, the user is presented with the results of Stage 1 and has the option to deselect variables 
from consideration or to cancel the optimization process altogether. 
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Figure 2: Stage 2 Interaction between OptAgent and the Agent-based Model 

2.2 Stage 2: Agent-based Model Optimization 

OptAgent uses the existing OptQuest software to perform the core agent-based model optimization search process.  The Opt-
Quest software is also used for solution management.  Figure 2 shows the interaction between the OptQuest metaheuristic 
search engine and an agent-based model.  The metaheuristic optimizer chooses a set of values for the input parameters (i.e., 
factors or decision variables) and uses the responses generated by the simulation model to make decisions regarding the se-
lection of the next trial solution. 
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2.3 Stage 3: Post Analysis 

During the post analysis stage, statistics are collected on the key performance measures in the agent-based model across the 
various solutions found.  Statistics of interest, such as maxima, minima, means, quartiles, and standard deviations are dis-
played.  These statistics provide the user with insight into the behavior of the model across many possible combinations of 
inputs.  The user is able to tailor reported statistics to provide specific information on questions of interest.  (For example: 
what are the values of the statistics when a parameter has a certain value or has a certain range of values?)  If an insufficient 
number of solutions have been collected, additional solutions may be analyzed during this stage to provide the requested sta-
tistics. 

Sensitivity analysis is also performed during Stage 3, providing ranges of parameter values that provide solutions with 
objective values in a certain range, e.g., ranges of parameter values that yield solutions having an objective value within 10% 
of the best objective found.   

3 A MISSILE DEFENSE EXAMPLE 

As a test case we constructed an agent-based model representing a missile defense scenario.  This model was chosen for its 
relevance to the Army and its ability to explore many agent and environment parameters that are representative of those 
commonly found in many agent-based models.  The model includes a two-dimensional physical landscape on which the 
agents interact.  The agent types represented in the model are blue leadership, blue airborne lasers (ABLs), blue ground-based 
interceptors (GBIs), blue GBI stations, blue Patriots, blue cities, and blue bases, red leadership, red transport-erect-launchers 
(TELs), and red missiles.  We used the Repast <repast.sourceforge.net> agent-based modeling toolkit for building 
the missile defense example. 

For our primary tests we fixed the battle space size and the initial location and number of red TELs and red missiles.  We 
created variables representing the number of blue ABLs at each blue base, the number of GBIs at each GBI station, and the 
number of Patriots at each blue city.  Constraints were included that limit the total number of ABLs, the total number of 
GBIs, and the total number of Patriots.  The overall model objective was to maximize the final population in the blue cities.   

During the execution of the agent-based model, the red leadership sends launch commands to the red TELs.  Each red 
missile launched is targeted at a blue city or base.  Blue ABLs move from their home base to patrol and back.  As red mis-
siles pass within range, intercept attempts are made by ABLs, GBIs, and Patriots.  Missiles that are not intercepted and strike 
a blue base degrade the base’s ability to service ABLs and thus degrade the ABLs’ effectiveness.  Missiles that are not inter-
cepted and strike a blue city result in population loss which is then reflected in the model objective function.  

This model demonstrates the ability of our approach to optimize the input parameters for an agent-based model.  The ef-
ficacy and robustness of our optimization process for agent-based models is established across a variety of model settings by 
our tests over significant variations in the battle space size, the initial location and number of red TELs and red missiles, the 
numbers of ABLs, GBIs, and Patriots at each location, and the constraint limits on total numbers of ABLs, GBIs, and Pa-
triots..   

Our base model had 20 input variables and three constraints on subsets of those variables.  We ran the model with up to 
100 agents of 9 base agent types operating for up to 100 time units.  The number of agents and the length of the simulation 
are both capable of being increased according to the needs of the situation.  We intentionally limited the number of agents 
and the number of time steps to keep model run times short and allow for a large number of trials during testing. 

Wrapping optimization around this missile defense agent-based model using OptAgent allowed us to answer questions of 
the following forms: 

• What is the best mix of assets to acquire under various budget, production, or theater constraints? 
• How can assets be best positioned to most effectively address the red missile threat? 
• What are the best tactics to employ during the fight? 
Red war gaming could also be done to determine blue vulnerabilities answering questions such as: 
• Given a blue defense, what timing of missile launches produces the greatest blue loss? 
• Given a blue defense, what assignment of missiles to cities and bases inflicts the greatest loss? 
While this model does not include all of the agents and agent interactions that may potentially be embraced in a missile 

defense model, it captures the essentials of a missile defense fight in a realistic fashion.  This agent-based model can easily be 
extended to include a greater number of agents, a greater variety of agents, more complex agent interactions, and far more 
time units.  Our results imply that the optimization techniques used in our research are highly scalable; i.e., they provide a 
natural foundation for extensions of this model.  Our experience in other practical settings reinforces the conclusion that these 
outcomes apply generally to many other agent-based models as well as other forms of simulation modeling. 
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4 SOLUTION PREDICTORS 

Through the use of predictors the search space can be effectively narrowed by limiting full agent-based model runs to pro-
posed input parameters with good predicted results.  In OptAgent, we have extended the core OptQuest engine to utilize both 
Markov blanket (MB) and Satisfiability Data Mining (Sat-DM) solution predictors during Stage 2 of the optimization process 
to speed the search and improve the results. 

The MB solution predictor is based on the research of Better (2007).  The creation of the MB takes place in three phases: 
discovery, construction, and improvement.  In the discovery phase, all variables are tested for independence and conditional 
independence to a specified depth.  This creates the set of variables from the model that are the primary influencers of the ob-
jective value.  These variables of primary influence become the candidate nodes from which the MB is formed.  Candidate 
variables are then used in the construction phase and are assembled into a directed acyclic graph including all of the variables 
as either parents of the objective node, children of the objective node, or parents of children of the objective node.  This di-
rected acyclic graph is an MB in which each node represents a variable (including a variable representing the objective) and 
each directed edge expresses a relationship between the variables.  In the improvement phase, node/edge positions in the di-
rected acyclic graph are varied in an attempt to create an MB with greater prediction accuracy.  The prediction accuracy of 
the MB is evaluated by testing it against the solutions contained in the initial sample set of solutions. 

An MB is a special case of a Bayesian network (BN).  A BN is a directed acyclic graph G, consisting of a set of nodes or 
vertices V that represent the features (i.e. decision variables) in the data set, and directed edges, E, between the nodes, 
representing conditional independence relationships between the variables.  Given a graph G={V, E}, a node X∈V is a cause 
of node Y∈V if there is a directed edge from X  to Y.  Equivalently, X is a parent of Y, and Y is a child of X.  The Markov 
condition imposed on a BN renders a variable Xi∈V independent of any non-descendant or non-parent, conditional on its par-
ents.  The MB of Xi includes its parents, its children and the parents of its children.  The MB, therefore, constitutes the set of 
variables that are not independent of the target variable, conditional on all the other variables in the set.  In other words, any 
variable not in the MB of the dependent (target) variable is considered redundant for the purpose of predicting the value of 
the dependent variable.  Thus, by finding the MB of the variable of interest, we can discard all the other, irrelevant variables 
in the domain. 

Data binarization is not required for the construction of MBs, but it is often desirable.  One primary reason is that the 
compression – both in the number of attributes and in the amount of information – that results from data binarization can 
greatly reduce the computational cost of creating MBs.  Recent research indicates that binarizing data can result in compara-
ble and often better classification accuracy than using the original raw data.  We perform a binarization process against the 
agent-based model inputs we are considering.  A modified version of the IDEAL algorithm developed by Moreira et al., 
(1999) is used called Controlled Discriminant Selection. 

The MB provides the user of the agent-based model insight into which variables are the primary drivers of the model.  
This may lead to more care in modeling the agents related to these variables.  This may also induce the agent-based model 
creator to remove or rethink some of the variables that are not of primary influence to the model outcome.  The MB can be 
used to predict whether potential solutions will fall above or below a desired objective value before they are run through the 
agent-based model.  Potential solutions that are predicted to yield poor solutions can be discarded or placed in a list of pre-
dicted bad solutions that will only be evaluated if there is time after evaluating all possible predicted good solutions. 

We additionally implemented a Satisfiability Data Mining (Sat-DM) solution predictor based on the research of Glover 
(2007).  Sat-DM is a method for binary data classification in which a collection of logical clauses is generated, or equivalent-
ly a collection of inequalities in zero-one variables, for each group of points representing a given classification. A point with 
unknown membership is classified as belonging to a particular group based on comparing the number or proportion of the in-
equalities it satisfies for that group versus the number or proportion it satisfies for other groups. Sat-DM makes use of a fun-
damental observation which states that inequalities are satisfied by a subset of elements of a particular group (and correspon-
dingly violated by a subset of elements from a complementary group) if and only if these inequalities correspond to feasible 
solutions to a special variant of a satisfiability problem. Based on this, the method generates membership-defining systems of 
inequalities that provide a filter for segregating points lying in different groups. 

Satisfiability data mining may be viewed as a procedure for generating multiple hyperplanes that segregate points of dif-
ferent groups by isolating their logical properties. The inequalities produced capture classification regions in feature space 
that are more varied and complex than those derived from hyperplane separating procedures such as those used in support 
vector machines and related procedures based on linear programming and convex analysis. A particularly useful feature is the 
ability to generate the collections of segregating inequalities (complementary half-spaces) in a highly efficient manner, allow-
ing the approach to handle large data sets without difficulty.  

Creating the Sat-DM predictors works as follows: let aij denote the value of a decision variable for the agent-based mod-
el, where each solution i (i=1,…,m) is described by n different decision variables indexed by j (j=1,…,n).  We seek a rule to 
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classify these elements in a manner to identify correctly whether a given vector Ai = (ai1,…,ain) should belong among the 
elements of Group 1 or instead among those of Group 2 (denoted G1 and G2, respectively).  In our case, we will seek to clas-
sify possible combinations of decision variables according to whether they will yield a solution with an objective value above 
a certain threshold (i ∈ G1) or not (i ∈ G2). 

From our initial diverse solution set generated in Stage 1 we have the Ai vectors and their group membership for any 
chosen objective threshold.  The goal is to provide decision rules that perform well in discriminating whether a new vector A 
not among the original known vectors should be classified as belonging to G1 or G2.   

Test runs were executed with and without the new solution predictors.  For each configuration runs were completed us-
ing four different initial sample sizes.  For each configuration and sample size a number of runs were conducted varying the 
random seed for each run and average results were computed.  Results for the test runs are shown in Table 1.   

Each run consisted of 1500 iterations of the agent-based model and results of the test runs are summarized in Table 1 be-
low. The summary base case results, along with results for runs using only MB solution predictors, runs using only Sat-DM 
solution predictors, and runs using both MB and Sat-DM solution predictors are shown in Table 1.  The percentages dis-
played in the table represent the gap between the best known solution and the best solution obtained for each set of test runs.  
Four columns contain the results for each of four initial sample sizes, 25, 50, 100, and 150.  The final column shows the aver-
age of the results across the four sample sizes. 
 
Table 1: Summary Results Comparing Base Case Results with Results Obtained Using the Markov Blanket and Satisfiability 
Data Mining Solution Predictors 

 
Initial 

Sample 25 
Initial 

Sample 50 
Initial 

Sample 100 
Initial 

Sample 150 
Overall % From 

Best Known 
Base Case /  
No Predictors 3.3% 5.8% 3.3% 4.8% 4.3% 
Markov blanket  3.0% 4.9% 2.8% 3.4% 3.5% 
Sat-DM 3.2% 3.3% 3.2% 4.6% 3.6% 
Markov blanket 
& Sat-DM  3.1% 3.4% 2.7% 3.0% 3.1% 

 

Comparing the test runs in which MB solution predictors were used with the base case, we see that the addition of these 
predictors improved the average performance for each initial sample size.  The overall average gap between the best solution 
found and the best known solution is reduced by 0.8%.  The tests in which Sat-DM solution predictors were used yielded sol-
id improvements over the base case.  The reduction in the overall average gap between the best solution found and the best 
known solution is 0.7%. Although these differences may seem small in relative terms, they are non-negligible in the present 
context.  In particular, in this model defense example where the objective is to maximize the final population of blue cities, if 
the best known solution was a remaining population of 500,000 people an improvement of just 0.7% represents an additional 
3500 lives protected.   Nevertheless we were able to improve upon this by combining our two predictors. 

We integrated the MB and the Sat-DM solution predictors by considering the predictions of both types of predictors for 
each proposed set of input values.  Only in cases where both predictors indicated a poor objective was a proposed set of input 
values rejected without running the simulation model.  The results achieved when our predictors were joined in this way yield 
the best results of any of our configurations.  The average gap between the best solution found and the best known solution is 
better than the base case result for each sample size.  A comparison of the base case row and the final row in Table 1 shows 
the average gap between the best solution found and the best known solution was reduced from 4.3% to 3.1%, producing a 
gain of 1.2%.  Our outcomes additionally show that the initial sample size used does not affect the quality of the best solution 
found according to a readily definable pattern. 

In sum, the results of the runs in which the solution predictors were used to discard predicted bad solutions demonstrate 
the value of these new solution predictors and their ability to produce higher quality solutions than are obtained without their 
use.  In each test, the use of solution predictors improved overall performance and the greatest gain was seen when both the 
blanket and the Sat-DM solution predictors were used in combination. 

5 USE DURING THE MODEL VERIFICATION, VALIDATION, AND ACCREDITATION PROCESS 

The Verification, Validation and Accreditation process generally involves both data verification and validation and model ve-
rification and validation.  The Department of Defense’s Modeling and Simulation Glossary offers the following definitions.  
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Verification is the process of determining that a model implementation and its associated data accurately represent the devel-
oper's conceptual description and specifications.  Validation is the process of determining the degree to which a model and its 
associated data are an accurate representation of the real world from the perspective of the intended uses of the model.  Using 
the OptAgent framework with an agent-based model helps with both the data and model verification and validation. 

During the course of an optimization run OptAgent generates a large number of trial solutions.  In the post analysis phase 
a user can explore the range of solutions generated.  While the search process focuses intensely on regions of local maxima 
the search algorithms also include diversification processes to generate a wide variety of trial solutions which differ signifi-
cantly among themselves, thus enhancing the coverage of the solution space from a global perspective.  Estimates from sub-
ject matter experts (SME) of reasonable ranges for model outputs along with the trial solutions generated by OptAgent can be 
combined to effectively accomplish model validation and verification.  Following an optimization run the trial solutions 
representing model extrema can be compared to the expected ranges of model inputs provided by the SMEs.  In this fashion 
areas in which the model do not perform in accordance with the expectations of the SMEs can be quickly identified.  In par-
ticular, when model outputs do not fall within expected ranges the model performance can be examined to determine if the 
deviation is due to incorrect model assumptions, invalid implementation, or bad underlying data.  Cases where deviations ex-
ist between model outputs and expected ranges, as disclosed by the analysis software, form a basis for further discussions 
with the SMEs to determine next steps. 

The ability to specify variables of interest, constraints, and an objective for an optimization run are also very useful dur-
ing verification and validation.  Controlling these inputs allows the user to test out different portions of a model’s solution 
space with great specificity. 

6 CONCLUSIONS AND FUTURE WORK 

Our computational study demonstrates that OptAgent provides an optimization framework for agent-based models that yields 
an effective way to find high quality solutions and to carry out effective model analysis. Important additional applications of 
the OptAgent software stem from its ability to assist with the verification, validation, and accreditation process for a new 
agent-based model. Useful forms of analysis that can be done by adding optimization to an agent-based model are further il-
lustrated by the inclusion of an agent-based missile defense  model. 

Our study also discloses the advantages obtained from Markov Blanket and Satisfiability Data Mining solution predic-
tors to speed the search process and find better solutions in the search.  We are currently investigating the best ways to meas-
ure and track the accuracy of the predictors, when to initially train and then retrain the predictors, and how best to use mul-
tiple predictors in combination. Research now underway focuses on creating a number of prototype instances where the 
OptAgent framework is applied both to existing agent-based and other complex simulation models.  Discussions are proceed-
ing with parties in the Department of Defense to use OptAgent with models for irregular military operations and for air de-
fense simulation.  An additional initiative consists of exploring integration opportunities to partner with makers of agent-
based modeling toolkits.  Such integration at the toolkit level will make the functionality embedded in OptAgent available to 
anyone building an agent-based model using one of these toolkits. 
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